Checkpointing 000000 Tri-criteria 000

Resilient and energy-aware algorithms

Anne Benoit

ENS Lyon

Anne.Benoit@ens-lyon.fr http://graal.ens-lyon.fr/~abenoit

CR02 - 2016/2017

4 A N

э

A B K A B K

Motivation			
000000	000000	000	
Optimal Period	Checkpointing	Tri-criteria	Conclusion

- Need of resilient algorithms (see classes 3-7)
- Need of energy-aware algorithms (see classes 8-9)

... And need to combine both! DVFS has an impact on resilience, so both problematics are linked... Also, does energy have an impact on the optimal checkpointing period?

- Need of resilient algorithms (see classes 3-7)
- Need of energy-aware algorithms (see classes 8-9)

... And need to combine both! DVFS has an impact on resilience, so both problematics are linked... Also, does energy have an impact on the optimal checkpointing period?

イロト イポト イヨト イヨト

- Data centers ("Cloud Begins with Coal", M. Mills)
 - 250 350 TWh in 2013 \approx consumption of Turkey (242), Spain (267), or Italy (309)
 - pprox 530*Mt* of *CO*₂ (carbontrust) > Canada
- ullet \sim crucial for both environmental and economical reasons
 - Coordinated *periodic* checkpointing: what is the optimal checkpointing period if you optimize for Energy consumption?
 - Is there a tradeoff between optimizing for Energy and optimizing for Time?

<ロ> (日) (日) (日) (日) (日)

Optimal Period	Checkpointing	Tri-criteria	Conclusion
00000	000000	000	
Power model			

- \mathcal{P}_{Static} : base power (platform switched on)
 - Trend: goes down (w.r.t. other powers)
- \mathcal{P}_{Cal} : overhead due to CPU (computations)
- $\mathcal{P}_{I/O}$: overhead due to file I/O (checkpoint or recovery)
- *P*_{Down}: overhead when one machine is down (rebooting)

Meneses, Sarood and Kalé:

- Base power $L = \mathcal{P}_{Static}$
- Maximum power $H = \mathcal{P}_{\text{Static}} + \mathcal{P}_{\text{Cal}}$

•
$$\mathcal{P}_{I/O} = 0$$
 (and $\mathcal{P}_{Down} = 0$)

E. Meneses, O. Sarood, and L.V. Kalé, "Assessing Energy Efficiency of Fault Tolerance Protocols for HPC Systems," in Proceedings of the 2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD 2012), New York, USA, October 2012.

- Periodic checkpointing policy of period T
- Independent and identically distributed failures
- Applies to a single processor with MTBF $\mu=\mu_{\mathit{ind}}$
- Applies to a platform with p processors with MTBF $\mu = \frac{\mu_{ind}}{p}$
 - tightly-coupled application
 - progress \Leftrightarrow all processors available

General model: while a checkpoint is taken, computations are slowed-down: during a checkpoint of duration *C*, the same amount of computation is done as during a time ωC without checkpointing $(0 \le \omega \le 1)$.

<ロ> (日) (日) (日) (日) (日)

- $\mathcal{T}_{\text{base}}$ execution time without any overhead
- $\mathcal{T}_{\mathsf{final}} = \mathcal{T}_{\mathsf{ff}} + \mathcal{T}_{\mathsf{fails}}$ total execution time
 - Time for fault-free execution

$$\mathcal{T}_{\rm ff} = \mathcal{T}_{\sf base} rac{T}{T - (1 - \omega)C}$$

• Time lost due to failures

$$\mathcal{T}_{\mathsf{fails}} = rac{\mathcal{T}_{\mathsf{final}}}{\mu} (D + R + \operatorname{Re-Exec})$$

Computation of the optimal checkpointing period in the non-blocking case: See Course 4, Section 4: Assessing protocols at scale (with α instead of ω)

$$\mathcal{T}_{\mathsf{Time}}^{\mathsf{opt}} = \sqrt{2(1-\omega)\mathcal{C}(\mu - (D+R+\omega\mathcal{C}))}$$

イロト イポト イヨト イヨト

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Consumed energy			

$$\begin{split} \mathcal{E}_{\text{final}} &= \mathcal{T}_{\text{Cal}} \mathcal{P}_{\text{Cal}} + \mathcal{T}_{\text{I/O}} \mathcal{P}_{\text{I/O}} + \mathcal{T}_{\text{Down}} \mathcal{P}_{\text{Down}} + \mathcal{T}_{\text{final}} \mathcal{P}_{\text{Static}} \\ &= \left(\mathcal{T}_{\text{base}} + \frac{\mathcal{T}_{\text{final}}}{\mu} \left(\omega C + \frac{T^2 - C^2}{2T} + \frac{\omega C^2}{2T} \right) \right) \mathcal{P}_{\text{Cal}} \\ &+ \left(\frac{\mathcal{T}_{\text{final}}}{\mu} \left(R + \frac{C^2}{2T} \right) + C \frac{\mathcal{T}_{\text{base}}}{T - (1 - \omega)C} \right) \mathcal{P}_{\text{I/O}} \\ &+ \frac{\mathcal{T}_{\text{final}}}{\mu} D \mathcal{P}_{\text{Down}} + \mathcal{T}_{\text{final}} \mathcal{P}_{\text{Static}} \end{split}$$

 $\mathcal{T}_{final} \neq \mathcal{T}_{Cal} + \mathcal{T}_{I/O} + \mathcal{T}_{Down}$, unless $\omega = 0$ CPU and I/O activities are overlapped (and both consumed) when checkpointing

Tri-criteria

Conclusion

$$\mathcal{P}_{\mathsf{Cal}} = \alpha \mathcal{P}_{\mathsf{Static}}, \ \mathcal{P}_{\mathsf{I}/\mathsf{O}} = \beta \mathcal{P}_{\mathsf{Static}}, \ \mathcal{P}_{\mathsf{Down}} = \gamma \mathcal{P}_{\mathsf{Static}}$$

$$\begin{split} \frac{(T-a)^2 \left(b-\frac{T}{2\mu}\right)^2}{\mathcal{P}_{\text{Static}} \mathcal{T}_{\text{base}}} \mathcal{E}_{\text{final}} &= \frac{-ab+\frac{T^2}{\mu}}{\mu} \left(\left(\alpha \omega C + \beta R + \gamma D + \mu \right) + \frac{\alpha T}{2} + \frac{\alpha (1-\omega)C^2}{2T} + \frac{\beta C^2}{2T} \right) \\ &+ \frac{(T-a)(b-\frac{T}{2\mu})}{2\mu} \left(\alpha + \frac{\alpha (1-\omega)C^2 - \beta C^2}{T} \right) - \beta C \left(b - \frac{T}{2\mu} \right)^2 \\ &= T^3 \left(\frac{1}{4\mu} - \frac{1}{4\mu} \right) + T^2 \left(\frac{\alpha \omega C + \beta R + \gamma D}{2\mu^2} + \frac{b+\frac{a}{2\mu}}{2\mu} - \frac{\beta C}{4\mu^2} + \frac{1}{2\mu} \right) \\ &+ T \left(-\frac{ab}{2\mu} - \frac{ab}{2\mu} + \frac{\beta Cb}{\mu} - 2 \frac{(\alpha (1-\omega) - \beta)C^2}{4\mu^2} \right) - \beta C b^2 \\ &- \frac{ab(\alpha \omega C + \beta R + \gamma D + \mu)}{\mu} - \left(\frac{b}{2\mu} - \frac{a}{4\mu^2} \right) (\alpha (1-\omega) - \beta) C^2 \\ &+ \frac{1}{T} \left((\alpha (1-\omega) - \beta) \frac{C}{2\mu} - (\alpha (1-\omega) - \beta) \frac{C}{2\mu} \right) \\ &= T^2 \left(\frac{\alpha \omega C + \beta R + \gamma D + \mu}{2\mu^2} - \frac{b}{2\mu^2} + \frac{a - \beta C}{4\mu^2} + \frac{1}{2\mu} \right) \\ &+ T \left(\frac{(\beta C - a)b}{2\mu} - 2 \frac{(\alpha (1-\omega) - \beta)C^2}{4\mu^2} \right) \\ &- \frac{ab(\alpha \omega C + \beta R + \gamma D + \mu)}{\mu} - \beta C b^2 \\ &+ \left(\frac{b}{2\mu} + \frac{a}{4\mu^2} \right) (\alpha (1-\omega) - \beta) C^2 . \end{split}$$

Anne.Benoit@ens-lyon.fr

Resilient and energy-aware algorithms

(日) (周) (三) (三)

Optimal Period \underline{ALGOE} : Strategy with $\mathcal{T}_{Energy}^{oot}$

Anne.Benoit@ens-lyon.fr

Conclusion

イロト イポト イヨト イヨト

$$\rho = \frac{\mathcal{P}_{\mathsf{Static}} + \mathcal{P}_{\mathsf{I/O}}}{\mathcal{P}_{\mathsf{Static}} + \mathcal{P}_{\mathsf{Cal}}} = \frac{1 + \beta}{1 + \alpha}$$

- 20 Mega-watts for Exascale platform with 10⁶ nodes
- Nominal power = 20 milli-watts per node
- $1/2 \longrightarrow 1/4$ of that power in static consumption
- "I/O an order of magnitude more than computing" (J. Shalf, S. Dosanjh, and J. Morrison, "Exascale computing technology challenges," in the 9th Int. Conf. High Performance Computing for Computational Science, 2011)
- Scenario 1: $\mathcal{P}_{\mathsf{Static}} = 10$, $\mathcal{P}_{\mathsf{Cal}} = 10$, $\mathcal{P}_{\mathsf{I/O}} = 100 \Rightarrow \rho = 5.5$
- Scenario 2: $\mathcal{P}_{\text{Static}} = 5$, $\mathcal{P}_{\text{Cal}} = 10$, $\mathcal{P}_{\text{I/O}} = 100 \Rightarrow \rho = 7$

Optimal	Period
00000	С

Checkpointing

Tri-criteria

Parameters: resilience

MTBF

- N = 45,208 processors: one fault per day
- Individual (processor) MTBF $\mu_{\rm ind} \approx 125$ years.
- Total number of processors N: from N = 219,150 to $N = 2,191,500 \Rightarrow \mu = 300$ min down to $\mu = 30$ min
- C = R = 10 min, D = 1 min, and $\omega = 1/2$.

How much slower, if we optimize for energy instead of optimizing for time

э

Optimal Period 000000 Impact of ratio ρ

instead of optimizing for energy

э

 Optimal Period
 Checkpointing
 Tri-criteria
 Conclusion

 000000
 000000
 000
 000
 Conclusion

 ALGOT over ALGOE
 000
 000
 000
 Conclusion

How much slower, if we optimize for energy instead of optimizing for time

How much more energy consumption, if we optimize for time instead of optimizing for energy

 $\mu = 120$ min for 10^6 nodes, C = R = 1 min, D = 0.1 min, $\omega = 1/2$

 $\mu=120$ min for 10^6 nodes, C=R=1 min, D=0.1 min, $\omega=1/2$

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Conclusion			

- Coordinated checkpointing, non-blocking
- Different optimal periods for time and energy
- Save more than 20% of energy with 10% increase in time
- Expect more gains for large-scale platforms

- Variety of resilience and power consumption parameters (3)
- Quite flexible analytical model ⁽²⁾
- ullet Easy to instantiate for other scenarios igodot

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Conclusion			

- Coordinated checkpointing, non-blocking
- Different optimal periods for time and energy
- Save more than 20% of energy with 10% increase in time
- Expect more gains for large-scale platforms

- ullet Variety of resilience and power consumption parameters igodot
- Quite flexible analytical model 🙂
- Easy to instantiate for other scenarios \bigcirc

Checkpointing and energy consumption

- Model for one single chunk
- Model for multiple chunks and optimization problem
- Solving the problems
- Simulations

Tri-criteria problem: execution time, reliability, energy

イロト イポト イヨト イヨト

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Framework			

- Execution of a divisible task (*W* operations)
- Failures may occur
 - Transient failures
 - Resilience through checkpointing
- Objective: minimize expected energy consumption $\mathbb{E}(E)$, given a deadline bound D
- Probabilistic nature of failure hits: expectation of energy consumption is natural (average cost over many executions)
- Deadline bound: two relevant scenarios (soft or hard deadline)

- Soft deadline: met in expectation, i.e., 𝔼(𝔅) ≤ 𝔅 (average response time)
- Hard deadline: met in the worst case, i.e., $T_{wc} \leq D$

Checkpointing and energy consumption

Model for one single chunk

- Model for multiple chunks and optimization problem
- Solving the problems
- Simulations
- 3

Tri-criteria problem: execution time, reliability, energy

<ロ> (日) (日) (日) (日) (日)

Optimal Period Checkpointing Tri-criteria Conclusion

One single chunk of size W

- Checkpoint overhead: execution time T_C
- Instantaneous failure rate: λ
- First execution at speed s: $T_{\text{exec}} = \frac{W}{s} + T_C$
- Failure probability: $P_{\text{fail}} = \lambda T_{\text{exec}} = \lambda (\frac{W}{s} + T_C)$
- In case of failure: re-execute at speed σ : $T_{\text{reexec}} = \frac{W}{\sigma} + T_C$
- And we assume success after re-execution

•
$$\mathbb{E}(T) = T_{\text{exec}} + P_{\text{fail}} T_{\text{reexec}} = \left(\frac{W}{s} + T_{C}\right) + \lambda \left(\frac{W}{s} + T_{C}\right) \left(\frac{W}{\sigma} + T_{C}\right)$$

• $T_{wc} = T_{\text{exec}} + T_{\text{reexec}} = \left(\frac{W}{s} + T_{C}\right) + \left(\frac{W}{\sigma} + T_{C}\right)$

Optimal Period Checkpointing Tri-criteria Conclusion

One single chunk of size W

• Checkpoint overhead: energy consumption E_C

- First execution at speed s: $\frac{W}{s} \times s^3 + E_C = Ws^2 + E_C$
- Re-execution at speed σ : $W\sigma^2 + E_C$, with probability P_{fail} $\left(P_{\text{fail}} = \lambda T_{\text{exec}} = \lambda \left(\frac{W}{s} + T_C\right)\right)$

•
$$\mathbb{E}(E) = (Ws^2 + E_C) + \lambda \left(\frac{W}{s} + T_C\right) (W\sigma^2 + E_C)$$

Checkpointing and energy consumption

- Model for one single chunk
- Model for multiple chunks and optimization problem
- Solving the problems
- Simulations

Tri-criteria problem: execution time, reliability, energy

イロト イポト イヨト イヨト

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Multiple chunks			

- Execution times: sum of execution times for each chunk (worst-case or expected)
- Expected energy consumption: sum of expected energy for each chunk
- Coherent failure model: consider two chunks $W_1 + W_2 = W$
- Probability of failure for first chunk: $P_{\text{fail}}^1 = \lambda (\frac{W_1}{s} + T_C)$
- For second chunk: $P_{\text{fail}}^2 = \lambda (\frac{W_2}{s} + T_C)$
- With a single chunk of size W: $P_{\text{fail}} = \lambda (\frac{W}{s} + T_C)$, differs from $P_{\text{fail}}^1 + P_{\text{fail}}^2$ only because of extra checkpoint
- Trade-off: many small chunks (more T_C to pay, but small re-execution cost) vs few larger chunks (fewer T_C , but increased re-execution cost)

• Decisions that should be taken before execution:

- Chunks: how many (*n*)? which sizes (*W_i* for chunk *i*)?
- Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?
- Input: W, T_C (checkpointing time), E_C (energy spent for checkpointing), λ (instantaneous failure rate), D (deadline)

• Decisions that should be taken before execution:

- Chunks: how many (*n*)? which sizes (W_i for chunk *i*)?
- Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?
- Input: W, T_C (checkpointing time), E_C (energy spent for checkpointing), λ (instantaneous failure rate), D (deadline)

• Decisions that should be taken before execution:

- Chunks: how many (*n*)? which sizes (W_i for chunk *i*)?
- Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?
- Input: W, T_C (checkpointing time), E_C (energy spent for checkpointing), λ (instantaneous failure rate), D (deadline)

Outline

Checkpointing and energy consumption

- Model for one single chunk
- Model for multiple chunks and optimization problem
- Solving the problems
- Simulations

<ロ> (日) (日) (日) (日) (日)

 Optimal Period
 Checkpointing
 Tri-criteria
 Conclusion

 000000
 000
 000
 000
 Conclusion

 Single chunk and single speed
 000
 000
 Conclusion
 Conclusion

Consider first that $s = \sigma$ (single speed): need to find optimal speed

• $\mathbb{E}(E)$ is a function of s: $\mathbb{E}(E)(s) = (Ws^2 + E_C)(1 + \lambda(\frac{W}{s} + T_C))$

- Lemma: this function is convex and has a unique minimum s^* (function of λ , W, E_c , T_c) $s^* = \frac{\lambda W}{6(1+\lambda T_c)} \left(\frac{-(3\sqrt{3}\sqrt{27a^2-4a}-27a+2)^{1/3}}{2^{1/3}} - \frac{2^{1/3}}{(3\sqrt{3}\sqrt{27a^2-4a}-27a+2)^{1/3}} - 1 \right)$, where $a = \lambda E_c \left(\frac{2(1+\lambda T_c)}{\lambda W} \right)^2$
- $\mathbb{E}(T)$ and T_{wc} : decreasing functions of s
- Minimum speed s_{exp} and s_{wc} required to match deadline D (function of D, W, T_c , and λ for s_{exp})
- ightarrow Optimal speed: maximum between s^{\star} and s_{exp} or s_{wc}

A = A = A

Optimal Period Checkpointing Tri-criteria Conclusion

Consider now that $s \neq \sigma$ (multiple speeds): two unknowns

• $\mathbb{E}(E)$ is a function of s and σ : $\mathbb{E}(E)(s,\sigma) = (Ws^2 + E_C) + \lambda(\frac{W}{s} + T_C)(W\sigma^2 + E_C)$

- Lemma: energy minimized when deadline tight (both for wc and exp)
- $\rightsquigarrow \sigma$ expressed as a function of *s*:

$$\sigma_{exp} = \frac{\lambda W}{\frac{D}{\frac{W}{s} + T_C} - (1 + \lambda T_C)}, \quad \sigma_{wc} = \frac{W}{(D - 2T_C)s - W}s$$

 \rightarrow Minimization of single-variable function, can be solved numerically (no expression of optimal *s*) Optimal Period Checkpointing Tri-criteria Conclusion

- Divisible task of size W
- Split into *n* chunks of size W_i : $\sum_{i=1}^{n} W_i = W$
- Chunk *i* is executed once at speed s_i, and re-executed (if necessary) at speed σ_i
- Unknowns: *n*, W_i , s_i , σ_i

•
$$\mathbb{E}(E) = \sum_{i=1}^{n} \left(W_i s_i^2 + E_C \right) + \lambda \sum_{i=1}^{n} \left(\frac{W_i}{s_i} + T_C \right) \left(W_i \sigma_i^2 + E_C \right)$$

With a single speed, $\sigma_i = s_i$ for each chunk

- Theorem: in optimal solution, *n* equal-sized chunks $(W_i = \frac{W}{n})$, executed at same speed $s_i = s$
 - Proof by contradiction: consider two chunks W₁ and W₂ executed at speed s₁ and s₂, with either s₁ ≠ s₂, or s₁ = s₂ and W₁ ≠ W₂
 - \Rightarrow Strictly better solution with two chunks of size $w = (W_1 + W_2)/2$ and same speed s
- Only two unknowns, s and n
- Minimum speed with *n* chunks: $s_{exp}^{\star}(n) = W \frac{1 + 2\lambda T_C + \sqrt{4 \frac{\lambda D}{n} + 1}}{2(D nT_C(1 + \lambda T_C))}$
- \rightarrow Minimization of double-variable function, can be solved numerically both for expected and hard deadline

Optimal Period Checkpointing Occoo Multiple chunks and multiple speeds

Need to find *n*, W_i , s_i , σ_i

- With expected deadline:
 - All re-execution speeds are equal $(\sigma_i = \sigma)$ and tight deadline
 - All chunks have same size and are executed at same speed
- With hard deadline:
 - If $s_i = s$ and $\sigma_i = \sigma$, then all W_i 's are equal
 - Conjecture: equal-sized chunks, same first-execution / re-execution speeds
- σ as a function of s, bound on s given n

 \rightarrow Minimization of double-variable function, can be solved numerically

Outline

Checkpointing and energy consumption

- Model for one single chunk
- Model for multiple chunks and optimization problem
- Solving the problems
- Simulations
- 3

Tri-criteria problem: execution time, reliability, energy

<ロ> (日) (日) (日) (日) (日)

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Simulation setting	5		

- Large set of simulations: illustrate differences between models
- Maple software to solve problems
- \bullet We plot relative energy consumption as a function of λ
 - The lower the better
 - Given a deadline constraint (hard or expected), normalize with the result of single-chunk single-speed
 - Impact of the constraint: normalize expected deadline with hard deadline
- Parameters varying within large ranges

 Optimal Period
 Checkpointing
 Tri-criteria
 Conclusion

 000000
 000
 000
 000
 000

 Comparison with single-chunk single-speed
 000
 000
 000

- Results identical for any value of W/D
- For expected deadline, with small λ (< 10⁻²), using multiple chunks or multiple speeds do not improve energy ratio: re-execution term negligible; increasing λ: improvement with multiple chunks
- For hard deadline, better to run at high speed during second execution: use multiple speeds; use multiple chunks if frequent failures

Optimal Period Checkpointing Tri-criteria

- Important differences for single speed models, confirming previous conclusions: with hard deadline, use multiple speeds
- Multiple speeds: no difference for small λ: re-execution at maximum speed has little impact on expected energy consumption; increasing λ: more impact of re-execution, and expected deadline may use slower re-execution speed, hence reducing energy consumption

Conclusion

Outline

- 1 Optimal checkpointing period: time vs energy
- 2
- Checkpointing and energy consumption
- 3
- Tri-criteria problem: execution time, reliability, energy
- Complexity results
- Heuristics
- Simulation results

Conclusio

イロト イポト イヨト イヨト

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Framework			

- DAG: $\mathcal{G} = (V, E)$
- n = |V| tasks T_i of weight w_i
- p identical processors fully connected
- DVFS, CONTINUOUS model: interval of available continuous speeds [*s*_{min}, *s*_{max}]
- One speed per task

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Makespan			

Execution time of T_i at speed s_i :

$$d_i = \frac{w_i}{s_i}$$

If T_i is executed twice on the same processor at speeds s_i and s'_i :

$$d_i = \frac{w_i}{s_i} + \frac{w_i}{s'_i}$$

Constraint on makespan: end of execution before deadline *D* (hard deadline constraint)

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Reliability			

• *Transient failure*: local, no impact on the rest of the system Transient failure rate: Poisson distribution of parameter:

$$\lambda(s) = \tilde{\lambda_0} e^{\tilde{d} rac{s_{max}-s}{s_{max}-s_{min}}}$$

• Reliability R_i of task T_i as a function of speed s_i :

$$R_i(s_i) = e^{-\lambda(s_i)\mathcal{E}xe(w_i,s_i)} =_{(1st order)} 1 - \lambda_0 e^{-ds_i} \times \frac{w_i}{s_i}$$

• Threshold reliability (and hence speed s_{rel})

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	

Re-execution: a task is re-executed on the same processor, just after its first execution

With two executions, reliability R_i of task T_i is:

 $R_i = 1 - (1 - R_i(s_i))(1 - R_i(s'_i))$

Constraint on reliability: RELIABILITY: $R_i \ge R_i(s_{rel})$, and at most one re-execution

• Energy to execute task T_i once at speed s_i :

$$E_i(s_i) = w_i s_i^2$$

 \rightarrow Dynamic part of classical energy models

• With re-executions, it is natural to take the worst-case scenario:

ENERGY:
$$E_i = w_i \left(s_i^2 + s_i'^2\right)$$

э

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
TRI-CRIT-CO	ONT		

Given
$$\mathcal{G} = (V, E)$$

Find

- A schedule of the tasks
- A set of tasks $I = \{i \mid T_i \text{ is executed twice}\}$
- Execution speed s_i for each task T_i
- Re-execution speed s'_i for each task in I

such that

$$\sum_{i\in I} w_i(s_i^2+s_i'^2)+\sum_{i\notin I} w_is_i^2$$

is minimized, while meeting reliability and deadline constraints

Optimal Period	Checkpointing 000000	Tri-criteria 000	Conclusion
Outline			

Checkpointing and energy consumption

Tri-criteria problem: execution time, reliability, energy
Complexity results
Heuristics

Simulation results

Conclus

イロト イポト イヨト イヨト

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Complexity results	;		

- One speed per task
- Re-execution at same speed as first execution, i.e., $s_i = s'_i$

- TRI-CRIT-CONT is NP-hard even for a linear chain, but not known to be in NP (because of continuous model)
- Polynomial-time solution for a fork

 Optimal Period
 Checkpointing
 Tri-criteria
 Conclusion

 000000
 000
 000
 000

 Complexity results with
 VDD-HOPPING

• Each task is computed using at most two different speeds

 $\bullet \ {\rm Tri-Crit-VDD}$ is NP-complete even for a linear chain

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
A			
()utline			

Tri-criteria problem: execution time, reliability, energy

Complexity results

Heuristics

Simulation results

Conclus

イロト イポト イヨト イヨト

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Energy-reducing h	euristics		

Two steps:

- Mapping (NP-hard) \rightarrow List scheduling
- Speed scaling + re-execution (NP-hard) \rightarrow Energy reducing

- The list scheduling heuristic maps tasks onto processors at speed s_{max} , and we keep this mapping in step two
- Step two = slack reclamation: use of deceleration and re-execution

• Deceleration: select a set of tasks that we execute at speed $\max(s_{rel}, s_{max} \frac{\max_{i=1.n} t_i}{D})$: slowest possible speed meeting both reliability and deadline constraints

• Re-execution: greedily select tasks for re-execution

Optimal Period Checkpointing Tri-criteria Conclusion

- SW: sum of the weights of the tasks (including T_i) whose execution interval is included into T_i 's execution interval
- SW of task slowed down = estimation of the total amount of work that can be slowed down together with that task

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Selected heuristics			

- A.SUS-Crit: efficient on DAGs with low degree of parallelism
 - Set the speed of every task to $\max(s_{rel}, s_{\max} \frac{\max_{i=1..n} t_i}{D})$
 - Sort the tasks of every *critical path* according to their **SW** and try to re-execute them
 - Sort all the tasks according to their **weight** and try to re-execute them
- **B.SUS-Crit-Slow**: good for highly parallel tasks: re-execute, then decelerate
 - Sort the tasks of every *critical path* according to their **SW** and try to re-execute them. If not possible, then try to slow them down
 - Sort all tasks according to their **weight** and try to re-execute them. If not possible, then try to slow them down

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	○○●	
Outline			

Checkpointing and energy consumption

Tri-criteria problem: execution time, reliability, energy

- Complexity results
- Heuristics
- Simulation results

イロト イポト イヨト イヨト

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
Results			

We compare the impact of:

- the number of processors p
- the ratio D of the deadline over the minimum deadline D_{\min} (given by the list-scheduling heuristic at speed s_{\max})

on the output of each heuristic

Results normalized by heuristic running each task at speed s_{max} ; the lower the better

With increasing p, D = 1.2 (left), D = 2.4 (right)

- A better when number of processors is small
- B better when number of processors is large
- Superiority of B for tight deadlines: decelerates critical tasks that cannot be re-executed

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
C			
Summary			
Gannary			

- Tri-criteria energy/makespan/reliability optimization problem
- Various theoretical results
- Two-step approach for polynomial-time heuristics:
 - List-scheduling heuristic
 - Energy-reducing heuristics
- Two complementary energy-reducing heuristics for TRI-CRIT-CONT

Outline

3 Tri-criteria problem: execution time, reliability, energy

Conclusion

<ロ> (日) (日) (日) (日) (日)

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
<u> </u>			
Conclusion			

- Resilience and energy consumption are two of the main challenges for Exascale platforms
- Revisiting checkpointing techniques for reliability while minimizing energy consumption
- Tri-criteria heuristics aiming at minimizing the energy consumption, with re-execution to deal with reliability

 \bullet ... Still a lot of challenging algorithmic problems on these hot topics $\textcircled{\sc c}$

Optimal Period	Checkpointing	Tri-criteria	Conclusion
000000	000000	000	
<u> </u>			
Conclusion			

- Resilience and energy consumption are two of the main challenges for Exascale platforms
- Revisiting checkpointing techniques for reliability while minimizing energy consumption
- Tri-criteria heuristics aiming at minimizing the energy consumption, with re-execution to deal with reliability

 ... Still a lot of challenging algorithmic problems on these hot topics ⁽²⁾

• Optimal checkpointing period: time vs energy (Aupy, Benoit, Hérault, Robert, Dongarra, 2013)

• Energy-aware checkpointing of divisible tasks with soft or hard deadlines (Aupy, Benoit, Melhem, Renaud-Goud, Robert, 2013)

• Energy-aware scheduling under reliability and makespan constraints (Aupy, Benoit, Robert, 2012)