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Optimal Period Checkpointing Tri-criteria Conclusion

Motivation

Need of resilient algorithms (see classes 3-7)

Need of energy-aware algorithms (see classes 8-9)

... And need to combine both! DVFS has an impact on resilience,
so both problematics are linked... Also, does energy have an
impact on the optimal checkpointing period?
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Energy: a crucial issue

Data centers (“Cloud Begins with Coal”, M. Mills)

250− 350TWh in 2013
≈ consumption of Turkey (242), Spain (267), or Italy (309)
≈ 530Mt of CO2 (carbontrust) – > Canada

; crucial for both environmental and economical reasons

Coordinated periodic checkpointing: what is the optimal
checkpointing period if you optimize for Energy consumption?
Is there a tradeoff between optimizing for Energy and
optimizing for Time?
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Power model

PStatic: base power (platform switched on)

Trend: goes down (w.r.t. other powers)

PCal: overhead due to CPU (computations)

PI/O: overhead due to file I/O (checkpoint or recovery)

PDown: overhead when one machine is down (rebooting)

Meneses, Sarood and Kalé:

Base power L = PStatic

Maximum power H = PStatic + PCal

PI/O = 0 (and PDown = 0)

E. Meneses, O. Sarood, and L.V. Kalé, “Assessing Energy Ef-
ficiency of Fault Tolerance Protocols for HPC Systems,” in
Proceedings of the 2012 IEEE 24th International Symposium
on Computer Architecture and High Performance Computing
(SBAC-PAD 2012), New York, USA, October 2012.
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Coordinated checkpointing

Periodic checkpointing policy of period T

Independent and identically distributed failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors with MTBF µ = µind

p

tightly-coupled application
progress ⇔ all processors available
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Cost of checkpointing

Checkpointing

the first chunk

Computing the first chunk

Processing the first chunk

Time

Time spent working

Time spent checkpointing

Time spent working with slowdown

General model: while a checkpoint is taken, computations are
slowed-down: during a checkpoint of duration C , the same amount
of computation is done as during a time ωC without checkpointing
(0 ≤ ω ≤ 1).
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Expected execution time

Tbase execution time without any overhead

Tfinal = Tff + Tfails total execution time

Time for fault-free execution

Tff = Tbase
T

T − (1− ω)C

Time lost due to failures

Tfails =
Tfinal

µ
(D + R + Re-Exec)
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AlgoT: Strategy with T opt
Time

Computation of the optimal checkpointing period in the
non-blocking case:
See Course 4, Section 4: Assessing protocols at scale
(with α instead of ω)

T opt
Time =

√
2(1− ω)C (µ− (D + R + ωC ))

Anne.Benoit@ens-lyon.fr CR02 Resilient and energy-aware algorithms 11/ 65



Optimal Period Checkpointing Tri-criteria Conclusion

Outline

1 Optimal checkpointing period: time vs energy
Framework
Optimal period for execution time
Optimal period for energy
Experiments

2 Checkpointing and energy consumption

3 Tri-criteria problem: execution time, reliability, energy

4 Conclusion

Anne.Benoit@ens-lyon.fr CR02 Resilient and energy-aware algorithms 12/ 65



Optimal Period Checkpointing Tri-criteria Conclusion

Consumed energy

Efinal = TCalPCal + TI/OPI/O + TDownPDown + TfinalPStatic

=

(
Tbase +

Tfinal

µ

(
ωC +

T 2 − C 2

2T
+
ωC 2

2T

))
PCal

+

(
Tfinal

µ

(
R +

C 2

2T

)
+ C

Tbase

T − (1− ω)C

)
PI/O

+
Tfinal

µ
DPDown + TfinalPStatic

Tfinal 6= TCal + TI/O + TDown, unless ω = 0
CPU and I/O activities are overlapped (and both consumed) when
checkpointing
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AlgoE: Strategy with T opt
Energy

PCal = αPStatic, PI/O = βPStatic, PDown = γPStatic
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We let Maple compute
T opt

Energy
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Parameters: power

ρ =
PStatic + PI/O

PStatic + PCal
=

1 + β

1 + α

20 Mega-watts for Exascale platform with 106 nodes

Nominal power = 20 milli-watts per node

1/2 −→ 1/4 of that power in static consumption

“I/O an order of magnitude more than computing” (J. Shalf,
S. Dosanjh, and J. Morrison, “Exascale computing technology
challenges,” in the 9th Int. Conf. High Performance
Computing for Computational Science, 2011)

Scenario 1: PStatic = 10, PCal = 10, PI/O = 100⇒ ρ = 5.5

Scenario 2: PStatic = 5, PCal = 10, PI/O = 100⇒ ρ = 7
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Parameters: resilience

MTBF

N = 45, 208 processors: one fault per day
Individual (processor) MTBF µind ≈ 125 years.
Total number of processors N: from N = 219, 150 to
N = 2, 191, 500 ⇒ µ = 300 min down to µ = 30 min

C = R = 10 min, D = 1 min, and ω = 1/2.
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AlgoT over AlgoE

How much slower, if we op-
timize for energy instead of
optimizing for time
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Scalability (ρ = 5.5)
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Scalability (ρ = 7)
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Conclusion

Coordinated checkpointing, non-blocking

Different optimal periods for time and energy

Save more than 20% of energy with 10% increase in time

Expect more gains for large-scale platforms

Variety of resilience and power consumption parameters /
Quite flexible analytical model ,
Easy to instantiate for other scenarios ,
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Framework

Execution of a divisible task (W operations)

Failures may occur

Transient failures
Resilience through checkpointing

Objective: minimize expected energy consumption E(E ),
given a deadline bound D

Probabilistic nature of failure hits: expectation of energy
consumption is natural (average cost over many executions)

Deadline bound: two relevant scenarios (soft or hard deadline)
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Soft vs hard deadline

Soft deadline: met in expectation, i.e., E(T ) ≤ D
(average response time)

Hard deadline: met in the worst case, i.e., Twc ≤ D

Hard (worst-case) Soft (expected)

VS
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Execution time, one single chunk

One single chunk of size W

Checkpoint overhead: execution time TC

Instantaneous failure rate: λ

First execution at speed s: Texec = W
s + TC

Failure probability: Pfail = λTexec = λ(Ws + TC )

In case of failure: re-execute at speed σ: Treexec = W
σ + TC

And we assume success after re-execution

E(T ) = Texec + PfailTreexec = (W
s + TC ) + λ(W

s + TC )(W
σ + TC )

Twc = Texec + Treexec = (W
s + TC ) + (W

σ + TC )
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Energy consumption, one single chunk

One single chunk of size W

Checkpoint overhead: energy consumption EC

First execution at speed s: W
s × s3 + EC = Ws2 + EC

Re-execution at speed σ: Wσ2 + EC , with probability Pfail(
Pfail = λTexec = λ(Ws + TC )

)

E(E ) = (Ws2 + EC ) + λ
(
W
s + TC

) (
Wσ2 + EC

)
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Multiple chunks

Execution times: sum of execution times for each chunk
(worst-case or expected)

Expected energy consumption: sum of expected energy for
each chunk

Coherent failure model: consider two chunks W1 + W2 = W

Probability of failure for first chunk: P1
fail = λ(W1

s + TC )

For second chunk: P2
fail = λ(W2

s + TC )

With a single chunk of size W : Pfail = λ(Ws + TC ), differs
from P1

fail + P2
fail only because of extra checkpoint

Trade-off: many small chunks (more TC to pay, but small
re-execution cost) vs few larger chunks (fewer TC , but
increased re-execution cost)
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Optimization problem

Decisions that should be taken before execution:

Chunks: how many (n)? which sizes (Wi for chunk i)?
Speeds of each chunk: first run (si )? re-execution (σi )?

Input: W , TC (checkpointing time), EC (energy spent for
checkpointing), λ (instantaneous failure rate), D (deadline)
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Models

Chunks

Single chunk of size W Multiple chunks (n and Wi ’s)
VS

Speed per chunk

Single speed (s) Multiple speeds (s and σ)

VS

Deadline bound

Hard (Twc ≤ D) Soft (E(T ) ≤ D)

VS
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Single chunk and single speed

Consider first that s = σ (single speed): need to find optimal speed

E(E ) is a function of s:
E(E )(s) = (Ws2 + EC )(1 + λ(Ws + TC ))

Lemma: this function is convex and has a unique minimum s?

(function of λ,W ,Ec ,Tc)

s? = λW
6(1+λTC )

(
−(3
√

3
√

27a2−4a−27a+2)1/3

21/3 − 21/3

(3
√

3
√

27a2−4a−27a+2)1/3
− 1

)
,

where a = λEC

(
2(1+λTC )
λW

)2

E(T ) and Twc : decreasing functions of s

Minimum speed sexp and swc required to match deadline D
(function of D,W ,Tc , and λ for sexp)

→ Optimal speed: maximum between s? and sexp or swc
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Single chunk and multiple speeds

Consider now that s 6= σ (multiple speeds): two unknowns

E(E ) is a function of s and σ:
E(E )(s, σ) = (Ws2 + EC ) + λ(Ws + TC )(Wσ2 + EC )

Lemma: energy minimized when deadline tight
(both for wc and exp)

; σ expressed as a function of s:
σexp = λW

D
W
s

+TC
−(1+λTC )

, σwc = W
(D−2TC )s−W

s

→ Minimization of single-variable function, can be solved
numerically (no expression of optimal s)
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General problem with multiple chunks

Divisible task of size W

Split into n chunks of size Wi :
∑n

i=1 Wi = W

Chunk i is executed once at speed si , and re-executed (if
necessary) at speed σi

Unknowns: n, Wi , si , σi

E(E ) =
n∑

i=1

(
Wi s

2
i + EC

)
+ λ

n∑
i=1

(
Wi

si
+ TC

)(
Wiσ

2
i + EC

)
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Multiple chunks and single speed

With a single speed, σi = si for each chunk

Theorem: in optimal solution, n equal-sized chunks
(Wi = W

n ), executed at same speed si = s

Proof by contradiction: consider two chunks W1 and W2

executed at speed s1 and s2, with either s1 6= s2,
or s1 = s2 and W1 6= W2

⇒ Strictly better solution with two chunks of size
w = (W1 + W2)/2 and same speed s

Only two unknowns, s and n

Minimum speed with n chunks: s?exp(n) = W
1 + 2λTC +

√
4λD

n
+ 1

2(D − nTC (1 + λTC ))

→ Minimization of double-variable function, can be solved
numerically both for expected and hard deadline

Anne.Benoit@ens-lyon.fr CR02 Resilient and energy-aware algorithms 38/ 65



Optimal Period Checkpointing Tri-criteria Conclusion

Multiple chunks and multiple speeds

Need to find n, Wi , si , σi

With expected deadline:

All re-execution speeds are equal (σi = σ) and tight deadline
All chunks have same size and are executed at same speed

With hard deadline:

If si = s and σi = σ, then all Wi ’s are equal
Conjecture: equal-sized chunks, same first-execution /
re-execution speeds

σ as a function of s, bound on s given n

→ Minimization of double-variable function, can be solved
numerically
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Simulation settings

Large set of simulations: illustrate differences between models

Maple software to solve problems

We plot relative energy consumption as a function of λ

The lower the better

Given a deadline constraint (hard or expected), normalize with
the result of single-chunk single-speed

Impact of the constraint: normalize expected deadline with
hard deadline

Parameters varying within large ranges
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Comparison with single-chunk single-speed
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Results identical for any value
of W /D

For expected deadline, with
small λ (< 10−2), using
multiple chunks or multiple
speeds do not improve energy
ratio: re-execution term
negligible;
increasing λ: improvement
with multiple chunks

For hard deadline, better to run
at high speed during second
execution: use multiple speeds;
use multiple chunks if frequent
failures
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Expected vs hard deadline constraint
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Important differences for single
speed models, confirming
previous conclusions: with hard
deadline, use multiple speeds

Multiple speeds: no difference
for small λ: re-execution at
maximum speed has little
impact on expected energy
consumption;
increasing λ: more impact of
re-execution, and expected
deadline may use slower
re-execution speed, hence
reducing energy consumption
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Framework

DAG: G = (V ,E )

n = |V | tasks Ti of weight wi

p identical processors fully connected

DVFS, Continuous model:
interval of available continuous speeds [smin, smax]

One speed per task

Anne.Benoit@ens-lyon.fr CR02 Resilient and energy-aware algorithms 45/ 65



Optimal Period Checkpointing Tri-criteria Conclusion

Makespan

Execution time of Ti at speed si :

di =
wi

si

If Ti is executed twice on the same processor at speeds si and s ′i :

di =
wi

si
+

wi

s ′i

Constraint on makespan:
end of execution before deadline D

(hard deadline constraint)
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Reliability

Transient failure: local, no impact on the rest of the system
Transient failure rate: Poisson distribution of parameter:

λ(s) = λ̃0e
d̃ smax−s

smax−smin .

Reliability Ri of task Ti as a function of speed si :

Ri (si ) = e−λ(si )Exe(wi ,si ) =(1st order) 1− λ0e
−dsi × wi

si

Threshold reliability (and hence speed srel)

s

Ri (s)

1

smin smaxsrel

Ri (srel)
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Re-execution: a task is re-executed on the same processor, just
after its first execution

With two executions, reliability Ri of task Ti is:

Ri = 1− (1− Ri (si ))(1− Ri (s
′
i ))

Constraint on reliability:
Reliability: Ri ≥ Ri (srel), and at most one re-execution
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Energy

Energy to execute task Ti once at speed si :

Ei (si ) = wi s
2
i

→ Dynamic part of classical energy models

With re-executions, it is natural to take the worst-case
scenario:

Energy : Ei = wi

(
s2
i + s ′2i

)
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Energy and reliability: set of possible speeds

Speed

Energy

wi s
2
i = Ei (si )

wi s
2
i + wi s

2
i = 2Ei (si )

srel

Ei (srel)

srel√
2
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Tri-Crit-Cont

Given G = (V ,E )
Find

A schedule of the tasks

A set of tasks I = {i | Ti is executed twice}
Execution speed si for each task Ti

Re-execution speed s ′i for each task in I

such that ∑
i∈I

wi (s
2
i + s ′2i ) +

∑
i /∈I

wi s
2
i

is minimized, while meeting reliability and deadline constraints
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Complexity results

One speed per task

Re-execution at same speed as first execution, i.e., si = s ′i

Tri-Crit-Cont is NP-hard even for a linear chain, but not
known to be in NP (because of continuous model)

Polynomial-time solution for a fork
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Complexity results with Vdd-Hopping

Each task is computed using at most two different speeds

Tri-Crit-Vdd is NP-complete even for a linear chain
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Energy-reducing heuristics

Two steps:

Mapping (NP-hard) → List scheduling

Speed scaling + re-execution (NP-hard) → Energy reducing

The list scheduling heuristic maps tasks onto processors at
speed smax, and we keep this mapping in step two

Step two = slack reclamation: use of deceleration and
re-execution
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Deceleration and re-execution

Deceleration: select a set of tasks that we execute at speed
max(srel, smax

maxi=1..n ti
D ): slowest possible speed meeting both

reliability and deadline constraints

Re-execution: greedily select tasks for re-execution
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Super-weight (SW) of a task

SW: sum of the weights of the tasks (including Ti ) whose
execution interval is included into Ti ’s execution interval

SW of task slowed down = estimation of the total amount of
work that can be slowed down together with that task

time

p1

p2

p3

p4 Ti

s e
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Selected heuristics

A.SUS-Crit: efficient on DAGs with low degree of parallelism

Set the speed of every task to max(srel, smax
maxi=1..n ti

D )
Sort the tasks of every critical path according to their SW and
try to re-execute them
Sort all the tasks according to their weight and try to
re-execute them

B.SUS-Crit-Slow: good for highly parallel tasks: re-execute,
then decelerate

Sort the tasks of every critical path according to their SW and
try to re-execute them. If not possible, then try to slow them
down
Sort all tasks according to their weight and try to re-execute
them. If not possible, then try to slow them down
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Results

We compare the impact of:

the number of processors p

the ratio D of the deadline over the minimum deadline Dmin

(given by the list-scheduling heuristic at speed smax)

on the output of each heuristic

Results normalized by heuristic running each task at speed smax;
the lower the better
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Results
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With increasing p, D = 1.2 (left), D = 2.4 (right)

A better when number of processors is small

B better when number of processors is large

Superiority of B for tight deadlines: decelerates critical tasks
that cannot be re-executed

Anne.Benoit@ens-lyon.fr CR02 Resilient and energy-aware algorithms 61/ 65



Optimal Period Checkpointing Tri-criteria Conclusion

Summary

Tri-criteria energy/makespan/reliability optimization problem

Various theoretical results

Two-step approach for polynomial-time heuristics:

List-scheduling heuristic
Energy-reducing heuristics

Two complementary energy-reducing heuristics for
Tri-Crit-Cont
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Conclusion

Resilience and energy consumption are two of the main
challenges for Exascale platforms

Revisiting checkpointing techniques for reliability while
minimizing energy consumption

Tri-criteria heuristics aiming at minimizing the energy
consumption, with re-execution to deal with reliability

... Still a lot of challenging algorithmic problems
on these hot topics ,
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