
Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Divisible load scheduling
(Scheduling part 2)

Anne Benoit

ENS Lyon

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/~abenoit

CR02 - 2016/2017

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 1/ 66

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Why are many scheduling problems hard?

We have seen in the last class that many scheduling problems
are NP-complete

It turns out that this is often because of integer constraints

The same reason why bin packing is difficult: you can’t cut
boxes into pieces!

This is somewhat the same idea as the use of preemption

P||Cmax is NP-complete
P|pmtn|Cmax is in P!

Let’s see this on an example

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 2/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

P3||Cmax example schedule (offline)

time

P1

P2

P3

∑
ai = 21; Cmax = 8

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 3/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

P3|pmtn|Cmax example schedule (offline)

time

P1

P2

P3

Let’s modify the schedule using preemption

∑
ai = 21; Cmax = 7 (optimal: no idle time)

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 4/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

P3|pmtn|Cmax example schedule (offline)

time

P1

P2

P3

Let’s modify the schedule using preemption

∑
ai = 21; Cmax = 7 (optimal: no idle time)

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 4/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

P3|pmtn|Cmax example schedule (offline)

time

P1

P2

P3

Let’s modify the schedule using preemption

∑
ai = 21; Cmax = 7 (optimal: no idle time)

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 4/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

P3|pmtn|Cmax example schedule (offline)

time

P1

P2

P3

Let’s modify the schedule using preemption
∑

ai = 21; Cmax = 7 (optimal: no idle time)

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 4/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Cutting tasks

By “cutting” a task in two, we are able to have all processors
finish at the same time

Zero idle time means the schedule is optimal

If we were able to cut all tasks into tiny bits, then we would
always be able to achieve zero idle time

Again, if you have a knife, bin-packing is easy

Question: Can this be done for real-world applications?

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 5/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Divisible load applications

It turns out that many useful applications consist of very large
numbers of small, independent, and identical tasks.

task execution time << application execution time
tasks can be completed in any order
tasks all do the same thing, but on different data

Example applications:

Ray tracing (1 task = 1 photon)
MPEG encoding of a movie (1 task = 1 frame)
Seismic event processing (1 task = 1 event)
High-energy physics (1 task = 1 particle)

These applications are termed Divisible Loads (DLs)

So fine-grain that a continuous load assumption is valid

By the previous example, DL scheduling is trivial. . .

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 6/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Input data?

In the previous class, there was no notion of “input data”

The implicit assumption was that tasks had access to whatever
data they needed

But in many real-world applications, including DLs, there is
some input data for each task

This input data is stored at some location (the hard drive of a
computer)

If the DL is large, one wants to enroll multiple computers

Problem: The data must be transferred over the network,
which takes time

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 7/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Here comes the network

When scheduling applications on processors within a single
machines (multi-core), one often ignores data transfers
(questionable)

When scheduling applications on distributed platforms, one
has to schedule both computation and communication

Many theoretical scheduling results ignore the network
component

In some cases, communication can be seen as computation,
e.g., a computation task depends on a communication task and
each type of task can only run on a subset of the “resources”

Let us define first a very simple execution and platform
model. . .

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 8/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Master-worker execution

The computer that holds all input data is called the master
(P0)

All m other computers are called the workers (P1, . . . ,Pm)

All Pi ’s can compute (master and workers)

P0 initially holds Wtotal units of load

P0 allocates ni units of load to worker Pi∑
i ni = Wtotal

For now, we completely ignore output data (assume it has size
zero)

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 9/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Outline

1 Bus-shaped platforms

2 Star-shaped platforms

3 With latencies

4 Multi-round scheduling

5 Conclusion

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 10/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Bus-shaped platform - practice

A bit 1980’s ,

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 11/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Bus-shaped platform - theory

c
cc

c

P1 P2 Pi Pm

M

w1 w2 wi wm

Pi computes one unit of
load (one infinitesimal task)
in wi seconds

P0 sends one unit of load to
a worker in c seconds

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 12/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Computation-communication model

P0 can compute and communicate at the same time

Pi , i > 0 must have received all data before beginning
computation

Questionable assumption, but will make sense with network
latencies

P0 can only communicate with one worker at a time

Other versions allow communication to a bounded number of
workers
We will talk about such models in other contexts

Let’s now draw an example schedule...

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 13/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Example schedule

P0

P1

P2

P3

Sending

Receiving

Computing

Wtotal = 10000, c = 1

n0 = 2000, n1 = 3000, n2 = 2000, n3 = 3000

w0 = 3,w1 = 3,w2 = 5,w3 = 1.5

IDLE TIME

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 14/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Example schedule

P0

P1

P2

P3

Sending

Receiving

Computing

Wtotal = 10000, c = 1

n0 = 2000, n1 = 3000, n2 = 2000, n3 = 3000

w0 = 3,w1 = 3,w2 = 5,w3 = 1.5

IDLE TIME

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 14/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Recursion

Let’s call Ti the finish time of processor Pi

We can write a recursion with the Ti ’s, ni ’s, wi ’s and c

Let’s see it on a picture

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 15/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Example schedule

P0

P1

P2

P3

P0: T0 = n0w0

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 16/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Example schedule

P0

P1

P2

P3

P0: T1 = n1c + n1w1

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 17/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Example schedule

P0

P1

P2

P3

Pi : Ti =
∑i

j=1 njc + niwi

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 18/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Recursion and Dynamic Programming

Given the recursion, we have the makespan, T , as:

T = max0≤i≤m

(∑i
j=1 njc + niwi

)
which can be rewritten as:

T = max
(
n0w0,max1≤i≤m

(∑i
j=1 njc + niwi

))
which suggests a dynamic programming solution

An optimal schedule for p + 1 processors is constructed from
an optimal schedule for p processors

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 19/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

We are stuck

We now face many difficulties:

We don’t have a closed form solution
The order of the processors is fixed!

We would have to try all m! orders to find the best one

The complexity of the dynamic programming solution is
O(W 2

totalm)

The time to compute the schedule could be longer than the
time to execute the application!

If we know the optimal schedule for Wtotal = 1000, we have to
recompute a whole schedule for Wtotal = 1001

Okay, we get it, scheduling is hard ,

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 20/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

The DL scheduling approach

The fact that the ni ’s are integers is the root cause of the
difficulties

But in the case of DLs, since
∑

ni >> ni , a reasonable
approximation is to reason on fractions, i.e., rational numbers

Let αi ≥ 0 be the rational fraction of Wtotal allocated to
processor Pi

ni = αiWtotal∑
i αi = 1

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 21/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

The DL scheduling approach

We can now rewrite the recursion in terms of the αi ’s

T = max0≤i≤m

(∑i
j=1 αjc + αiwi

)
Wtotal

It turns out that with rational αi ’s, we can prove two
important lemmas

Lemma (1)

In an optimal solution, all processors participate and finish at the
same time

Lemma (2)

If one can choose the master processor, it should be the fastest
processor. The order of the worker processors does not matter

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 22/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Proof sketch of Lemma 1

Take some load from the processor that finishes last, give it to
another processor (that perhaps does not yet participate)

Obtain a better schedule, and repeat until all processors finish
at the same time

Let’s see this (informally) on our example schedule. . .

The formal proof is not difficult but not particularly interesting

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 23/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Example schedule

P0

P1

P2

P3

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 24/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Example schedule

P0

P1

P2

P3

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 25/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Example schedule

P0

P1

P2

P3

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 26/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Example schedule

P0

P1

P2

P3

Strictly shorter
makespan
(not optimal)

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 27/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Proof of Lemma 2

The master should be the fastest processor, and the order of
the workers doesn’t matter

In an optimal schedule, we know that
T = T0 = T1 = . . . = Tm (Lemma 1)

Therefore:

T = α0w0Wtotal

T = α1(c + w1)Wtotal ⇒ α1 = w0

c+w1
α0

T = (α1c + α2(c + w2))Wtotal ⇒ α2 = w1

c+w2
α1

. . .
⇒ ∀i ≥ 0 αi =

∏i
j=1

wj−1

c+wj
α0∑m

i=0 αi = 1 ⇒ αi =

∏i
j=1

wj−1
c+wj∑m

k=0

(∏k
j=1

wj−1
c+wj

)

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 28/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Proof of Lemma 2

Let us compute the “work” done in time T by processors Pi

and Pi+1 for 0 ≤ i ≤ m − 1

To ease notations let’s define c0 = 0 and ci = c for i > 0

We have:

T = Ti =
((∑i−1

j=0 αjcj

)
+ αiwi + αici

)
Wtotal

and

T = Ti+1 =((∑i−1
j=0 αjcj

)
+ αici + αi+1wi+1 + αi+1ci+1

)
Wtotal

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 29/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Proof of Lemma 2

Let’s define K =
T−Wtotal(

∑i−1
j=0 αjcj)

Wtotal

We now have αi = K
wi+ci

and αi+1 = K−αici
wi+1+ci+1

The total fraction of work processed by Pi and Pi+1 is equal
to:

αi + αi+1 = K
wi+ci

+ K
wi+1+ci+1

− ciK
(wi+ci)(wi+1+ci+1)

If i > 0, then ci = ci+1 = c , and the expression above is
symmetric in wi and wi+1

Therefore the order of the workers does not matter

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 30/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Proof of Lemma 2

Since αi = K
wi+ci

and αi+1 = K−αici
wi+1+ci+1

the total fraction of work processed by P0 and P1 is

α0 + α1 = K
w0

+ K
w1+c

The above is maximized when w0 is smaller than w1

By induction, we find that it is better to pick the fastest
processor as the master

Perhaps counter-intuitive?

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 31/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Overall theorem

Theorem

For Divisible Load applications on bus-shaped networks, in an
optimal schedule, the fastest computing processor is the master
processor, the order of the communications to the workers has no
impact on the quality of a solution, and all processors participate
and finish simultaneously. The fraction αi of load allocated to each
processor is:

∀i ∈ {0, . . . ,m} αi =

∏i
j=1

wj−1

c+wj∑m
k=0

(∏k
j=1

wj−1

c+wj

)

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 32/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Outline

1 Bus-shaped platforms

2 Star-shaped platforms

3 With latencies

4 Multi-round scheduling

5 Conclusion

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 33/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Star-shaped platforms - practice

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 34/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Star-shaped platforms - theory

P1 P2 Pi Pm

M

w1 w2 wi wm

cm
cic2

c1

Pi computes one unit of
load (one infinitesimal task)
in wi seconds

P0 sends one unit of load to
worker Pi in ci seconds

P0 does not compute (easier
to write equations, and no
loss of generality as we can
add a worker with ci = 0)

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 35/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Two lemmas revisited

Lemma (1)

In an optimal schedule, all workers participate

Simple proof based on the notion of giving some load from
the last processor to an unused processor so as to reduce the
makespan

Lemma (2)

There is a unique optimal schedule, and in that schedule, workers
finish at the same time

Rather technical proof based on a linear programming
formulation and reasoning on the extremal solutions

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 36/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Two lemmas revisited

Lemma (1)

In an optimal schedule, all workers participate

Simple proof based on the notion of giving some load from
the last processor to an unused processor so as to reduce the
makespan

Lemma (2)

There is a unique optimal schedule, and in that schedule, workers
finish at the same time

Rather technical proof based on a linear programming
formulation and reasoning on the extremal solutions

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 36/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

A third lemma

Lemma (3)

In the optimal schedule, the workers are served in non-decreasing
order of the ci ’s (the wi ’s don’t matter!)

Proof: using the same computation as in the proof of
Lemma 2 for bus-shaped platforms, for processors Pi and Pi+1

we have:

αi = K
wi+ci

and αi+1 = K−αici
wi+1+ci+1

⇒ αi + αi+1 =
(

1
wi+ci

+ 1
wi+1+ci+1

)
K − Kci

(wi+ci)(wi+1+ci+1)

If we exchange Pi and Pi+1 (order Pi+1,Pi), we obtain:

αi + αi+1 =
(

1
wi+ci

+ 1
wi+1+ci+1

)
K − Kci+1

(wi+ci)(wi+1+ci+1)

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 37/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

A third lemma

The difference in processed load between the Pi ,Pi+1 and the
Pi+1,Pi orders is ∆ = (ci+1 − ci)

K
(wi+ci)(wi+1+ci+1)

The above is not symmetric! Depending on whether ci is
larger/smaller than ci+1 the quantity of processed load
increases: If ci+1 > ci then ∆ is positive, meaning that the
Pi ,Pi+1 order is better than the Pi+1,Pi order

It’s easy to verify that communication times are the same in
both orders (αici + αi+1ci+1)

Conclusion: more load is processed by serving the workers by
non-decreasing ci ’s

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 38/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Overall theorem

Theorem

For Divisible Load applications on star-shaped networks, in the
optimal schedule, all workers participate, the workers must be
served in non-decreasing ci ’s, all workers finish at the same time,
and the load fractions are given by:

αi =

1
ci+wi

∏i−1
k=1

(
wk

ck+wk

)
∑m

j=1
1

cj+wj

∏j−1
k=1

wk
ck+wk

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 39/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

So far... so good

For bus-shaped platforms, we have solved the problem

For star-shaped platforms, we have solved the problem

Other have solved it for other platform shapes (e.g., trees)
and variations (e.g., multiple masters)

A big problem: our model is very naive

In practice, compute costs and communication costs are rarely
linear, but affine

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 40/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

So far... so good

For bus-shaped platforms, we have solved the problem

For star-shaped platforms, we have solved the problem

Other have solved it for other platform shapes (e.g., trees)
and variations (e.g., multiple masters)

A big problem: our model is very naive

In practice, compute costs and communication costs are rarely
linear, but affine

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 40/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Outline

1 Bus-shaped platforms

2 Star-shaped platforms

3 With latencies

4 Multi-round scheduling

5 Conclusion

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 41/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Latencies

The time for the master to send αi units of load to worker Pi

is Ci + ciαiWtotal

e.g., network latency

The time for worker Pi to compute αi units of load is
Wi + wiαiWtotal

e.g., overhead to start a process/VM
e.g., software overhead to ”prepare” the computation

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 42/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Latencies

The time for the master to send αi units of load to worker Pi

is Ci + ciαiWtotal

e.g., network latency

The time for worker Pi to compute αi units of load is
Wi + wiαiWtotal

e.g., overhead to start a process/VM
e.g., software overhead to ”prepare” the computation

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 42/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Known results

The addition of latencies makes things much harder

The problem is NP-complete (even if wi ’s are zero)

Non-trivial reduction to 2-PARTITION

All participating workers finish at the same time

Easy proof

If Wtotal is large enough then all workers participate and must
be served by non-decreasing ci ’s

Much more complicated proof

An optimal solution can be found using a mixed linear
program. . .

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 43/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Known results

The addition of latencies makes things much harder

The problem is NP-complete (even if wi ’s are zero)

Non-trivial reduction to 2-PARTITION

All participating workers finish at the same time

Easy proof

If Wtotal is large enough then all workers participate and must
be served by non-decreasing ci ’s

Much more complicated proof

An optimal solution can be found using a mixed linear
program. . .

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 43/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Linear Programming

An Integer Linear Program (ILP):

A set of integer variables
A set of linear constraints
A linear objective function

A Mixed Integer Linear Program (MILP):

A set of integer or rational variables
A set of linear constraints
A linear objective function

Both (associated decision problems) are NP-complete

Fully rational Linear Programs can be solved in p-time!

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 44/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Linear programming and scheduling

MILPs occur frequently when formalizing scheduling problems

Typical integer variables are binary:

xi,j : is task i scheduled on processor j?
xi,j : is the i-th communication for processor j?
· · ·

Typical rational variables:

αi,j : the i-th fraction of load processed on processor j
αi,j : the fraction of network bandwidth to processor j used for
task i
· · ·

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 45/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Why are MILP formulations useful?

After all, solving them is NP-complete

And there may be easy optimal algorithms instead

Reason #1: provide concise problem description

Useful when writing an article

Reason #2: can be relaxed by making all variables rational

Solve the rational program in p-time
Obtain the (unfeasible) optimal objective function value
This value is a bound on optimal, which is useful to gauge the
quality of heuristics
e.g., for a maximization problem: on this instance my heuristic
achieves 92, the upper bound on optimal is 100, so I can say
my heuristic is (at most) within 8% of optimal.

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 46/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Mixed Linear Program for DL with latencies

We define the following variables:

αj ≥ 0 (rational): load fraction sent to Pj

yj (binary): true if worker Pj participates
xi,j (binary): true if worker Pj received the i-th load fraction

We have the following “setup” constraints:∑
i αi = 1: the entire load is processed

∀j αj ≤ yj : only participating workers are allocated some load
∀j

∑
i xi,j = yj : a participating worker receives only one

fraction of load
∀i

∑
j xi,j ≤ 1: at most one worker is used for the i-th

communication

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 47/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Mixed Linear Program for DL with latencies

We define the following variables:

αj ≥ 0 (rational): load fraction sent to Pj

yj (binary): true if worker Pj participates
xi,j (binary): true if worker Pj received the i-th load fraction

We have the following “setup” constraints:∑
i αi = 1: the entire load is processed

∀j αj ≤ yj : only participating workers are allocated some load
∀j

∑
i xi,j = yj : a participating worker receives only one

fraction of load
∀i

∑
j xi,j ≤ 1: at most one worker is used for the i-th

communication

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 47/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Main constraint

first i − 1 comms i-th comm and comp

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 48/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Main constraint

The time at which the communication of the (i − 1)-th load
fraction finishes:

∑i−1
k=1

∑m
j=1 xk,j(Cj + αjcjWtotal)

The time to communicate and compute the i-th load fraction:∑m
j=1 xi ,j(Cj + αjcjWtotal + Wj + αjwjWtotal)

Let Tf be the finish time (of all processors)

We have the constraint:

∀i
∑i−1

k=1

∑m
j=1 xk,j(Cj + αjcjWtotal)+∑m

j=1 xi ,j(Cj + αjcjWtotal + Wj + αjwjWtotal) ≤ Tf

And the objective is to minimize Tf

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 49/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Mixed Linear Program for DL with latencies

Mixed Integer Linear Program

minimize Tf subject to

(1) ∀i , 1 ≤ i ≤ m, αi ≥ 0
(2)

∑m
i=1 αi = 1

(3) ∀j , 1 ≤ j ≤ m, yj ∈ {0, 1}

(4) ∀i , j , 1 ≤ i , j ≤ m, xi,j ∈ {0, 1}

(5) ∀j , 1 ≤ j ≤ m,
∑m

i=1 xi,j = yj

(6) ∀i , 1 ≤ i ≤ m,
∑m

j=1 xi,j ≤ 1

(7) ∀j , 1 ≤ j ≤ m, αj ≤ yj

(8) ∀i , 1 ≤ i ≤ m,
∑i−1

k=1

∑m
j=1 xk,j(Cj + αjcjWtotal)

+
∑m

j=1 xi,j(Cj + αjcjWtotal + Wj + αjwjWtotal)

≤ Tf

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 50/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Outline

1 Bus-shaped platforms

2 Star-shaped platforms

3 With latencies

4 Multi-round scheduling

5 Conclusion

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 51/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Multiple rounds?

In everything we’ve seen so far, there are m communications
to m workers

This leads to a lot of idle time, especially if m is large

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 52/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Multiple rounds

Simple idea: get workers to work early

. . .

. . .

. . .

. . .

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 53/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Multiple rounds

Even better: hide communication (note the homogeneity)

. . .

. . .

. . .

. . .

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 54/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Multi-round DL scheduling

Several variations of this problem have been studied

Many authors have studied the following question: ”Given a
number of rounds, how much work should be allocated at
each round and how?”

Worthwhile question with linear or affine models

More interesting: ”How many rounds should be used?”
Linear models: an infinite number of rounds!

”Obvious” but long and technical proof
Surprisingly not acknowledged in early DL literature

Affine models: NP-complete

Let us see the known results for both questions above

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 55/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Homogeneous bus, given number of rounds

Assume everything is homogeneous (ci = c , Ci = C , wi = w ,
Wi = W) and the number of rounds is M

At each round, m ”chunks” are sent, one per worker

Each chunk corresponds to a fraction αj , 0 ≤ j < Mm

For convenience, we number these chunks in reverse order:

the first one is Mm − 1, the last one 0

Let R = w/C be the computation-communication ratio

Let γi = αiwWtotal (the compute time of chunk i)

Let us write equations that ensure that there is no idle time

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 56/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

No non-initial idle time

There is no idle time (after the first round) if a worker
computes X seconds and the next m communications also
take X seconds

In that way, a worker finishes computing round j right when its
chunk for round j + 1 has arrived!

∀i ≥ m, W + γi = 1
R (γi−1 + γi−2 + · · ·+ γi−m) + mC

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 57/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

All workers finish at the same time

For all workers to finish at the same time, the compute time
of the last chunk at a worker should be equal to the time for
all remaining communication, and the computation time of
the last chunk

∀0 ≤ i < m, W +γi = 1
R (γi−1 +γi−2 + · · ·+γi−m) + iC +γ0

To ensure correctness, we also have

∀i < 0, γi = 0

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 58/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Infinite series

∀i ≥ m, W + γi = 1
R (γi−1 + γi−2 + · · ·+ γi−m) + mC

∀0 ≤ i < m, W +γi = 1
R (γi−1 +γi−2 + · · ·+γi−m) + iC +γ0

∀i < 0, γi = 0

The recursion above corresponds to an infinite γi series

Can be solved using a generating function: G(x) =
∑∞

i=0 γix
i

Using the two recursions above, we obtain:

G(x) =
(γ0−mC)(1−xm)+(mC−W)+C

(
x(1−xm−1)

1−x
−(m−1)xm

)
(1−x)−x(1−xm)/R

Using the rational expansion theorem, we obtain the roots of
the polynomial denominator, and thus the γi values!!

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 59/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Homogeneous bus, computing M

Computing the optimal number of rounds is NP-complete in
the general case (i.e., non-homogeneity)

One ”brute-force” option is to do an exhaustive search on the
number of rounds, searching for the number of rounds that
achieves the lowest makespan

Potentially exponential time, but in practice likely very doable

A more elegant approach consists in writing an equation for
the makespan and solving an optimization problem

Not difficult (based on a Lagrange Multiplier method)
Can be extended to heterogeneous platforms

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 60/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

An interesting theoretical result

Theorem

On any bus- or star-platform, with either linear or affine models, a
multi-round schedule cannot improve an optimal single-round
schedule by more than a factor 2

How would you prove this result?

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 61/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

An interesting theoretical result: Proof

Let S be any optimal multi-round schedule, which uses K
rounds, and has makespan T

We have m workers, and each received a load fraction αi (k)
at round k

From S, we construct a new schedule S ′ that sends in a single
message

∑K
k=1 αi (k) to workers i

The master does not communicate more in S ′ than in S (in
fact, less with latencies)

Therefore, not later than time T , all workers have received
their load fractions (very coarse upper bound)

No worker will compute more in S ′ than in S
Therefore, none of them will spend more than T time units to
compute in S ′

Conclusion: the makespan of S ′ is at most 2T 2

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 62/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Outline

1 Bus-shaped platforms

2 Star-shaped platforms

3 With latencies

4 Multi-round scheduling

5 Conclusion

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 63/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

So, what do we know?

Bus Star
Linear M = 1: closed-form M = 1: closed-form

optimal: M =∞ optimal: M =∞
given M <∞: closed-form given M <∞: closed-form

Affine NP-complete (1-round MILP) NP-complete (1-round MILP)
given M, homogeneous: closed-form optimal M: heuristics

optimal M: heuristics

All processors must finish at the same time

Multi-round buys at most a factor 2 improvement

Linear models are strange, but latencies make everything
difficult (non-divisible!)

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 64/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

What about sending back results?

There are essentially no known general results if return
messages are to be scheduled

If returned messages have the same size as the sent messages,
it is easy to come up with the best FIFO (same order) and
LIFO (reverse order) strategies

But it is easy to find examples in which optimal is neither
FIFO nor LIFO

Essentially: nobody knows ,

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 65/ 66

Introduction Bus-shaped platforms Star-shaped platforms With latencies Multi-round scheduling Conclusion

Sources and acknowledgments

V. Bharadwaj Y. Robert H. Casanova
D. Ghose F. Vivien A. Legrand

T. Robertazzi Y. Robert

Thanks to Loris Marchal and Yves Robert for some of these slides
,

Anne.Benoit@ens-lyon.fr CR02 Scheduling algorithms (2) 66/ 66

	Bus-shaped platforms
	Star-shaped platforms
	With latencies
	Multi-round scheduling
	Conclusion

