Fault tolerance techniques
for high-performance computing
Part 1

Anne Benoit
ENS Lyon

Anne.Benoit@ens-lyon.fr

http://graal.ens-1lyon.fr/~abenoit

CRO2 - 2016/2017

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit

Outline

o Faults and failures

e Checkpoint and rollback recovery
@ Process checkpointing
@ Coordinated checkpointing
@ Hierarchical checkpointing

e Probabilistic models
@ Young/Daly's approximation

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture
with a cap of $200M and 20MW

Systems 2011 Difference
K computer Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s 0(100)
Power 12.7 MW ~20 MW

System memory 1.6 PB 32-64PB O(10)
Node performance 128 GF 1,2 or 15TF O(10) - O(100)
Node memory BW 64 GB/s 2-4TB/s O(100)
Node concurrency 8 O(1k) or 10k O(100) — O(1000)
Total Node Interconnect BW 20 GB/s 200-400GB/s 0o(10)
System size (nodes) 88,124 O(100,000) or O(1M) O(10) - O(100)
Total concurrency 705,024 Olbillion) O(1,000)
MTTI days o(1 day) -0(10)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Exascale platforms (courtesy C. Engelmann & S. Scott)

Toward Exascale Computing (My Roadmap)

Based on proposed DOE roadmap with MTTI adjusted to scale linearly

Systems 2009 2011 2015 2018
System peak 2 Peta 20 Peta 100-200 Peta 1 Exa
System memory 0.3PB 1.6 PB 5PB 10 PB
Node performance 125 GF 200GF 200-400 GF 1-10TF
Node memory BW 25 GB/s 40 GB/s 100 GB/s 200-400 GB/s
Node concurrency 12 32 0(100) 0O(1000)
Interconnect BW 1.5 GB/s 22 GB/s 25 GB/s 50 GB/s

I System size (nodes) 18,700 100,000 500,000 O(million)]
Total concurrency 225,000 3,200,000 0O(50,000,000) O(billion)
Storage 15PB 30PB 150 PB 300 PB
10 0.2 TB/s 2TB/s 10 TB/s 20 TB/s

[mTTI 4days 19h4min 3h52min 1h56min |
Power 6 MW ~10MW ~10 MW ~20 MW

Anne.Benoit@ens-lyon.fr

Fault tolerance (1)

Exascale platforms

@ Hierarchical
e 10° or 10% nodes
e Each node equipped with 10* or 103 cores

o Failure-prone

MTBF — one node | 1 year | 10 years | 120 years
MTBF — platform 30sec 5mn 1h
of 10° nodes

More nodes = Shorter MTBF (Mean Time Between Failures)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Exascale platforms

@ Hierarchi™®
e 10° or 10% nod®

Exascale
-+ Petascale x1000

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Even for today’s platforms (courtesy F. Cappello)

hl?;#f:&ﬂ‘%mwAfso.a’n issue at Petasc AERNA

28\ Fault tolerance becomes critical at Petascale (MTTI <= 1day)
Poor fault tolerance design may lead to huge overhead

Qverhead of checkpoint/restart

| Cost of non optimal checkpoint intervals: |'°*
Ir 710%

Today, 20% or more of the computing capacity in a large high-performance
computing system is wasted due to failures and recoveries.
Dr. E.N. (Mootaz) Elnozahyet al. System Resilience at Extreme Scale,

DARPA
30% \ ’,1 T;;:U L —
\ / 30min ckpt w0 |I0%
20% .

1min ckpt 0%
Smin ckpt
10% e 0%
%
Checkpoint
o 0% Interval (min)
1d 1 10 100 1000 10000

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Even for today’s platforms (courtesy F. Cappello)

Typical “Balanced Architecture” for PetaScale Computers

Compute nodes

40 to 200 GB/s
Parallel file system

Total memory: (1to 2 PB)

100-200 TB

. 1/0 nodes
Tt R —

Without optimization, Checkpoint-Restart needs
__about 1h! (~30 minutes each) i

Systems Perf. Ckpt time Source t .
RoadRunner 1PF ~20 min. Panasas
LLNL BG/L 500 TF >20 min. LLNL LLNL BG/L
LLNL Zeus 11TF 26 min. LLNL =
YYY BG/P 100 TF ~30 min. YYY

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults

Outline

0 Faults and failures

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults

Error sources (courtesy Franck Cappello)

« Analysis of error and failure logs

* In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

* In 2007 (Garth Gibson, ICPP Keynote): um::> Hl—lﬂﬂ ——
Software
80| EINetwork
[JEnvironmend
_ EHuman
g ol —‘ H H || ‘ | B Unknown
& 0,
g 50%
* In 2008 (Oliner and J. Stearley, DSN Conf.): 8 "
Raw Filtered &
Type Count % Count e 20)
_@E 174586 516 1 0 04 1999 | 18.78
<__ Software 144,899 0.08 6,814 | 64, o8
Tndeterminate 3350044 | 1.88 | 1,832 | 17.21 Pink Blue Red Green Black Al

Relative frequency of root

cause by system type.
Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.
Hardware errors, Disks, processors, memory, network

Conclusion: Both Hardware and Software failures have to be considered

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults
A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable
Restrict to faults that lead to application failures
This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Silent errors (SDC) will be addressed later in the course

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults
A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable
Restrict to faults that lead to application failures
This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Silent errors (SDC) will be addressed later in the course

First question: quantify the rate or frequency at which these
faults strike!

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults

Failure distributions: (1) Exponential

Sequential Machine

0.9
08
£ o7
£ o
g os /
8
g os|
e 0.4
2 /
T 0.3
£ ool
l
o Exp(1/100) ——
0 200 400 600 800 1000
Time (years)

Exp(\): Exponential distribution law of parameter \:
o Probability density function (pdf): f(t) = Ae *dt for t > 0
o Cumulative distribution function (cdf): F(t) =1 — e~
e Mean: u = %

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults

Failure distributions: (1) Exponential

Sequential Machine

Failure Probability
oo
oo
~

Exp(1/100) ——
0 200 400 600 800 1000
Time (years)

X random variable for Exp(\) failure inter-arrival times:
o P(X < t)=1— e dt (by definition)
e Memoryless property: P(X > t+s|X >s)=P(X > t)
(for all t,s > 0): at any instant, time to next failure does not
depend upon time elapsed since last failure

@ Mean Time Between Failures (MTBF) u=E(X) = %

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults

Failure distributions: (2) Weibull

Sequential Machine

Failure Probability
o
o
g

Exp(1/100)

0.1 Weibull(0.7, 1/100)

Weibull(0.5, 1/100) -

0 200 400 600 800 1000
Time (years)

Weibull(k, X): Weibull distribution law of shape parameter k and
scale parameter \:

o Pdf: £(t) = kA(tA)k—Le=(AD) gt for £ > 0
o Cdf: F(t)=1— e (0"
® Mean: p= }M(1+ %)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults

Failure distributions: (2) Weibull

Sequential Machine

Failure Probability
o
o
g

Exp(1/100) ——

0.1 Weibull(0.7, 1/100)

Weibull(0.5, 1/100) -

0 200 400 600 800 1000
Time (years)

X random variable for Weibull(k, \) failure inter-arrival times:

o If k < 1: failure rate decreases with time
"infant mortality”: defective items fail early

o If k =1: Weibull(1,\) = Exp()\) constant failure time

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults

Failure distributions: (3) with several processors

@ Processor (or node): any entity subject to failures
= approach agnostic to granularity

o If the MTBF is u with one processor,
what is its value with p processors?

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults

Failure distributions: (3) with several processors

@ Processor (or node): any entity subject to failures
= approach agnostic to granularity

o If the MTBF is u with one processor,
what is its value with p processors?

o Well, it depends @

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults
With rejuvenation

@ Rebooting all p processors after a failure

@ Platform failure distribution
= minimum of p IID processor distributions

e With p distributions Exp(\):
min (Exp(A1), Exp(A2)) = Exp(A1 + A2)

1 I
= — = = —
p=N e =

e With p distributions Weibull(k, \):

m|n (We/bu//(k \)) = Weibull(k, p*/*)

1 1 W
pw=~-IF1+ =)= pp=—+
A k P pl/k

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1)

Faults

Without rejuvenation (= real life)

@ Rebooting only faulty processor

@ Platform failure distribution
= superposition of p IID processor distributions
= |ID only for Exponential

@ Define pp by
n(F) 1

lim =
Fo4o0o F Hp

n(F) = number of platform failures until time F is exceeded

Theorem: i, = B for arbitrary distributions
p

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults

Intuition

t

If three processors have around 20 faults during a time t (1 = =

® 4

t

...during the same time, the platform has around 60 faults (u, = &

Anne.Benoit@ens-lyon.fr

Fault tolerance (1)

Faults

MTBF with p processors (1/2)

Theorem: i, = % for arbitrary distributions

With one processor:
e n(F) = number of failures until time F is exceeded
e X; iid random variables for inter-arrival times, with E (X;) = u
o ST X < F <)X
e Wald's equation: (E(n(F)) —1)u < F <E(n(F))p

E(n(F)) _
F

: 1
° ||mF—>+oo m

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults

MTBF with p processors (2/2)

Theorem:), = % for arbitrary distributions

With p processors:

n(F) = number of platform failures until time F is exceeded
ng(F) = number of those failures that strike processor q

ng(F)+ 1 = number of failures on processor g until time F is
exceeded (except for processor with last-failure)

liME— 400 @ = % as above
liME— 400 @ = uip by definition

Hence 11 = & because n(F) = 320 _; nq(F)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults
A little digression for afficionados

@ X; IID random variables for processor inter-arrival times
@ Assume X; continuous, with E (X;) = i

@ Y; random variables for platform inter-arrival times

o Definition: 1, % lim,_, ;o 2200

e Limits always exists (superposition of renewal processes)
e Theorem: i, = £

P

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults
Values from the literature

MTBF of one processor: between 1 and 125 years
Shape parameters for Weibull: k =0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

http://fta.inria.fr
http://institutes.lanl.gov/data/fdata

Faults

Does it matter?

Parallel machine (1 08 nodes)
0o /f
0.8
0.7
0.6
0.5 5
0.4
0.3

0.2 Exp(1/100) ——
0.1 Weibull(0.7, 1/100) |
0 _ Weibull(0.5, 1/100) -

Oh 3h 6h 9h 12h 15h 18h 21h 24h
Time (hours)

T~

Failure Probability

After infant mortality and before aging,
instantaneous failure rate of computer platforms is almost constant

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Faults
Summary for the road

© MTBF key parameter and pp, = % ©

@ Exponential distribution OK for most purposes ©

o Assume failure independence while not (completely) true ®

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints

Outline

9 Checkpoint and rollback recovery
@ Process checkpointing
@ Coordinated checkpointing
@ Hierarchical checkpointing

oit@ens-lyon.fr

Fault tolerance (1)

Checkpoints
0o

Outline

9 Checkpoint and rollback recovery
@ Process checkpointing

oit@ens-lyon.fr

Fault tolerance (1)

Checkpoints
Maintaining redundant information

@ General Purpose Fault Tolerance Techniques: work despite the
application behavior

@ Two adversaries: Failures & Application

@ Use automatically computed redundant information
e At given instants: checkpoints
e At any instant: replication
e Or anything in between: checkpoint + message logging

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
0o

Process checkpointing

Save the current state of the process
e FT Protocols save a possible state of the parallel application

User-level checkpointing

System-level checkpointing

Blocking call

e 6 o6 o

Asynchronous call

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
0o

User-level checkpointing

User code serializes the state of the process in a file.)

@ Usually small(er than system-level checkpointing)

@ Portability

@ Diversity of use

@ Hard to implement if preemptive checkpointing is needed
@ Loss of the functions call stack

e code full of jumps
o loss of internal library state

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
System-level checkpointing

o Different possible implementations: OS syscall; dynamic
library; compiler assisted

@ Create a serial file that can be loaded in a process image.
Usually on the same architecture, same OS, same software
environment.

o Entirely transparent

@ Preemptive (often needed for library-level checkpointing)

@ Lack of portability

@ Large size of checkpoint (=~ memory footprint)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
Blocking / Asynchronous call

Blocking checkpointing

Relatively intuitive: ~ checkpoint(filename)
Cost: no process activity during the whole checkpoint operation.
Can be linear in the size of memory and in the size of modified files

Asynchronous checkpointing

System-level approach: make use of copy on write of fork syscall
User-level approach: critical sections, when needed

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
oce

Storage

Remote reliable storage

Intuitive. /O intensive. Disk usage.

Memory hierarchy

@ local memory

@ local disk (SSD, HDD)
@ remote disk

e Scalable Checkpoint Restart Library
http://scalablecr.sourceforge.net

Checkpoint is valid when finished on reliable storage

Distributed memory storage

@ In-memory checkpointing

@ Disk-less checkpointing

N

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

http://scalablecr.sourceforge.net

Checkpoints
o

Outline

9 Checkpoint and rollback recovery

@ Coordinated checkpointing

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
Coordinated checkpointing

Definition (Missing Message)

A message is missing if in the current configuration, the sender
sent it, while the receiver did not receive it

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
Coordinated checkpointing

Definition (Orphan Message)

A message is orphan if in the current configuration, the receiver
received it, while the sender did not send it

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
Coordinated checkpointing

®

Create a consistent view of the application (no orphan messages) J

@ Every message belongs to a single checkpoint wave

@ All communication channels must be flushed (all2all)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints

Blocking coordinated checkpointing

@ Silences the network during checkpoint J

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints

Non-Blocking Coordinatedo Checkpointing

Y .- 1

‘5

%

4 U
" B {

—» App. Message ----- + Marker Message

e Communications received after the beginning of the
checkpoint and before its end are added to the receiver's
checkpoint

@ Communications inside a checkpoint are pushed back at the
beginning of the queues

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
o

Implementation

Communication Library

@ Flush of communication channels

e conservative approach. One Message per open channel / One
message per channel

@ Preemptive checkpointing usually required

e Can have a user-level checkpointing, but requires one that be
called any time

Application Level

@ Flush of communication channels

o Can be as simple as Barrier(); Checkpoint();
e Or as complex as having a quiesce () ; function in all libraries

@ User-level checkpointing

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Coordinated

Checkpoints

BT.B.64

160 F H) e B B B B

2 40 z > 140

21200 £ 120

2100 - Z 100 -

£ 8o £ 80

2 60 < 60 I

= F 4
20[) -g 20f *‘—*P‘CLc‘xccuTmnl:mc‘ E
0 Nz 0 P R
0 20 40 60 8 1000 56

T 2 3 3
Number of checkpoint waves

<

o
£
=

Execution time (s)

Number of checkpoint waves

2 4 6
Number of checkpoint w:

Protocol Performance

nonblocking coordinated protocol

blocking coordinated protocol

Fault tolerance (1)

Checkpoints
000

Outline

9 Checkpoint and rollback recovery

@ Hierarchical checkpointing

oit@ens-lyon.fr

Fault tolerance (1)

Checkpoints

@00

Uncoordinated Checkpointing ldea

—OOLI:O’LOI“

Processes checkpoint independently J

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
®00

Uncoordinated Checkpointing ldea

Optimistic Protocol
@ Each process i keeps some checkpoints C{

o V(i ...in), Jj/{ C,{(k} form a consistent cut?

@ Domino Effect

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Piece-wise Deterministic Assumption

Deterministic
Sequence

%

Nondeterministic
Choice

Piece-wise Deterministic Assumption

@ Process: alternate sequence of non-deterministic choice and
deterministic steps

@ Translated in Message Passing:
o Receptions / Progress test are non-deterministic
(MPI,Wait (ANY_SOURCE),
if (MPI_Test())<...>; else <...>)
o Emissions / others are deterministic

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Message Logging

-th
i probe false mn reception from B (on A)
i +1h probe: true Unique Identifeir: (B, n, A, m)
Payload: P
B

nthemission to A (from B)

Message Logging

By replaying the sequence of messages and test/probe with the
result obtained during the initial execution (from the last
checkpoint), one can guide the execution of a process to its exact
state just before the failure

Fault tolerance (1)

Anne.Benoit@ens-lyon.fr

Checkpoints
000

Message Logging

.th
i probe false mih reception from B (on A)
i+10 probe: true Unique Identifeir: (B, n, A, m)
Payload: P
B
nt"emission to A (from B)

Message / Events

@ Message = unique identifier (source, emission index,
destination, reception index) + payload (content of the
message)

@ Probe = unique identifier (number of consecutive
failed /success probes on this link)

@ Event Logging: saving the unique identifier of a message, or
of a probe

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Message Logging

.th
i probe false mn reception from B (on A)
i +1h probe: true Unique Identifeir: (B, n, A, m)
Payload: P
B
nthemission to A (from B)

Message / Events

@ Payload Logging: saving the content of a message

@ Message Logging: saving the unique identifier and the payload
of a message, saving unique identifiers of probes, saving the
(local) order of events

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Checkpom@ Checkpoint
Q might be requested
if A and B rollback
Q
P \
@ | P will never be

‘requested again

Where to save the Payload?

@ Almost always as Sender Based

Message Logging

@ Local copy: less impact on performance

@ More memory demanding — trade-off garbage collection
algorithm

@ Payload needs to be included in the checkpoints

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Message Logging

Where to save the Events?

@ Events must be saved on a reliable space

@ Must avoid: loss of events ordering information, for all events
that can impact the outgoing communications

@ Two (three) approaches: pessimistic + reliable system, or
causal, (or optimistic)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
o®0

Optimistic Message Logging

A

P /
Event Log

Where to save the Events?

@ On a reliable media, asynchronously

@ "Hope that the event will have time to be logged” (before its
loss is damageable)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
o®0

Optimistic Message Logging

A

(A 1,B,7) P /
Event Log

Where to save the Events?

@ On a reliable media, asynchronously

@ "Hope that the event will have time to be logged” (before its
loss is damageable)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
o®0

Optimistic Message Logging

A

(A1,8,7)P /
Event Log

Where to save the Events?

@ On a reliable media, asynchronously

@ "Hope that the event will have time to be logged” (before its
loss is damageable)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
o®0

Optimistic Message Logging

(A1.B2P //
Event Log

A
(C /3 B, 5) \
\ Ack
B / Y
©3870Q \\\\\
C

A

Where to save the Events?

@ On a reliable media, asynchronously

@ "“Hope that the event will have time to be logged” (before its
loss is damageable)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
o®0

Optimistic Message Logging

A

(A1.B2P /
Event Log

Where to save the Events?

@ On a reliable media, asynchronously

@ "“Hope that the event will have time to be logged” (before its
loss is damageable)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Pessimistic Message Logging

A

P /
Event Log

Where to save the Events?

@ On a reliable media, synchronously

@ Delay of emissions that depend on non-deterministic choices
until the corresponding choice is acknowledged

@ Recovery: connect to the storage system to get the history

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Pessimistic Message Logging

A

(A 1,B,?)P /f
Event Log
(G, 3,B,5)

X
Pt ! 1
(C.3,B,79Q i r\\‘
c t
@ ‘Emission ‘

Delayed

Where to save the Events?

@ On a reliable media, synchronously

@ Delay of emissions that depend on non-deterministic choices
until the corresponding choice is acknowledged

@ Recovery: connect to the storage system to get the history

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Causal Message Logging
G

A

(A1,8,9P /
Event Lo
9 7
(C.3,B,5) msg
Ack
B R}

msg + (C, 3, B, 5)

(C.,3,B,7)Q

Where to save the Events?

@ Any message carries with it (piggybacked) the whole history
of non-deterministic events that precede

@ Garbage collection using checkpointing, detection of cycles

@ Can be coupled with asynchronous storage on reliable media
to help garbage collection

@ Recovery: global communication + potential storage system

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Recover in Message Logging

A

Received: empty
Event Log

(A, \B, 1 Resend: P
(C, 3,8, 5))

S e .

I . A -
Received: R~ Resend: Q ™
c

Recovery

@ Collect the history (from event log / event log + peers for
Causal)

@ Collect Id of last message sent

@ Emitters resend, deliver in history order

@ Fake emission of sent messages

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Uncoordinated Protocol Performance

B Pessimist

@ Optimist

B Pessimist (Event Logging only)
1.06 — @ Optimist (Event Logging only)

°
2

Normalized Execution Time
g
8

bt.c.64 ftc.64 lu.c.64 mg.c.64 sp.c.64 cg.c64

NAS Kernel

2500 =
2000 ;
4 F
3 1500
5— s Open MPI
"(5 1000
500 E === Open MPI-V pessimist

20000~ 60000 100000 140000 180000
Problem Size (N)

Weak scalability of HPL (90 procs, 360 cores).

Uncoordinated Protocol Performance

@ NAS Parallel Benchmarks — 64 nodes

@ High Performance Linpack

o Figures courtesy of A. Bouteiller, G. Bosilca

Anne.Benoit@ens-lyon.fr

Fault tolerance (1)

Checkpoints
ooe

Hierarchical Protocols

Many Core Systems

@ All interactions between threads considered as a message
@ Explosion of number of events

@ Cost of message payload logging =~ cost of communicating —
sender-based logging expensive

@ Correlation of failures on the node

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Hierarchical Protocols

Hierarchical Protocol

@ Processes are separated in groups
@ A group co-ordinates its checkpoint

@ Between groups, use message logging

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Hierarchical Protocols

~
1 f Wl

IE =
[\/

Hierarchical Protocol

@ Coordinated Checkpointing: the processes can behave as a
non-deterministic entity (interactions between processes)

[e
—

@ Need to log the non-deterministic events: Hierarchical
Protocols are uncoordinated protocols + event logging

@ No need to log the payload

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints
000

Event Log Reduction

Strategies to reduce the amount of event log

e Few HPC applications use message ordering / timing
information to take decisions

@ Many receptions (in MPI) are in fact deterministic: do not
need to be logged

@ For others, although the reception is non-deterministic, the
order does not influence the interactions of the process with
the rest (send-determinism). No need to log either

@ Reduction of the amount of log to a few applications, for a
few messages: event logging can be overlapped

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Checkpoints

000

Hierarchical Protocol Performance

FT ce 600

500

400

300

200

Performance (GFlop/s)

Theoretical peak ——

100 Vanilla Open MPl ——

Coordinated Message Logging —s—
Regular Message Logging ——

0
T R R R Lt nat0
Matrix size (N)

Pert. Regular Message Logging / Per. Vanilla —x—
Perf. Coordinated Message Logging / Perf. Vanilla —&—

Hierarchical Protocol Performance

@ NAS Parallel Benchmarks — shared memory system, 32 cores

e HPL distributed system, 64 cores, 8 groups

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Proba models 1

Outline

e Probabilistic models

(*] Young/Daly’s approximation

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Proba models 1
[1e}

Outline

e Probabilistic models

(*] Young/Daly’s approximation

oit@ens-lyon.fr Fault tolerance (1)

Proba models 1
oo

Checkpointing cost

Time spent working
m——Time spent checkpointing

Time

Computing the first chunk (Checkpointing
fthe first chunk

Processing the first chunk Processing the second chunk

Blocking model: while a checkpoint is taken, no computation can
be performed

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Proba models 1
oo

Framework

@ Periodic checkpointing policy of period T

@ Independent and identically distributed (IID) failures

@ Applies to a single processor with MTBF 1 = pijng

@ Applies to a platform with p processors with MTBF p = %

e coordinated checkpointing
e tightly-coupled application
e progress < all processors available

= platform = single (powerful, unreliable) processor &

Waste: fraction of time not spent for useful computations J

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Proba models 1

[e]e]

Waste in fault-free execution

— @ TIMEp,e: application base time

ﬂ o TIMEfg: with periodic checkpoints
but failure-free

TIMEFr = TIMEpase + #checkpoints x C

(valid for large jobs)

. TIME TIME
F#checkpoints = [base—‘ R~ base

T-C T-C

TIMEgg — TIME C
WASTE[FF] = FTFIMEFF base _ -

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Proba models 1
oo

Waste due to failures

@ TIMEpsse: application base time
o TIMEpF: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinaI = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tiost: average time lost per failure

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Proba models 1
oo

Waste due to failures

@ TIMEpsse: application base time
o TIMEpF: with periodic checkpoints but failure-free

@ TIMEfna: expectation of time with failures
TIMEfinaI = TIMEFF + Nfau/ts X 7_Iost

Neauies number of failures during execution
Tiost: average time lost per failure

TIMEfinal
Nfaults =

7-|05t?

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Proba models 1
oce

Computing Tjest

= Time spent working = Time spent checkpointing

—— Downtime —— Recovery time Time

Py /

Py ‘

P2

P

T/2 D R T-C c
T
Tost =D+ R+ >

Rationale

= Instants when periods begin and failures strike are independent
= Approximation used for all distribution laws
= Exact for Exponential and uniform distributions

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Proba models 1
oo

Waste due to failures

TIMEfinal = TIMEFF 4+ Neauits X Tiost

WASTE(fail] = =—(D+R+ —

TIMEfna — TIMEERE 1 T
TIMEfinal j 2

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

Proba models 1
oo

Total waste

(el rc | rc [rc [rc [

TiMEpg =TIMEfina (1-WASTE[fail]) TIMEgna X WASTE[fail]

TIMEfinal

TIMEfinaI - TIMEbase

WASTE =
TIMEfinaI

1 — WASTE = (1 — WASTE[FF])(1 — WASTE[fail])

C C\1 T

How do we minimize the waste? (use the goat's lemmal)

Anne.Benoit@ens-lyon.fr Fault tolerance (1)

	Faults and failures
	Checkpoint and rollback recovery
	Process checkpointing
	Coordinated checkpointing
	Hierarchical checkpointing

	Probabilistic models
	Young/Daly's approximation

