
Faults Checkpoints Proba models 1

Fault tolerance techniques
for high-performance computing

Part 1

Anne Benoit

ENS Lyon

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/~abenoit

CR02 - 2016/2017

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 1/ 62

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit

Faults Checkpoints Proba models 1

Outline

1 Faults and failures

2 Checkpoint and rollback recovery
Process checkpointing
Coordinated checkpointing
Hierarchical checkpointing

3 Probabilistic models
Young/Daly’s approximation

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 2/ 62

Faults Checkpoints Proba models 1

Exascale platforms (courtesy Jack Dongarra)

Potential System Architecture
with a cap of $200M and 20MW
 Systems 2011

K computer
2019 Difference

Today & 2019

System peak 10.5 Pflop/s 1 Eflop/s O(100)

Power 12.7 MW ~20 MW

System memory 1.6 PB 32 - 64 PB O(10)

Node performance 128 GF 1,2 or 15TF O(10) – O(100)

Node memory BW 64 GB/s 2 - 4TB/s O(100)

Node concurrency 8 O(1k) or 10k O(100) – O(1000)

Total Node Interconnect BW 20 GB/s 200-400GB/s O(10)

System size (nodes) 88,124 O(100,000) or O(1M) O(10) – O(100)

Total concurrency 705,024 O(billion) O(1,000)

MTTI days O(1 day) - O(10)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 3/ 62

Faults Checkpoints Proba models 1

Exascale platforms (courtesy C. Engelmann & S. Scott)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 4/ 62

Faults Checkpoints Proba models 1

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 5/ 62

Faults Checkpoints Proba models 1

Exascale platforms

Hierarchical
• 105 or 106 nodes
• Each node equipped with 104 or 103 cores

Failure-prone

MTBF – one node 1 year 10 years 120 years
MTBF – platform 30sec 5mn 1h

of 106 nodes

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Exascale

6= Petascale ×1000

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 5/ 62

Faults Checkpoints Proba models 1

Even for today’s platforms (courtesy F. Cappello)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 6/ 62

Faults Checkpoints Proba models 1

Even for today’s platforms (courtesy F. Cappello)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 7/ 62

Faults Checkpoints Proba models 1

Outline

1 Faults and failures

2 Checkpoint and rollback recovery

3 Probabilistic models

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 8/ 62

Faults Checkpoints Proba models 1

Error sources (courtesy Franck Cappello)

•  Analysis of error and failure logs

•  In 2005 (Ph. D. of CHARNG-DA LU) : “Software halts account for the most number of
outages (59-84 percent), and take the shortest time to repair (0.6-1.5 hours). Hardware
problems, albeit rarer, need 6.3-100.7 hours to solve.”

•  In 2007 (Garth Gibson, ICPP Keynote):

•  In 2008 (Oliner and J. Stearley, DSN Conf.):
50%

Hardware

Conclusion: Both Hardware and Software failures have to be considered

Software errors: Applications, OS bug (kernel panic), communication libs, File system error and other.

Hardware errors, Disks, processors, memory, network

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 9/ 62

Faults Checkpoints Proba models 1

A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Silent errors (SDC) will be addressed later in the course

First question: quantify the rate or frequency at which these
faults strike!

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 10/ 62

Faults Checkpoints Proba models 1

A few definitions

Many types of faults: software error, hardware malfunction,
memory corruption

Many possible behaviors: silent, transient, unrecoverable

Restrict to faults that lead to application failures

This includes all hardware faults, and some software ones

Will use terms fault and failure interchangeably

Silent errors (SDC) will be addressed later in the course

First question: quantify the rate or frequency at which these
faults strike!

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 10/ 62

Faults Checkpoints Proba models 1

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

Exp(λ): Exponential distribution law of parameter λ:

Probability density function (pdf): f (t) = λe−λtdt for t ≥ 0

Cumulative distribution function (cdf): F (t) = 1− e−λt

Mean: µ = 1
λ

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 11/ 62

Faults Checkpoints Proba models 1

Failure distributions: (1) Exponential

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)

X random variable for Exp(λ) failure inter-arrival times:

P (X ≤ t) = 1− e−λtdt (by definition)

Memoryless property: P (X ≥ t + s |X ≥ s) = P (X ≥ t)
(for all t, s ≥ 0): at any instant, time to next failure does not
depend upon time elapsed since last failure

Mean Time Between Failures (MTBF) µ = E (X) = 1
λ

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 11/ 62

Faults Checkpoints Proba models 1

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

Weibull(k, λ): Weibull distribution law of shape parameter k and
scale parameter λ:

Pdf: f (t) = kλ(tλ)k−1e−(λt)kdt for t ≥ 0

Cdf: F (t) = 1− e−(λt)k

Mean: µ = 1
λΓ(1 + 1

k)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 12/ 62

Faults Checkpoints Proba models 1

Failure distributions: (2) Weibull

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 200 400 600 800 1000

F
a

ilu
re

 P
ro

b
a

b
ili

ty

Time (years)

Sequential Machine

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

X random variable for Weibull(k , λ) failure inter-arrival times:

If k < 1: failure rate decreases with time
”infant mortality”: defective items fail early

If k = 1: Weibull(1, λ) = Exp(λ) constant failure time

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 12/ 62

Faults Checkpoints Proba models 1

Failure distributions: (3) with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value with p processors?

Well, it depends /

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 13/ 62

Faults Checkpoints Proba models 1

Failure distributions: (3) with several processors

Processor (or node): any entity subject to failures
⇒ approach agnostic to granularity

If the MTBF is µ with one processor,
what is its value with p processors?

Well, it depends /

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 13/ 62

Faults Checkpoints Proba models 1

With rejuvenation

Rebooting all p processors after a failure

Platform failure distribution
⇒ minimum of p IID processor distributions

With p distributions Exp(λ):

min
(
Exp(λ1),Exp(λ2)

)
= Exp(λ1 + λ2)

µ =
1

λ
⇒ µp =

µ

p

With p distributions Weibull(k, λ):

min
1..p

(
Weibull(k , λ)

)
= Weibull(k , p1/kλ)

µ =
1

λ
Γ(1 +

1

k
)⇒ µp =

µ

p1/k

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 14/ 62

Faults Checkpoints Proba models 1

Without rejuvenation (= real life)

Rebooting only faulty processor

Platform failure distribution
⇒ superposition of p IID processor distributions
⇒ IID only for Exponential

Define µp by

lim
F→+∞

n(F)

F
=

1

µp

n(F) = number of platform failures until time F is exceeded

Theorem: µp =
µ

p
for arbitrary distributions

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 15/ 62

Faults Checkpoints Proba models 1

Intuition

Time

p1

p2

p3

t

If three processors have around 20 faults during a time t (µ = t
20)...

Time

p

t

...during the same time, the platform has around 60 faults (µp = t
60)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 16/ 62

Faults Checkpoints Proba models 1

MTBF with p processors (1/2)

Theorem: µp = µ
p for arbitrary distributions

With one processor:

n(F) = number of failures until time F is exceeded

Xi iid random variables for inter-arrival times, with E (Xi) = µ∑n(F)−1
i=1 Xi ≤ F ≤

∑n(F)
i=1 Xi

Wald’s equation: (E (n(F))− 1)µ ≤ F ≤ E (n(F))µ

limF→+∞
E(n(F))

F = 1
µ

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 17/ 62

Faults Checkpoints Proba models 1

MTBF with p processors (2/2)

Theorem: µp = µ
p for arbitrary distributions

With p processors:

n(F) = number of platform failures until time F is exceeded

nq(F) = number of those failures that strike processor q

nq(F) + 1 = number of failures on processor q until time F is
exceeded (except for processor with last-failure)

limF→+∞
nq(F)
F = 1

µ as above

limF→+∞
n(F)
F = 1

µp
by definition

Hence µp = µ
p because n(F) =

∑p
q=1 nq(F)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 18/ 62

Faults Checkpoints Proba models 1

A little digression for afficionados

Xi IID random variables for processor inter-arrival times

Assume Xi continuous, with E (Xi) = µ

Yi random variables for platform inter-arrival times

Definition: µp
def
= limn→+∞

∑n
i E(Yi)
n

Limits always exists (superposition of renewal processes)

Theorem: µp = µ
p

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 19/ 62

Faults Checkpoints Proba models 1

Values from the literature

MTBF of one processor: between 1 and 125 years

Shape parameters for Weibull: k = 0.5 or k = 0.7

Failure trace archive from INRIA
(http://fta.inria.fr)

Computer Failure Data Repository from LANL
(http://institutes.lanl.gov/data/fdata)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 20/ 62

http://fta.inria.fr
http://institutes.lanl.gov/data/fdata

Faults Checkpoints Proba models 1

Does it matter?

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0h 3h 6h 9h 12h 15h 18h 21h 24h

F
a
ilu

re
 P

ro
b
a
b
ili

ty

Time (hours)

Parallel machine (10
6
 nodes)

Exp(1/100)
Weibull(0.7, 1/100)
Weibull(0.5, 1/100)

After infant mortality and before aging,
instantaneous failure rate of computer platforms is almost constant

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 21/ 62

Faults Checkpoints Proba models 1

Summary for the road

MTBF key parameter and µp = µ
p ,

Exponential distribution OK for most purposes ,
Assume failure independence while not (completely) true /

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 22/ 62

Faults Checkpoints Proba models 1

Outline

1 Faults and failures

2 Checkpoint and rollback recovery
Process checkpointing
Coordinated checkpointing
Hierarchical checkpointing

3 Probabilistic models

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 23/ 62

Faults Checkpoints Proba models 1

Outline

1 Faults and failures

2 Checkpoint and rollback recovery
Process checkpointing
Coordinated checkpointing
Hierarchical checkpointing

3 Probabilistic models

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 24/ 62

Faults Checkpoints Proba models 1

Maintaining redundant information

Goal

General Purpose Fault Tolerance Techniques: work despite the
application behavior

Two adversaries: Failures & Application

Use automatically computed redundant information

At given instants: checkpoints
At any instant: replication
Or anything in between: checkpoint + message logging

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 25/ 62

Faults Checkpoints Proba models 1

Process checkpointing

Goal

Save the current state of the process

FT Protocols save a possible state of the parallel application

Techniques

User-level checkpointing

System-level checkpointing

Blocking call

Asynchronous call

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 26/ 62

Faults Checkpoints Proba models 1

User-level checkpointing

User code serializes the state of the process in a file.

Usually small(er than system-level checkpointing)

Portability

Diversity of use

Hard to implement if preemptive checkpointing is needed

Loss of the functions call stack

code full of jumps
loss of internal library state

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 27/ 62

Faults Checkpoints Proba models 1

System-level checkpointing

Different possible implementations: OS syscall; dynamic
library; compiler assisted

Create a serial file that can be loaded in a process image.
Usually on the same architecture, same OS, same software
environment.

Entirely transparent

Preemptive (often needed for library-level checkpointing)

Lack of portability

Large size of checkpoint (≈ memory footprint)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 28/ 62

Faults Checkpoints Proba models 1

Blocking / Asynchronous call

Blocking checkpointing

Relatively intuitive: checkpoint(filename)

Cost: no process activity during the whole checkpoint operation.
Can be linear in the size of memory and in the size of modified files

Asynchronous checkpointing

System-level approach: make use of copy on write of fork syscall
User-level approach: critical sections, when needed

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 29/ 62

Faults Checkpoints Proba models 1

Storage

Remote reliable storage

Intuitive. I/O intensive. Disk usage.

Memory hierarchy

local memory

local disk (SSD, HDD)

remote disk

Scalable Checkpoint Restart Library
http://scalablecr.sourceforge.net

Checkpoint is valid when finished on reliable storage

Distributed memory storage

In-memory checkpointing

Disk-less checkpointing

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 30/ 62

http://scalablecr.sourceforge.net

Faults Checkpoints Proba models 1

Outline

1 Faults and failures

2 Checkpoint and rollback recovery
Process checkpointing
Coordinated checkpointing
Hierarchical checkpointing

3 Probabilistic models

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 31/ 62

Faults Checkpoints Proba models 1

Coordinated checkpointing

orphan

orphan

missing

Definition (Missing Message)

A message is missing if in the current configuration, the sender
sent it, while the receiver did not receive it

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 32/ 62

Faults Checkpoints Proba models 1

Coordinated checkpointing

orphan

orphan

missing

Definition (Orphan Message)

A message is orphan if in the current configuration, the receiver
received it, while the sender did not send it

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 33/ 62

Faults Checkpoints Proba models 1

Coordinated checkpointing

Create a consistent view of the application (no orphan messages)

Every message belongs to a single checkpoint wave

All communication channels must be flushed (all2all)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 34/ 62

Faults Checkpoints Proba models 1

Blocking coordinated checkpointing

App. Message Marker Message

Silences the network during checkpoint

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 35/ 62

Faults Checkpoints Proba models 1

Non-Blocking Coordinated Checkpointing

App. Message Marker Message

Communications received after the beginning of the
checkpoint and before its end are added to the receiver’s
checkpoint

Communications inside a checkpoint are pushed back at the
beginning of the queues

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 36/ 62

Faults Checkpoints Proba models 1

Implementation

Communication Library

Flush of communication channels

conservative approach. One Message per open channel / One
message per channel

Preemptive checkpointing usually required

Can have a user-level checkpointing, but requires one that be
called any time

Application Level

Flush of communication channels

Can be as simple as Barrier(); Checkpoint();

Or as complex as having a quiesce(); function in all libraries

User-level checkpointing

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 37/ 62

Faults Checkpoints Proba models 1

Coordinated Protocol Performance

0
2
4
6
8

10
12
14

N
um

be
r o

f c
he

ck
po

in
t w

av
es

VCL number of waves
PCL number of waves

0 20 40 60 80 100
Time between checkpoints (s)

0
20
40
60
80

100
120
140
160

Ex
ec

ut
io

n
tim

e
(s

)
VCL execution time
PCL execution time

BT.B.64

0 1 2 3 4 5 6 7
Number of checkpoint waves

0
20
40
60
80

100
120
140
160

Ex
ec

ut
io

n
tim

e
(s

)

BT.B.64

0
2
4
6
8

10
12
14

N
um

be
r o

f c
he

ck
po

in
t w

av
es

CG.C.64

0 50 100
Time between checkpoints (s)

0
10
20
30
40
50
60
70
80
90

100

Ex
ec

ut
io

n
tim

e
(s

)

0 2 4 6 8
Number of checkpoint waves

0
10
20
30
40
50
60
70
80
90

100

Ex
ec

ut
io

n
tim

e
(s

)

CG.C.64

Fig. 7. Impact of checkpoint frequency on BT.B.64 and CG.C.64 for myricom network

number of checkpoint waves for each run, while the
right figures present the completion time of the same
experiments as function of the number of checkpoint
waves.
The PCL execution time follows the number of check-

point waves, and the right figures demonstrate that the
completion time is a linear function of the number of
checkpoints. This is easily explained by the synchroniza-
tions introduced by the blocking protocol. As explained
in the cluster experiments, the number of checkpoint
waves does not directly influence the performance of the
VCL implementation.
CG is a benchmark with a lot of small communica-

tions, so a latency-bound benchmark. VCL is imple-
mented with a communication daemon, and message
has to pass through two UNIX sockets and the ethernet
emulation of the myri2000 card, implying unnecessary
copies and a high latency overhead. This is why PCL
performs much better than VCL for this benchmark.
BT is a benchmark computation-bound, with a rel-

atively small number of long communications. So the
VCL implementation does not suffer from the overhead

of its messages copies, and the overhead of the synchro-
nizations of PCL induces better performances for VCL
with high checkpoint wave frequency.

D. Large scale experiments
The large-scale experiments are conducted on

Grid5000. Its clusters are interconnected with internet
links. In order to evaluate the results of the benchmarks,
we first measure the raw performance of this platform
using the NetPIPE [20] utility. This is a ping pong test
for several message size and small perturbations around
these sizes.
Figure 8 presents the bandwidth and latency measure-

ments between each pair of clusters. The network is up
to 20 times faster between two nodes of the same cluster
than between two nodes of two clusters. Moreover, the
latency is up to two orders of magnitude greater between
clusters than between nodes.
We present here results only for the PCL implemen-

tation. The VCL implementation was not designed for
this scale, it uses select system call to multiplex its
communication channels, and this tool is not scalable
after a thousand sockets (in Linux, a file descriptor set

Coordinated Protocol Performance

VCL = nonblocking coordinated protocol

PCL = blocking coordinated protocol

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 38/ 62

Faults Checkpoints Proba models 1

Outline

1 Faults and failures

2 Checkpoint and rollback recovery
Process checkpointing
Coordinated checkpointing
Hierarchical checkpointing

3 Probabilistic models

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 39/ 62

Faults Checkpoints Proba models 1

Uncoordinated Checkpointing Idea

Processes checkpoint independently

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 40/ 62

Faults Checkpoints Proba models 1

Uncoordinated Checkpointing Idea

Optimistic Protocol

Each process i keeps some checkpoints C j
i

∀(i1, . . . in),∃jk/{C jk
ik
} form a consistent cut?

Domino Effect

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 40/ 62

Faults Checkpoints Proba models 1

Piece-wise Deterministic Assumption

Nondeterministic
Choice

Deterministic
Sequence

Piece-wise Deterministic Assumption

Process: alternate sequence of non-deterministic choice and
deterministic steps

Translated in Message Passing:

Receptions / Progress test are non-deterministic
(MPI Wait(ANY SOURCE),
if(MPI Test())<...>; else <...>)
Emissions / others are deterministic

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 41/ 62

Faults Checkpoints Proba models 1

Message Logging

A

B

P

n emission to A (from B)

m reception from B (on A)

Unique Identifeir: (B, n, A, m)
Payload: P

th

th

F T
i probe: falseth

i +1 probe: trueth

Message Logging

By replaying the sequence of messages and test/probe with the
result obtained during the initial execution (from the last
checkpoint), one can guide the execution of a process to its exact
state just before the failure

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 42/ 62

Faults Checkpoints Proba models 1

Message Logging

A

B

P

n emission to A (from B)

m reception from B (on A)

Unique Identifeir: (B, n, A, m)
Payload: P

th

th

F T
i probe: falseth

i +1 probe: trueth

Message / Events

Message = unique identifier (source, emission index,
destination, reception index) + payload (content of the
message)

Probe = unique identifier (number of consecutive
failed/success probes on this link)

Event Logging: saving the unique identifier of a message, or
of a probe

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 42/ 62

Faults Checkpoints Proba models 1

Message Logging

A

B

P

n emission to A (from B)

m reception from B (on A)

Unique Identifeir: (B, n, A, m)
Payload: P

th

th

F T
i probe: falseth

i +1 probe: trueth

Message / Events

Payload Logging: saving the content of a message

Message Logging: saving the unique identifier and the payload
of a message, saving unique identifiers of probes, saving the
(local) order of events

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 42/ 62

Faults Checkpoints Proba models 1

Message Logging

P

P

Q

Q
Checkpoint

P will never be
requested again

Checkpoint

Q Q might be requested
if A and B rollback

A

B

Where to save the Payload?

Almost always as Sender Based

Local copy: less impact on performance

More memory demanding → trade-off garbage collection
algorithm

Payload needs to be included in the checkpoints

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 43/ 62

Faults Checkpoints Proba models 1

Message Logging

Where to save the Events?

Events must be saved on a reliable space

Must avoid: loss of events ordering information, for all events
that can impact the outgoing communications

Two (three) approaches: pessimistic + reliable system, or
causal, (or optimistic)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 44/ 62

Faults Checkpoints Proba models 1

Optimistic Message Logging

P

Q

A

B

C

Event Log

R

S

Where to save the Events?

On a reliable media, asynchronously

“Hope that the event will have time to be logged” (before its
loss is damageable)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 45/ 62

Faults Checkpoints Proba models 1

Optimistic Message Logging

(A, 1, B, ?) P

Q

(A, 1, B, 1)

A

B

C

Event Log

P

R

S

Where to save the Events?

On a reliable media, asynchronously

“Hope that the event will have time to be logged” (before its
loss is damageable)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 45/ 62

Faults Checkpoints Proba models 1

Optimistic Message Logging

(A, 1, B, ?) P

Q

(A, 1, B, 1) Ack

A

B

C

Event Log

P

R

S

Where to save the Events?

On a reliable media, asynchronously

“Hope that the event will have time to be logged” (before its
loss is damageable)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 45/ 62

Faults Checkpoints Proba models 1

Optimistic Message Logging

(A, 1, B, ?) P

(C, 3, B, ?) Q

(A, 1, B, 1) Ack
(C, 3, B, 5)

Ack

A

B

C

Event Log

Q

P

Where to save the Events?

On a reliable media, asynchronously

“Hope that the event will have time to be logged” (before its
loss is damageable)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 45/ 62

Faults Checkpoints Proba models 1

Optimistic Message Logging

(A, 1, B, ?) P

(C, 3, B, ?) Q

(A, 1, B, 1) Ack
(C, 3, B, 5)

Ack

A

B

C

Event Log

Q

P

Danger
Zone

Where to save the Events?

On a reliable media, asynchronously

“Hope that the event will have time to be logged” (before its
loss is damageable)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 45/ 62

Faults Checkpoints Proba models 1

Pessimistic Message Logging

P

Q

A

B

C

Event Log

R

S

Where to save the Events?

On a reliable media, synchronously

Delay of emissions that depend on non-deterministic choices
until the corresponding choice is acknowledged

Recovery: connect to the storage system to get the history

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 46/ 62

Faults Checkpoints Proba models 1

Pessimistic Message Logging

(A, 1, B, ?) P

(C, 3, B, ?) Q

(A, 1, B, 1) Ack
(C, 3, B, 5)

Ack

A

B

C

Event Log

Q

P

Emission
Delayed

Where to save the Events?

On a reliable media, synchronously

Delay of emissions that depend on non-deterministic choices
until the corresponding choice is acknowledged

Recovery: connect to the storage system to get the history

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 46/ 62

Faults Checkpoints Proba models 1

Causal Message Logging

(A, 1, B, ?) P

(C, 3, B, ?) Q

(A, 1, B, 1) Ack
(C, 3, B, 5)

Ack

A

B

C

Event Log

Q

P

msg + (C, 3, B, 5)

msg

Where to save the Events?

Any message carries with it (piggybacked) the whole history
of non-deterministic events that precede

Garbage collection using checkpointing, detection of cycles

Can be coupled with asynchronous storage on reliable media
to help garbage collection

Recovery: global communication + potential storage system
Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 47/ 62

Faults Checkpoints Proba models 1

Recover in Message Logging

Resend: P

A

B

C

Event Log

R

S

CK
PT

(A, 1, B, 1)
(C, 3, B, 5)

Received: empty

Received: R Resend: Q

Recovery

Collect the history (from event log / event log + peers for
Causal)

Collect Id of last message sent

Emitters resend, deliver in history order

Fake emission of sent messages

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 48/ 62

Faults Checkpoints Proba models 1

Uncoordinated Protocol Performance

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

O
ve

rh
ea

d

BT Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

O
ve

rh
ea

d

BT Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256

O
ve

rh
ea

d

BT Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C FT Class C

standard

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C FT Class C

standard
pessimist

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

BT Class C CG Class C FT Class C

standard
pessimist

optimist

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

O
ve

rh
ea

d

Number of Processes

BT Class C CG Class C FT Class C

LU Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

O
ve

rh
ea

d

Number of Processes

BT Class C CG Class C FT Class C

LU Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256

O
ve

rh
ea

d

Number of Processes

BT Class C CG Class C FT Class C

LU Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 32 64 128 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C SP Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C SP Class C

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

16 36 64 121 256
Number of Processes

BT Class C CG Class C FT Class C

LU Class C MG Class C SP Class C

Fig. 5. Scalability comparison of pessimistic and optimistic message logging protocols on the NAS Benchmarks on Gigabit Ethernet

B. Scalability

In order to evaluate the comparative scalability of the
two protocols we plot the normalized execution time of the
NAS kernels according to a growing number of processors
(figure 5). While in previous experiments (figures 3) we specif-
ically outlined the differences caused by non-deterministic
events, in this phase of the comparison we focus on widely
used application kernels. Among the NAS kernels, only two
generates non deterministic events: MG and LU. As a conse-
quence, the executions of the two protocols are very similar
and exhibit the same scalability. Overall, the overhead induced
by the sender-based payload copy mechanism stays under 10%
on these benchmarks.

The only benchmark showing a different scalability pattern
is LU. The number of non-deterministic events grows with
the size of the application, making the optimistic protocol 6%
more efficient than the pessimistic one for 256 processes.

C. Isolating Event Logging Overhead

Figure 6 presents the performance of all the NAS kernels
for 64 processes on the Myrinet network. Every kernel is
evaluated with or without the sender-based mechanism being
active. While it is a required component for a successful
recovery, deactivating the sender-based overhead reveals the
performance differences imputable to the event logging proto-
cols. As expected, the performance of event logging exhibits
almost no differences between the protocols on the bench-
marks where there is no non-deterministic events. Even on
those with non-deterministic events, the performance varies

bt.c.64 ft.c.64 lu.c.64 mg.c.64 sp.c.64 cg.c.64

NAS Kernel

1

1.02

1.04

1.06

1.08

N
o
rm

a
liz

e
d
 E

x
e
c
u
tio

n
 T

im
e

Pessimist
Optimist
Pessimist (Event Logging only)
Optimist (Event Logging only)

Fig. 6. Normalized performance of the NAS kernels on the Myrinet 10G
network (Open MPI=1).

only by less than 2%, which is close to the error margin
of measurements. On this faster network, the sender-based
overhead clearly dominates the performance and flattens any
performance difference coming from the synchronicity of the
event logging.

D. Event Logging Overhead Breakdown

To evaluate the cost of event logging in the protocols, we
used a small ping-pong test with 2 processes. The any source
flag was used in order to generate a non-deterministic event
for every message reception. Results are presented in Table I.
First, when a non deterministic event is created, it has to

Uncoordinated Protocol Performance

NAS Parallel Benchmarks – 64 nodes

High Performance Linpack

Figures courtesy of A. Bouteiller, G. Bosilca

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 49/ 62

Faults Checkpoints Proba models 1

Hierarchical Protocols

Many Core Systems

All interactions between threads considered as a message

Explosion of number of events

Cost of message payload logging ≈ cost of communicating →
sender-based logging expensive

Correlation of failures on the node

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 50/ 62

Faults Checkpoints Proba models 1

Hierarchical Protocols

Hierarchical Protocol

Processes are separated in groups

A group co-ordinates its checkpoint

Between groups, use message logging

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 51/ 62

Faults Checkpoints Proba models 1

Hierarchical Protocols

Hierarchical Protocol

Coordinated Checkpointing: the processes can behave as a
non-deterministic entity (interactions between processes)

Need to log the non-deterministic events: Hierarchical
Protocols are uncoordinated protocols + event logging

No need to log the payload

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 51/ 62

Faults Checkpoints Proba models 1

Event Log Reduction

Strategies to reduce the amount of event log

Few HPC applications use message ordering / timing
information to take decisions

Many receptions (in MPI) are in fact deterministic: do not
need to be logged

For others, although the reception is non-deterministic, the
order does not influence the interactions of the process with
the rest (send-determinism). No need to log either

Reduction of the amount of log to a few applications, for a
few messages: event logging can be overlapped

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 52/ 62

Faults Checkpoints Proba models 1

Hierarchical Protocol Performance

BT

CGFT

IS

MG SP

Perf. Regular Message Logging / Perf. Vanilla
Perf. Coordinated Message Logging / Perf. Vanilla

50%
60%

80%
90%

100%

Fig. 5. NAS performance (Pluto platform, shared memory, 32/36 cores)

algorithm maintains the dependency graph of events and checkpoints to compute
Z-paths as the execution progresses. Forced checkpoints are taken whenever a
Z-path would become a consistency breaking Z-cycle. This approach has several
drawbacks: it adds piggyback to messages, and is notably not scalable because
the number of forced checkpoints grows uncontrollably [1].

Group coordinated checkpoint have been proposed in MVAPICH2 [10] to
solve I/O storming issues in coordinated checkpointing. In this paper, the group
coordination refers to a particular scheduling of the checkpoint tra�c, intended
to avoid overwhelming the I/O network. Unlike our approach, which is partially
uncoordinated, this algorithm builds a completely coordinated recovery set.

In [11], Ho, Wang and Lau propose a group-based approach that combines
coordinated and uncoordinated checkpointing, similar to the technique we use in
this paper, to reduce the cost of message logging in uncoordinated checkpointing.
Their work, however, focuses on communication patterns of the application, to
reduce the amount of message logging. Similarly, in the context of Charm++ [13],
and AMPI[16], Meneses, Mendes and Kalé have proposed in [8] a team-based
approach to reduce the overhead of message logging. The Charm++ model advo-
cates a high level of oversubscription, with a ratio of user-level thread per core
much larger than one. In their work, teams are of fixed, predetermined sizes.
The paper does not explicitly explain how teams are built, but an emphasis on
communication patterns seems preferred. In contrast, our work takes advantage
of hardware properties of the computing resources, proposing to build correlated
groups based on likeliness of failures, and relative e�ciency of the communication
medium.

 0

 100

 200

 300

 400

 500

 600

 3600 7200 10080
 14220

 17460
 19980

 24480

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

Matrix size (N)

Theoretical peak
Vanilla Open MPI

Coordinated Message Logging
Regular Message Logging

Fig. 6. HPL cluster performance (Dancer cluster, IB20G, 8 nodes, 64 cores)

6 Concluding Remarks

In this paper, we proposed a novel approach combining the best features of coor-
dinated and uncoordinated checkpointing. The resulting fault tolerant protocol,
belonging to the event logging protocol family, spares the payload logging for
messages belonging to a correlated set, but retains uncoordinated recovery scal-
ability. The benefit on shared memory point-to-point performance is significant,
which translates into an observable improvement of many application types.
Even though inter-node communications are not modified by this approach, the
shared memory speedup translates into a reduced overhead on cluster of mul-
ticore type platforms. Last, the memory required to hold message payload is
greatly reduced; our algorithm provides a flexible control of the tradeo↵ between
synchronization and memory consumption. Overall, this work greatly improves
the applicability of message logging in the context of distributed systems based
on a large number of many-core nodes.

Acknowledgement

This work was partially supported by the DOE Cooperative Agreement DE-
FC02-06ER25748, and the INRIA-Illinois Joint Laboratory for Petascale Com-
puting and the ANR RESCUE project.

References

1. Alvisi, L., Elnozahy, E., Rao, S., Husain, S.A., Mel, A.D.: An analysis of communi-
cation induced checkpointing. In: 29th Symposium on Fault-Tolerant Computing
(FTCS’99). IEEE CS Press (june 1999)

Hierarchical Protocol Performance

NAS Parallel Benchmarks – shared memory system, 32 cores

HPL distributed system, 64 cores, 8 groups

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 53/ 62

Faults Checkpoints Proba models 1

Outline

1 Faults and failures

2 Checkpoint and rollback recovery

3 Probabilistic models
Young/Daly’s approximation

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 54/ 62

Faults Checkpoints Proba models 1

Outline

1 Faults and failures

2 Checkpoint and rollback recovery

3 Probabilistic models
Young/Daly’s approximation

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 55/ 62

Faults Checkpoints Proba models 1

Checkpointing cost

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working

Blocking model: while a checkpoint is taken, no computation can
be performed

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 56/ 62

Faults Checkpoints Proba models 1

Framework

Periodic checkpointing policy of period T

Independent and identically distributed (IID) failures

Applies to a single processor with MTBF µ = µind
Applies to a platform with p processors with MTBF µ = µind

p

coordinated checkpointing
tightly-coupled application
progress ⇔ all processors available

⇒ platform = single (powerful, unreliable) processor ,

Waste: fraction of time not spent for useful computations

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 57/ 62

Faults Checkpoints Proba models 1

Waste in fault-free execution

Checkpointing

the first chunk

Computing the first chunk

Processing the second chunkProcessing the first chunk

Time

Time spent checkpointing

Time spent working Timebase: application base time

TimeFF: with periodic checkpoints
but failure-free

TimeFF = Timebase + #checkpoints × C

#checkpoints =

⌈
Timebase

T − C

⌉
≈ Timebase

T − C
(valid for large jobs)

Waste[FF] =
TimeFF −Timebase

TimeFF
=

C

T

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 58/ 62

Faults Checkpoints Proba models 1

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 59/ 62

Faults Checkpoints Proba models 1

Waste due to failures

Timebase: application base time

TimeFF: with periodic checkpoints but failure-free

Timefinal: expectation of time with failures

Timefinal = TimeFF + Nfaults × Tlost

Nfaults number of failures during execution
Tlost: average time lost per failure

Nfaults =
Timefinal

µ

Tlost?

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 59/ 62

Faults Checkpoints Proba models 1

Computing Tlost

T

CT − CRDT/2

P1

P0

P3

P2

Time spent working Time spent checkpointing

Recovery timeDowntime Time

Tlost = D + R +
T

2

Rationale
⇒ Instants when periods begin and failures strike are independent
⇒ Approximation used for all distribution laws
⇒ Exact for Exponential and uniform distributions

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 60/ 62

Faults Checkpoints Proba models 1

Waste due to failures

Timefinal = TimeFF + Nfaults × Tlost

Waste[fail] =
Timefinal −TimeFF

Timefinal
=

1

µ

(
D + R +

T

2

)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 61/ 62

Faults Checkpoints Proba models 1

Total waste

TimeFF =Timefinal (1-Waste[fail]) Timefinal ×Waste[fail]

Timefinal

T -C C T -C C T -C C T -C C T -C C

Waste =
Timefinal −Timebase

Timefinal

1−Waste = (1−Waste[FF])(1−Waste[fail])

Waste =
C

T
+

(
1− C

T

)
1

µ

(
D + R +

T

2

)

How do we minimize the waste? (use the goat’s lemma!)

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (1) 62/ 62

	Faults and failures
	Checkpoint and rollback recovery
	Process checkpointing
	Coordinated checkpointing
	Hierarchical checkpointing

	Probabilistic models
	Young/Daly's approximation

