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In-memory checkpointing
@ Double checkpointing algorithm
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Motivation

@ Checkpoint transfer and storage
= critical issues of rollback/recovery protocols

@ Stable storage: high cost

@ Distributed in-memory storage:

e Store checkpoints in local memory = no centralized storage
© Much better scalability

o Replicate checkpoints = application survives single failure
® Still, risk of fatal failure in some (unlikely) scenarios
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In-memory checkpointing
@ Double checkpointing algorithm
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Double checkpoint algorithm

@ Platform nodes partitioned into pairs
@ Each node in a pair exchanges its checkpoint with its buddy
@ Each node saves two checkpoints:

- one locally: storing its own data
- one remotely: receiving and storing its buddy's data

Two algorithms
e blocking version by Zheng, Shi and Kalé
e non-blocking version by Ni, Meneses and Kalé
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Non-blocking checkpoint algorithm

Local checkpoint Remote checkpoint Period
done done done
Node p | 1 |
Node p' | 1 |
->
) 0 o
P

Checkpoints taken periodically, with period P=6 +6 + o

°
@ Phase 1, length ¢: local checkpoint, blocking mode. No work
@ Phase 2, length 6: remote checkpoint. Overhead ¢

°

Phase 3, length o: application at full speed 1
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Non-blocking checkpoint algorithm

Local checkpoint Remote checkpoint Period
done done done
Node p | 1 |
Node p' | 1 |
->
) (] c
P

Work in failure-free period:

W=(0—-¢)+o=P—-30—¢
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Cost of overlap

Local checkpoint Remote checkpoint Period
done done done
Node p | 1 |
Node p' | 1 |
-
) 0 o
P

@ Overlap computations and checkpoint file exchanges

o Large 0
=- more flexibility to hide cost of file exchange
= smaller overhead ¢
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Cost of overlap

Local checkpoint Remote checkpoint Period
done done done
Node p | 1 |
Node p' | 1 |
-—>
) 0 c
P

@ 0 = Omin: fastest communication, fully blocking = ¢ = Omin
@ 0 = Omay: full overlap with computation = ¢ =0
@ Linear interpolation 6(¢) = Omin + a(Omin — @)

o ¢» =0 for 0 =6Onax = (1 4+ @)bmin
e «: rate of overhead decrease w.r.t. communication length
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Assessing the risk

Node p H [0} H 1 H H ) H 1 W
Risk Period
Node p' ‘ i H 1 H H ; H 1t
g S Checkpoint of Checkpoint of
8 0 S 5 0 tiost P P
P ~u —
Node to replace p [:H H [ H H
Pa—g

-—
D R (5] Yiost

o After failure: downtime D and recovery from buddy node
@ Two checkpoint files lost, must be re-sent to faulty processor

@ Checkpoint of faulty node, needed for recovery
= sent as fast as possible, in time R = Oin
@ Checkpoint of buddy node, needed in case buddy fails later on

=77
@ Application at risk until complete reception of both messages
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Checkpoint of buddy node

Scenario DOUBLENBL
o File sent at same speed as in regular mode, in time 6(¢)
@ Overhead ¢

e Favors performance, at the price of higher risk

Scenario DOUBLEBOF
@ File sent as fast as possible, in time O, = R
@ Overhead R
@ Favors risk reduction, at the price of higher overhead
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e In-memory checkpointing

@ Analysis
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Computing the waste

Waste
= fraction of time where nodes do not perform useful computations

@ Thase base time without any overhead due to resilience
@ Time for fault-free execution Ty

e Period P = W = P — § — ¢ work units
° TfF = % Tbase
° (]- - %) Tt = Thase
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Computing the waste

@ T expectation of total execution time

— single application

— platform life (many jobs running concurrently)
@ In average, failures occur every p seconds

— platform MTBF p = uing/p

@ For each failure, F seconds are lost:

T = Tff+;f
Fo. 0+
(1) (1= 55T = Tone
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Computing the waste

(1 — WASTE) T = Thase

B F 0+ ¢
WASTE—l—(l—ﬁ)( _T)

Two sources of overhead:

WASTEg = §+qu: checkpointing in a fault-free execution
WASTEg; = %: failures striking during execution

WASTE = WASTEf; + WASTEff — WASTE¢,; WASTE¢
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Time lost due to failures

Scenario DOUBLENBL

Risk Period
- ﬁ : H:\J>< :
- <_>:

-
Checkpoint of

Checkpoint of
tiost P P

[)
L 1}
o 3 6

Node to replace p

1) 0 o
fnb| - D+R+ER(€1+FR52+5RS3
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Failure during third part of period

Risk Period
Node p' 1 1 [} H 1
-— -— T Checkpoint of Checkpoint of —
8 0 c 3 0 tiost P P
P
Node to replace p

—— — ~——
D R 6 tiost

@ No work during D+ R
@ Then re-execution of Wiss = (0 — &) + tiost

o First 6 seconds: overhead ¢ (receiving buddy checkpoint)
e Then full speed

o [E(tjost) = 5 (failures strike uniformly)

g
RE;=0+7
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Waste minimization

Scenario DOUBLENBL ~ Fp =D+ R+60+ £

Scenario DOUBLEBOF  Fiof = Fapl + R — ¢
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Waste minimization

Scenario DOUBLENBL ~ Fp =D+ R+60+ £

TOn = V2(6 + ¢)(n— R— D —0)

Scenario DOUBLEBOF  Fiof = Fapl + R — ¢

T Obot = V2(5+ ¢)(n—2R— D — 0+ ¢)

Not same 6 as in Young/Daly for coordinated checkpointing on
global remote storage ©
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Pey

Node p! 1 1 [) }

Node p H [) H 1 N

- - — Checkpoint of Checkpoint of
3 )

t P 3
, 0 lost \

Node to replace p

Application at risk until complete reception of both messages:
@ Risk =D + R+ 6 for DOUBLENBL
@ Risk = D + 2R for DOUBLEBOF

Analysis:
o Failures strike with uniform distribution over time
o \= % instantaneous processor failure rate

Success probability Pyoupie = (1 — 2X2 TRisk)"/?
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Risk

Consider a pair made of one processor and its buddy:

@ Probability of first processor failing: AT,
Probability of one failure in the pair : 1 — (1 — AT)? = 2AT
Probability of second failure within risk period: ARisk
Probability of fatal failure in the pair: (2AT)(ARisk)
Probability of application fatal failure: 1 — (1 — 2\ T Risk)"/?

(]

Success probability Pyoupie = (1 — 22 TRisk)"/2
compare to Phase = (1 — AThase)”
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e In-memory checkpointing

@ Triple checkpointing algorithm
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Principle

Remote checkpoint Remote checkpoint .
done on preferred buddy done on secondary buddy Period
/ ;one
Nodep | [) | [0 | I 9 l
L 11 )
o !7¢\f !/¢<} | - l
Node p" ‘ ¢ “ ¢ l l 1 I
! 1 ]
6 0 o
P

@ Processors organized in triples
@ Each processor has a preferred buddy and a secondary buddy
@ Rotation of buddies
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Principle
Remote checkpoint Remote checkpoint .
done on preferred buddy yn secondary buddy z’err]lod
Nodep | [) | [0 | I 4 l
L 1L ]
e !Nq)‘y !k} I : l
Node p | [) | [0 | I 9 l
! 11 ]
6 0 o
P

@ Waste in fault-free execution tends to zero

@ Application failure = three successive failures within a triple
=- Smaller risk even for large 6

@ Only need non-blocking version TRIPLE

Anne.Benoit@ens-lyon.fr Fault tolerance (3)



Buddy
o

Memory requirement

Remote checkpoint Remote checkpoint .
done on preferred buddy done on secondary buddy Period
/ ;one
Node p ‘ ¢ “ ¢ l I 1 l
L 11 )
e !Nq)‘y !k} I : l
Node p" ‘ ¢ “ ¢ l l 1 I
! 11 )
6 0 o
P

@ Copy-on-write for local checkpoint file

@ Same memory usage as double checkpointing algorithm
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Analysis

Waste
@ WASTE¢,; same as for DOUBLENBL
o WasTEg = 22 instead of WasTEg = °5¢ for DOUBLENBL

Risk
@ Risk=D+ R+ 20
@ Success probability Py ipe = (1 — 6)\3TRisk2)”/3
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e In-memory checkpointing

@ Experiments
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Scenarios
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Scenario | D | § 10) R | « n
Base 0] 2] 0<¢p<4 | 4|10]|324x32
Exa 60 | 30 | 0< ¢ <60 |60 | 10 10°

Exa corresponds to the Exa-Slim scenario
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Waste for scenario Base

Waste Difference (w/ Triple)
Waste Difference (w/ Triple)

h h h
1day” 0 1day” 0 1day 0

DouBLEBOF DouBLENBL TRIPLE

Waste as a function of ¢/R and p
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Waste for scenario Base (i = 7h)
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Success probability for scenario Base

Success Probability Ratio
Success Probability Ratio

Ratio DOUBLENBL/ DoOUBLEBOF Ratio DOUBLEBOF/ TRIPLE

Relative success probability
function of u and platform life T (0 = (a + 1)R)
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Waste for scenario Exa

Waste Difference (w/ Triple)
Waste Difference (w/ Triple)
Waste

1day 0

DouBLEBOF DouBLENBL TRIPLE

Waste as a function of ¢/R and p
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Waste for scenario Exa (u = 7h)
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Success probability for scenario Exa

Success Probability Ratio
)
>

Success Probability Ratio
cocoo
oRo @
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Ratio DOUBLENBL/ DoOUBLEBOF Ratio DOUBLEBOF/ TRIPLE

Relative success probability
function of u and platform life T (0 = (a + 1)R)

Anne.Benoit@ens-lyon.fr Fault tolerance (3)



Buddy
o

Conclusion

Triple checkpointing
@ Save checkpoint on two remote processes instead of one,
without much more memory or storage requirements
@ Excellent success probability, almost no failure-free overhead
@ Assessment of performance and risk factors using unified mode
@ Realistic scenarios conclude to superiority of TRIPLE
Future work
@ Study real-life applications and propose refined values for «
for a set of widely-used benchmarks

@ Very small MTBF values on future exascale platforms
= combine distributed in-memory strategies

with uncoordinated or hierarchical checkpointing protocols
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e Probabilistic models for advanced methods
@ Failure prediction
@ Replication
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e Probabilistic models for advanced methods
@ Failure prediction
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Framework

Predictor
e Exact prediction dates (at least C seconds in advance)
@ Recall r: fraction of faults that are predicted

@ Precision p: fraction of fault predictions that are correct

Events
@ true positive: predicted faults

@ false positive: fault predictions that did not materialize as
actual faults

o false negative: unpredicted faults
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Fault rates

@ s mean time between failures (MTBF)

@ up mean time between predicted events (both true positive
and false positive)

@ Lyp mean time between unpredicted faults (false negative).

@ [ie: mean time between events (including three event types)

Truep Truep
fr=——— and p=—"""7/7#¢#¥7="—
Truep + Falsey Truep + Falsep
1-— 1
( r) =—— and r_F~
K K“np B e
1 1 1
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Example

Error Error Error,  Error Error
Actual faults: ; ,,,,,, ; ,,,,,,,,,, ; } ,,,,,,,,,,,, ; .
pred pred. pred. pred. , pred. pred.
Predictor: j ,,,,,, ; ,,,,,, ; ,,,,,, ; ,,,,,, ; ,,,,,, f .

pred. Error pred.

Overlap:

T Time

Predictor predicts six faults in time t

Five actual faults. One fault not predicted
p==% pp=¢ and uyp =t

Recall r = % (green arrows over red arrows)

Precision p = % (green arrows over blue arrows)
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Algorithm

© While no fault prediction is available:
e checkpoints taken periodically with period T
@ When a fault is predicted at time t:
e take a checkpoint ALAP (completion right at time t)
e after the checkpoint, complete the execution of the period
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Computing the waste

O Fault-free execution: WASTE[FF] = £

—_—

. .1 T
© Unpredicted faults: [D+ R+ L]

Error

<] & [ ]

T-C T-C Tiost T-C Time
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Computing the waste

@ Predictions: -1 [p(C + D + R)+ (1 p)C]

©p
Error,
[] [ GPE_ [ []
T-C Wieg T-Wieg-C T-C Time

with actual fault (true positive)

<] B[4 & [

T-C Wieg T-Wieg-C T-C T-C Time

no actual fault (false negative)
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Computing the waste

@ Predictions: -1 [p(C + D + R)+ (1 p)C]

©p
Error,
[] [ GPE_ [ []
T-C Wieg T-Wieg-C T-C Time

with actual fault (true positive)

<] B[4 & [

T-C Wieg T-Wieg-C T-C T-C Time

no actual fault (false negative)

2uC

fail] =
WASTE(fail| T,

1 T
; (1—r)2+D+R+;C:|:>TOpt%
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Refinements

@ Use different value C, for proactive checkpoints

@ Avoid checkpointing too frequently for false negatives
= Only trust predictions with some fixed probability g
= Ignore predictions with probability 1 — g
Conclusion: trust predictor always or never (g =0 or g = 1)

@ Trust prediction depending upon position in current period
= Increase g when progressing
= Break-even point 7"
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With prediction windows
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o

(Regular mode) Error
4] & Gl ]
Tr-C Tr-C Tiost Tr-C Time
(Prediction without failure) /
] [ B ECECE [
Tr-C Wieg| [Tp-Co  Tp-Co,  Tp-Cp |Twr-C Time
Regular mode Proactive mode Wieg
(Prediction with failure)  Error
<] [ @l ECEE [
Tr-C Wieg| [Tp-Co  Tp-Cp Tr-C Time
Regular mode Proactive mode “Wieg

Gets too complicated! @

Fault tolerance (3)
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e Probabilistic models for advanced methods

@ Replication
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Replication

@ Systematic replication: efficiency < 50%

@ Can replication+checkpointing be more efficient than
checkpointing alone?

@ Study by Ferreira et al. [SC'2011]: yes
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Model by Ferreira et al. [SC' 2011]

Parallel application comprising N processes

Platform with piotsy = 2N processors

o

o

@ Each process replicated — N replica-groups

@ When a replica is hit by a failure, it is not restarted
o

Application fails when both replicas in one replica-group have
been hit by failures
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Example

‘ 15

Pairy

Pairy

Pair3

Pair4

Time
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The birthday problem

Classical formulation
What is the probability, in a set of m people, that two of them
have same birthday 7

Relevant formulation
What is the average number of people required to find a pair with
same birthday?

+oo
Birthday(N) = 1 +/ e (14 x/N)N=1dx
0

The analogy

Two people with same birthday

Two failures hitting same replica-group
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Differences with birthday problem

1 2 i N

@ N processes; each replicated twice

@ Uniform distribution of failures
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Differences with birthday problem

i

1 2 i N

@ N processes; each replicated twice
@ Uniform distribution of failures
e First failure: each replica-group has probability 1/N to be hit
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Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure: can failed PE be hit?
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Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
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Differences with birthday problem

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)
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Differences with birthday problem

-B

i

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)
o Probability that replica-group # i is hit by failure: 2/(2N — 1)
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Differences with birthday problem

B -B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

e Failure uniformly distributed over 2N — 1 PEs
o Probability that replica-group i is hit by failure: 1/(2N — 1)
o Probability that replica-group # i is hit by failure: 2/(2N — 1)
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Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure cannot hit failed PE

Failure uniformly distributed over 2N — 1 PEs

Probability that replica-group i is hit by failure: 1/(2N — 1)
Probability that replica-group # i is hit by failure: 2/(2N — 1)
Failure not uniformly distributed over replica-groups:

this is not the birthday problem
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Differences with birthday problem

-B

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE
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Differences with birthday problem
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Second failure

-B

i

N processes; each replicated twice

Uniform distribution of failures

hit failed PE

e Suppose failure hits replica-group 7

First failure: each replica-group has probability 1/N to be hit

Anne.Benoit@ens-lyon.fr
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Differences with birthday problem
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Second failure

i

i

N processes; each replicated twice

Uniform distribution of failures

hit failed PE

e Suppose failure hits replica-group 7
o If failure hits failed PE:

First failure: each replica-group has probability 1/N to be hit
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Differences with birthday problem

1 2 i N
@ N processes; each replicated twice

@ Uniform distribution of failures

e First failure: each replica-group has probability 1/N to be hit
@ Second failure hit failed PE

Suppose failure hits replica-group i

If failure hits failed PE:

If failure hits running PE: application killed

Not all failures hitting the same replica-group are equal:
this is not the birthday problem
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Correct analogy

OO
1 2 3 4 n

ly

N bins, red and blue balls

Mean Number of Failures to Interruption (bring down application)
MNFTI = expected number of balls to throw
until one bin gets one ball of each color
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Exponential failures

Theorem: MNFTI = E(NFTI|0) where

ifnf—N

2
E(NFTI|n¢) = { 2/\3an +2 2N 2nf TE(NFTI|ns 4 1) otherwise,

E(NFTI|n¢): expectation of number of failures to kill application,
knowing that

e application is still running

e failures have already hit nf different replica-groups

How do we obtain this result?
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