Fault tolerance techniques for high-performance computing Part 4

Anne Benoit

ENS Lyon

Anne.Benoit@ens-lyon.fr http://graal.ens-lyon.fr/~abenoit

CR02 - 2016/2017

)				
к			~	
	u	u	u	- 14

Outline

- Probabilistic models for advanced methods
 - Failure prediction
 - Replication

3

Forward-recovery techniques

- Introduction: Matrix-Matrix Multiplication
- ABFT for Linear Algebra applications
- Composite approach: ABFT & Checkpointing

4 Conclusion

Duuuv

Outline

Probabilistic models for advanced method

Forward-recovery techniques

Conclusio

<ロ> (日) (日) (日) (日) (日)

3

Buddy	Proba models 2	Forward-recovery	Conclusion
	00	0000000	
Outline			

Probabilistic (models	for	advanced	methods
Failure pred	liction			
Replication				

Forward-recovery techniques

Conclusio

2

・ロト ・四ト ・ヨト ・ヨト

æ

Buddy	Proba models 2	Forward-recovery	Conclusion
	\odot	0000000	
Outline			

In-memory checkpointing

Probabilistic models for advanced methods
 Failure prediction
 Replication

Forward-recovery techniques

Conclusion

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

Buddy	Proba models 2	Forward-recovery	Conclusion
	00	0000000	
Outline			

2	Probabilistic models for advanced methods Failure prediction
	Replication

Forward-recovery techniques

Conclusio

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

3

Buddy	Proba models 2	Forward-recovery	Conclusion
	00	0000000	
Replication			

- Systematic replication: efficiency < 50%
- Can replication+checkpointing be more efficient than checkpointing alone?
- Study by Ferreira et al. [SC'2011]: yes

- Parallel application comprising N processes
- Platform with $p_{total} = 2N$ processors
- Each process replicated $\rightarrow N$ replica-groups
- When a replica is hit by a failure, it is not restarted
- Application fails when both replicas in one replica-group have been hit by failures

N bins, red and blue balls

Mean Number of Failures to Interruption (bring down application) MNFTI = expected number of balls to throw until one bin gets one ball of each color

B ▶ < B ▶

Theorem: $MNFTI = \mathbb{E}(NFTI|0)$ where

$$\mathbb{E}(NFTI|n_f) = \begin{cases} 2 & \text{if } n_f = N, \\ \frac{2N}{2N - n_f} + \frac{2N - 2n_f}{2N - n_f} \mathbb{E}(NFTI|n_f + 1) & \text{otherwise.} \end{cases}$$

 $\mathbb{E}(NFTI|n_f)$: expectation of number of failures to kill application, knowing that

- application is still running
- failures have already hit n_f different replica-groups

How do we obtain this result?

Buddy	Proba models 2	Forward-recovery	Conclusion
	00	0000000	
Comparison			

- 2N processors, no replication THROUGHPUT_{Std} = $2N(1 - \text{WASTE}) = 2N\left(1 - \sqrt{\frac{2C}{\mu_{2N}}}\right)$
- N replica-pairs THROUGHPUT_{Rep} = $N\left(1 - \sqrt{\frac{2C}{\mu_{rep}}}\right)$ $\mu_{rep} = MNFTI \times \mu_{2N} = MNFTI \times \frac{\mu}{2N}$
- Platform with $2N = 2^{20}$ processors $\Rightarrow MNFTI = 1284.4$ $\mu = 10$ years \Rightarrow better if C shorter than 6 minutes

Buddy	Proba models 2	Forward-recovery	Cor
	00	0000000	
Failure di	stribution		

Crossover point for replication when $\mu_{ind} = 125$ years

2

(日) (周) (三) (三)

- Study by Ferrreira et al. favors replication
- Replication beneficial if small μ + large C + big p_{total}

Outline

In-memory checkpointing

Probabilistic models for advanced methods

Forward-recovery techniques

- Introduction: Matrix-Matrix Multiplication
- ABFT for Linear Algebra applications
- Composite approach: ABFT & Checkpointing

イロト イヨト イヨト イヨト

æ

Outline

Forward-recovery techniques

Introduction: Matrix-Matrix Multiplication

ABFT for Linear Algebra applications

Composite approach: ABFT & Checkpointing

イロト イヨト イヨト イヨト

æ

Buddy Proba models 2 Forward-recovery Conclusion Generic vs. Application specific approaches

Generic solutions

- Universal
- Very low prerequisite
- One size fits all (pros and cons)

Application specific solutions

- Requires (deep) study of the application/algorithm
- Tailored solution: higher efficiency

Buddy Proba models 2 Forward-recovery Conclusion

Backward Recovery

- Rollback / Backward Recovery: returns in the history to recover from failures
- Spends time to re-execute computations
- Rebuilds states already reached
- Typical: checkpointing techniques

Proba mode

Forward-recovery

Conclusion

Backward Recovery vs. Forward Recovery

Forward Recovery

- Forward Recovery: proceeds without returning
- Pays additional costs during (failure-free) computation to maintain consistent redundancy
- Or pays additional computations when failures happen
- General technique: Replication
- Application-Specific techniques: Iterative algorithms with fixed point convergence, ABFT, ...

 Buddy
 Proba models 2
 Forward-recovery
 Conclusion

 Algorithm Based Fault Tolerance (ABFT)
 Conclusion
 Conclusion

Principle

- Limited to Linear Algebra computations
- Matrices are extended with rows and/or columns of checksums

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 12 \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

 Buddy
 Proba models 2
 Forward-recovery
 Conclusion

 Algorithm Based Fault Tolerance (ABFT)
 Conclusion
 Conclusion

Principle

- Limited to Linear Algebra computations
- Matrices are extended with rows and/or columns of checksums

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 12 \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

B ▶ < B ▶

 Buddy
 Proba models 2
 Forward-recovery
 Conclusion

 Algorithm Based Fault Tolerance (ABFT)

Principle

- Limited to Linear Algebra computations
- Matrices are extended with rows and/or columns of checksums

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 12 \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

B ▶ < B ▶

ABFT and fail-stop errors

Missing checksum data

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

Simple recomputation: 4+3+5 = 12.

Missing original data

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 5 & 12 \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

Simple recomputation: 12-(4+5) = 3.

글 🕨 🖌 글

Proba models

Forward-recovery

Conclusion

ABFT and fail-stop errors

Missing checksum data

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

Simple recomputation: 4+3+5 = 12.

Missing original data

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 5 & 12 \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

Simple recomputation: 12-(4+5) = 3.

Proba models

Forward-recovery

Conclusion

ABFT and fail-stop errors

Missing checksum data

$$M=egin{pmatrix} 5&1&7&13\4&3&5\4&6&9&19 \end{pmatrix}$$

Simple recomputation: 4+3+5 = 12.

Missing original data

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 5 & 12 \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

Simple recomputation: 12-(4+5) = 3.

Proba models

Forward-recovery

Conclusion

ABFT and fail-stop errors

Missing checksum data

$$M=egin{pmatrix} 5&1&7&13\4&3&5\4&6&9&19 \end{pmatrix}$$

Simple recomputation: 4+3+5 = 12.

Missing original data

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 5 & 12 \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

Simple recomputation: 12-(4+5) = 3.

Proba models

Forward-recovery

Conclusion

ABFT and silent data corruption

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 13 \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

Error detection: $4 + 3 + 5 \neq 13$ Limitations

• The following matrix would have successfully passed the sanity check:

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 5 & 3 & 5 & 13 \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

• Can detect **one** error and correct **zero**.

Buddy Proba models 2 Forward-recovery Conclusion ABFT and silent data corruption

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 13 \\ 4 & 6 & 9 & 19 \end{pmatrix}$$

Error detection: $4 + 3 + 5 \neq 13$ Limitations

• The following matrix would have successfully passed the sanity check:

$$M=egin{pmatrix} 5&1&7&13\5&3&5&13\4&6&9&19 \end{pmatrix}$$

• Can detect **one** error and correct **zero**.

 Buddy
 Proba models 2 oo
 Forward-recovery oo
 Conclusion

 ABFT and silent data corruption
 Conclusion
 Conclusion

One row and one column of checksums

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix}$$

Checksum recomputation to look for silent data corruptions:

$$\begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 3 & + & 5 & = & 12 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 10 & + & 21 & = & 44 \end{pmatrix}$$

Checksums do not match !

 Buddy
 Proba models 2 oo
 Forward-recovery oo
 Conclusion

 ABFT and silent data corruption
 Conclusion
 Conclusion

One row and one column of checksums

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix}$$

Checksum recomputation to look for silent data corruptions:

$$\begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 3 & + & 5 & = & 12 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 10 & + & 21 & = & 44 \end{pmatrix}$$

Checksums do not match !

Proba models

Forward-recovery

Conclusion

ABFT and silent data corruption

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix} \qquad \begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 3 & + & 5 & = & 12 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 10 & + & 21 & = & 44 \end{pmatrix}$$

Both checksums are affected, giving out the location of the error. We solve:

 $4 + x + 5 = 11 \qquad 1 + x + 6 = 9$

Recomputing the checksums we find that:

$$\begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 2 & + & 5 & = & 11 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 9 & + & 21 & = & 43 \end{pmatrix}$$
 Checksums match \bigcirc

Can detect **two** errors and correct **on**

Proba models

Forward-recovery

Conclusion

ABFT and silent data corruption

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix} \qquad \begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 3 & + & 5 & = & 12 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 10 & + & 21 & = & 44 \end{pmatrix}$$

Both checksums are affected, giving out the location of the error. We solve:

$$4 + x + 5 = 11 \qquad 1 + x + 6 = 9$$

Recomputing the checksums we find that:

$$\begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 2 & + & 5 & = & 11 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 9 & + & 21 & = & 43 \end{pmatrix}$$
 Checksums match \bigcirc

Can detect **two** errors and correct **one**

Proba models

Forward-recovery

Conclusion

ABFT and silent data corruption

$$M = \begin{pmatrix} 5 & 1 & 7 & 13 \\ 4 & 3 & 5 & 11 \\ 4 & 6 & 9 & 19 \\ 13 & 9 & 21 & 43 \end{pmatrix} \qquad \begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 3 & + & 5 & = & 12 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 10 & + & 21 & = & 44 \end{pmatrix}$$

Both checksums are affected, giving out the location of the error. We solve:

$$4 + x + 5 = 11$$
 $1 + x + 6 = 9$

Recomputing the checksums we find that:

$$\begin{pmatrix} 5 & + & 1 & + & 7 & = & 13 \\ 4 & + & 2 & + & 5 & = & 11 \\ 4 & + & 6 & + & 9 & = & 19 \\ 13 & + & 9 & + & 21 & = & 43 \end{pmatrix}$$
 Checksums match $\textcircled{\odot}$

Can detect two errors and correct one

 Buddy
 Proba models 2
 Forward-recovery

 ABFT for Matrix-Matrix multiplication

Aim: Computation of $C = A \times B$

Let $e^T = [1, 1, \cdots, 1]$, we define

$$A^{c} := \begin{pmatrix} A \\ e^{T}A \end{pmatrix}, B^{r} := \begin{pmatrix} B & Be \end{pmatrix}, C^{f} := \begin{pmatrix} C & Ce \\ e^{T}C & e^{T}Ce \end{pmatrix}.$$

Where A^c is the column checksum matrix, B^r is the row checksum matrix and C^f is the full checksum matrix.

$$A^{c} \times B^{r} = \begin{pmatrix} A \\ e^{T}A \end{pmatrix} \times \begin{pmatrix} B & Be \end{pmatrix}$$
$$= \begin{pmatrix} AB & ABe \\ e^{T}AB & e^{T}ABe \end{pmatrix} = \begin{pmatrix} C & Ce \\ e^{T}C & e^{T}Ce \end{pmatrix} = C^{f}$$

Conclusion

Buddy Proba models 2 Forward-recovery 00000000 ABFT for Matrix-Matrix multiplication

Aim: Computation of $C = A \times B$

Let
$$e^T = [1, 1, \cdots, 1]$$
, we define

$$A^{c} := \begin{pmatrix} A \\ e^{T}A \end{pmatrix}, B^{r} := \begin{pmatrix} B & Be \end{pmatrix}, C^{f} := \begin{pmatrix} C & Ce \\ e^{T}C & e^{T}Ce \end{pmatrix}.$$

Where A^c is the column checksum matrix, B^r is the row checksum matrix and C^f is the full checksum matrix.

$$A^{c} \times B^{r} = \begin{pmatrix} A \\ e^{T}A \end{pmatrix} \times \begin{pmatrix} B & Be \end{pmatrix}$$
$$= \begin{pmatrix} AB & ABe \\ e^{T}AB & e^{T}ABe \end{pmatrix} = \begin{pmatrix} C & Ce \\ e^{T}C & e^{T}Ce \end{pmatrix} = C^{f}$$

- When do errors strike? Are all data always protected?
- Computations are approximate because of floating-point rounding
- Error detection and error correction capabilities depend on the number of checksum rows and columns

Buddy	Proba models 2 00	Forward-recovery	Conclusion
Outline			

In-memory checkpointing

Probabilistic models for advanced methods

Forward-recovery techniques

Introduction: Matrix-Matrix Multiplication

ABFT for Linear Algebra applications

Composite approach: ABFT & Checkpointing

<ロ> (日) (日) (日) (日) (日)

æ
Proba models

Forward-recovery

Conclusion

Example: block LU factorization

- Solve $A \cdot x = b$ (hard)
- Transform A into a LU factorization
- Solve $L \cdot y = b$, then $U \cdot x = y$

Buddy Proba models 2 Forward-recovery 00 0000000 Conclusion

Example: block LU factorization

TRSM - Update row block

- Solve $A \cdot x = b$ (hard)
- Transform A into a LU factorization

• Solve
$$L \cdot y = b$$
, then $U \cdot x = y$

Proba models

Forward-recovery

Conclusion

Example: block LU factorization

TRSM - Update row block

- Solve $A \cdot x = b$ (hard)
- Transform A into a LU factorization

• Solve
$$L \cdot y = b$$
, then $U \cdot x = y$

Proba models

Forward-recovery

Conclusion

Example: block LU factorization

- 2D Block Cyclic Distribution (here 2×3)
- A single failure \Rightarrow many data lost

(日本) (日本) (日本)

 Buddy
 Proba models 2
 Forward-recovery 00000000

 Algorithm Based Fault Tolerant LU decomposition

- Checksum: invertible operation on the data of the row / column
 - Checksum blocks are doubled, to allow recovery when data and checksum are lost together

- 一司

Proba models 2

Forward-recovery

Conclusion

Algorithm Based Fault Tolerant LU decomposition

- Checksum: invertible operation on the data of the row / column
 - Checksum replication can be avoided by dedicating computing resources to checksum storage

Anne.Benoit@ens-lyon.fr

Proba models 2

Forward-recovery

Conclusion

00

Algorithm Based Fault Tolerant LU decomposition

• Checkpoint the next set of Q-Panels to be able to return to it in case of failures

Anne.Benoit@ens-lyon.fr

• Idea of ABFT: applying the operation on data and checksum preserves the checksum properties

• For the part of the data that is not updated this way, the checksum must be re-calculated

• To avoid slowing down all processors and panel operation, group checksum updates every *Q* block columns

• To avoid slowing down all processors and panel operation, group checksum updates every *Q* block columns

• To avoid slowing down all processors and panel operation, group checksum updates every Q block columns

• Then, update the missing coverage. Keep checkpoint block column to cover failures during that time

Proba models 2

Forward-recovery

Conclusion

Algorithm Based Fault Tolerant LU decomposition

In case of failure, conclude the operation, then
 Missing Data = Checksum - Sum(Existing Data)

Proba models

Forward-recovery

Conclusion

Algorithm Based Fault Tolerant LU decomposition

In case of failure, conclude the operation, then
 Missing Checksum = Sum(Existing Data)

Proba models

Forward-recovery

Conclusion

Failure inside a Q-panel factorization

• Failures may happen while inside a Q-panel factorization

	Anne.	Benoit(0ens-l∙	von.fr
--	-------	---------	---------	--------

- 一司

Proba models

Forward-recovery

Conclusion

Failure inside a Q-panel factorization

 Valid Checksum Information allows to recover most of the missing data, but not all: the checksum for the current Q-panels are not valid

Proba models

Forward-recovery

Conclusion

Failure inside a Q-panel factorization

"Chookpoint"				А
Спескропп				
	0			А
	1	3	5	В

• We use the checkpoint to restore the *Q*-panel in its initial state

Proba models

Forward-recovery

Conclusion

Failure inside a Q-panel factorization

"Chookpoint"				
Спескропп				
	0			А
	1	3	5	

• and re-execute that part of the factorization, without applying outside of the scope

Proba models

Forward-recovery

Conclusion

ABFT LU decomposition: implementation

MPI Implementation

- PBLAS-based: need to provide "Fault-Aware" version of the library
- Cannot enter recovery state at any point in time: need to complete ongoing operations despite failures
 - Recovery starts by defining the position of each process in the factorization and bring them all in a consistent state (checksum property holds)
- Need to test the return code of each and every MPI-related call

Proba models

Forward-recovery

Conclusion

ABFT QR decomposition: performance

MPI-Next ULFM Performance

• Open MPI with ULFM; Kraken supercomputer;

Proba models

Forward-recovery

Conclusion

ABFT LU decomposition: performance

MPI-Next ULFM Performance

• Open MPI with ULFM; Kraken supercomputer;

(日) (同) (三) (三)

Proba models

Forward-recovery

Conclusion

ABFT QR decomposition: performance

Outline

In-memory checkpointing

Probabilistic models for advanced methods

Forward-recovery techniques

Introduction: Matrix-Matrix Multiplication

- ABFT for Linear Algebra applications
- Composite approach: ABFT & Checkpointing

イロト イヨト イヨト イヨト

æ

Forward-recovery

Fault tolerance techniques

General techniques

- Replication
- Rollback recovery
 - Coordinated checkpointing
 - Uncoordinated checkpointing & Message logging
 - Hierarchical checkpointing

Application-specific techniques

- Algorithm Based Fault Tolerance (ABFT)
- Iterative convergence
- Approximated computation

Forward-recovery 00000000

Application

I IBDADY Phase GENERAL Phase Process 0 Application l ibrary Process 1 Application l ihrany Application Library

- Large part of (total) computation spent in factorization/solve
 - Between LA operations:
 - 🙁 use resulting vector / matrix with operations that do not preserve the checksums on
 - 🙁 modify data not covered by ABFT algorithms

ヘロマ ヘヨマ ヘヨマ ヘ

Anne.Benoit@ens-lyon.fr

Buddv				
	к	 а	C	
	_		~	

Forward-recovery

ABFT&PERIODICCKPT

(日) (周) (三) (三)

æ

Proba mode

Forward-recovery

ABFT&PERIODICCKPT

ABFT&PERIODICCKPT: failure during LIBRARY phase

< 4 ► >

э

B ▶ < B ▶

Proba mode

Forward-recovery

Conclusion

ABFT&PERIODICCKPT

ABFT&PERIODICCKPT: failure during GENERAL phase Process 0 Application Library Process 1 Application Library Process 2 Application Library Failure (during GENERAL) Rollback (fulll) Recovery

(日) (周) (三) (三)

э

- If the duration of the LIBRARY phase is too small: don ABFT recovery, remain in GENERAL mode
 - this assumes a performance model for the library call

$ABFT\&PERIODICCKPT: \ \textbf{Optimizations}$

- If the duration of the GENERAL phase is too small: don't add checkpoints
- If the duration of the LIBRARY phase is too small: don't do ABFT recovery, remain in GENERAL mode
 - this assumes a performance model for the library call

Forward-recovery

A few notations

Times, Periods

 $T_{0}: \text{ Duration of an Epoch (without FT)}$ $T_{L} = \alpha T_{0}: \text{ Time spent in the LIBRARY phase}$ $T_{G} = (1 - \alpha) T_{0}: \text{ Time spent in the GENERAL phase}$ $P_{G}: \text{ Periodic Checkpointing Period}$ $T_{G}^{\text{ff}}, T_{G}^{\text{ff}}, T_{L}^{\text{ff}}: \text{ "Fault Free" times}$ $t_{G}^{\text{lost}}, t_{L}^{\text{lost}}: \text{ Lost time (recovery overhreads)}$ $T_{G}^{\text{final}}, T_{L}^{\text{final}}: \text{ Total times (with faults)}$

(日) (同) (三) (三)

A few notations

Costs

 $C_L = \rho C$: time to take a checkpoint of the LIBRARY data set $C_{\bar{L}} = (1 - \rho)C$: time to take a checkpoint of the GENERAL data set

 $R, R_{\overline{L}}$: time to load a full / GENERAL data set checkpoint D: down time (time to allocate a new machine / reboot) Recons_{ABFT}: time to apply the ABFT recovery ϕ : Slowdown factor on the LIBRARY phase, when applying ABFT

Buddy	Proba models 2	Forward-recovery	Conclusion
		0000000	
• ···			
Overall			
Overall			

Overall

Time (with overheads) of LIBRARY phase is constant (in P_G):

$$T_L^{\mathsf{final}} = rac{1}{1 - rac{D + R_{\tilde{L}} + \mathsf{Recons}_{\mathsf{ABFT}}}{\mu}} imes (lpha imes T_L + \mathcal{C}_L)$$

Time (with overehads) of GENERAL phase accepts two cases:

$$T_{G}^{\text{final}} = \begin{cases} \frac{1}{1 - \frac{D + R + \frac{T_{G} + C_{\tilde{L}}}{2}}{\mu_{G}}} \times (T_{G} + C_{L}) & \text{if } T_{G} < P_{G} \\ \frac{\mu_{T_{G}}}{(1 - \frac{C}{P_{G}})(1 - \frac{D + R + \frac{P_{G}}{2}}{\mu})} & \text{if } T_{G} \ge P_{G} \end{cases}$$

Which is minimal in the second case, if

$$P_{G} = \sqrt{2C(\mu - D - R)}$$
		k	6	Ы		R
Duuuv	v		u	u	u	

Waste

From the previous, we derive the waste, which is obtained by

$$\text{WASTE} = 1 - \frac{T_0}{T_G^{\text{final}} + T_L^{\text{final}}}$$

æ

ヨト イヨト

 Buddy
 Proba models 2
 Forward-recovery 00000000
 Conclusion

 Toward Exascale, and beyond!
 Forward Exascale, and beyond = Forward = Forward

Let's think at scale

- Number of components $\nearrow \Rightarrow \mathsf{MTBF} \searrow$
- Number of components \nearrow Problem size \nearrow
- Problem size $\nearrow \Rightarrow$

Computation time spent in LIBRARY phase \nearrow

ABFT&PERIODICCKPT should perform better with scale
By how much?

Competitors

FT algorithms compared

PeriodicCkpt Basic periodic checkpointing

Bi-PeriodicCkpt Applies incremental checkpointing techniques to save only the library data during the library phase

ABFT&PeriodicCkpt The algorithm described above

Weak Scale #1

Weak Scale Scenario #1

- Number of components, *n*, increase
- Memory per component remains constant
- Problem size increases in $O(\sqrt{n})$ (e.g. matrix operation)

•
$$\mu$$
 at $n = 10^5$: 1 day, is in $O(\frac{1}{n})$

•
$$C$$
 (= R) at $n = 10^5$, is 1 minute, is in $O(n)$

•
$$\alpha$$
 is constant at 0.8, as is ρ .

(both $\ensuremath{\mathrm{LIBRARY}}$ and $\ensuremath{\mathrm{GENERAL}}$ phase increase in time at the same speed)

Buddv	D			
Duuuv	к	 а	C	1
		~	~	

Proba models

Forward-recovery

Weak Scale #1

Weak Scale Scenario #2

Weak Scale #2

- Number of components, n, increase
- Memory per component remains constant
- Problem size increases in $O(\sqrt{n})$ (e.g. matrix operation)

•
$$\mu$$
 at $n=10^5$: 1 day, is $O(rac{1}{n})$

- C (=R) at $n = 10^5$, is 1 minute, is in O(n)
- ρ remains constant at 0.8, but LIBRARY phase is $O(n^3)$ when GENERAL phases progresses in $O(n^2)$ (α is 0.8 at $n = 10^5$ nodes).

Buddy

Forward-recovery

Weak Scale <u>#2</u>

э

Weak Scale Scenario #3

Weak Scale #3

- Number of components, *n*, increase
- Memory per component remains constant
- Problem size increases in $O(\sqrt{n})$ (e.g. matrix operation)

•
$$\mu$$
 at $n=10^5$: 1 day, is $O(rac{1}{n})$

- C (=R) at n = 10⁵, is 1 minute, stays independent of n (O(1))
- ρ remains constant at 0.8, but LIBRARY phase is $O(n^3)$ when GENERAL phases progresses in $O(n^2)$ (α is 0.8 at $n = 10^5$ nodes).

Buddv				
Duuuv	R	10	10	
	υı	10	ı.	

Proba models

Forward-recovery

Weak Scale #3

Buddy	Proba models 2 00	Forward-recovery 0000000	Conclusion
Outline			

- Probabilistic models for advanced methor
- Forward-recovery techniques

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

Buddy	Proba models 2 00	Forward-recovery 0000000	Conclusion
Leitmotiv			

Resilient research on resilience

Models needed to assess techniques at scale without bias 🙂

э

Buddy	Proba models 2 00	Forward-recovery 0000000	Conclusion
Conclusion			

- Multiple approaches to Fault Tolerance
- Application-Specific Fault Tolerance will always provide more benefits:
 - Checkpoint Size Reduction (when needed)
 - Portability (can run on different hardware, different deployment, etc..)
 - Diversity of use (can be used to restart the execution and change parameters in the middle)

Buddy	Proba models 2	Forward-recovery	Conclusion
		0000000	
Conclusion			
Conclusion			

- Multiple approaches to Fault Tolerance
- General Purpose Fault Tolerance is a required feature of the platforms
 - Not every computer scientist needs to learn how to write fault-tolerant applications
 - Not all parallel applications can be ported to a fault-tolerant version
- Faults are a feature of the platform. Why should it be the role of the programmers to handle them?

Conclusion

Application-Specific Fault Tolerance

- Fault Tolerance is introducing redundancy in the application
 - replication of computation
 - maintaining invariant in the data
- Requirements of a more Fault-friendly programming environment
 - MPI-Next evolution
 - Other programming environments?

Conclusion

General Purpose Fault Tolerance

- Software/hardware techniques to reduce checkpoint, recovery, migration times and to improve failure prediction
- Multi-criteria scheduling problem execution time/energy/reliability add replication best resource usage (performance trade-offs)
- Need combine all these approaches!

Several challenging algorithmic/scheduling problems $\textcircled{\odot}$

Buddy	oo	ooooooo	Conclusion
Bibliography			
Exascale			

- Toward Exascale Resilience, Cappello F. et al., IJHPCA 23, 4 (2009)
- The International Exascale Software Roadmap, Dongarra, J., Beckman, P. et al., IJHPCA 25, 1 (2011)

ABFT Algorithm-based fault tolerance applied to high performance computing, Bosilca G. et al., JPDC 69, 4 (2009)

Coordinated Checkpointing Distributed snapshots: determining global states of distributed systems, Chandy K.M., Lamport L., ACM Trans. Comput. Syst. 3, 1 (1985)

Message Logging A survey of rollback-recovery protocols in message-passing systems, Elnozahy E.N. et al., ACM Comput. Surveys 34, 3 (2002)

Replication Evaluating the viability of process replication reliability for exascale systems, Ferreira K. et al, SC'2011

Models

- Checkpointing strategies for parallel jobs, Bougeret M. et al., SC'2011
- \bullet Unified model for assessing checkpointing protocols at extreme-scale, Bosilca G et al., INRIA RR-7950, 2012

A D A D A D A

Bibliography

New Monograph, Springer Verlag 2015

Thanks Yves Robert, Thomas Hérault, George Bosilca, Aurélien Bouteiller and Frédéric Vivien for the slides (SC'15 tutorial, JLESC'16 summer school)