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Replication

Systematic replication: efficiency < 50%

Can replication+checkpointing be more efficient than
checkpointing alone?

Study by Ferreira et al. [SC’2011]: yes
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Model by Ferreira et al. [SC’ 2011]

Parallel application comprising N processes

Platform with ptotal = 2N processors

Each process replicated → N replica-groups

When a replica is hit by a failure, it is not restarted

Application fails when both replicas in one replica-group have
been hit by failures
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Correct analogy

� � � � . . . �
1 2 3 4 . . . n

⇑
• • • • • • • • • • • . . .

N bins, red and blue balls

Mean Number of Failures to Interruption (bring down application)
MNFTI = expected number of balls to throw

until one bin gets one ball of each color
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Exponential failures

Theorem: MNFTI = E(NFTI |0) where

E(NFTI |nf ) =

{
2 if nf = N,

2N
2N−nf + 2N−2nf

2N−nf E (NFTI |nf + 1) otherwise.

E(NFTI |nf ): expectation of number of failures to kill application,
knowing that
• application is still running
• failures have already hit nf different replica-groups

How do we obtain this result?
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Comparison

2N processors, no replication

ThroughputStd = 2N(1−Waste) = 2N
(

1−
√

2C
µ2N

)
N replica-pairs

ThroughputRep = N
(

1−
√

2C
µrep

)
µrep = MNFTI × µ2N = MNFTI × µ

2N

Platform with 2N = 220 processors ⇒ MNFTI = 1284.4
µ = 10 years ⇒ better if C shorter than 6 minutes

Anne.Benoit@ens-lyon.fr CR02 Fault tolerance (3) 11/ 58



Buddy Proba models 2 Forward-recovery Conclusion

Failure distribution
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(b) Weibull, k = 0.7

Crossover point for replication when µind = 125 years
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Weibull distribution with k = 0.7

Dashed line: Ferreira et al. Solid line: Correct analogy
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Study by Ferrreira et al. favors replication

Replication beneficial if small µ + large C + big ptotal
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Generic vs. Application specific approaches

Generic solutions

Universal

Very low prerequisite

One size fits all (pros and cons)

Application specific solutions

Requires (deep) study of the application/algorithm

Tailored solution: higher efficiency
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Backward Recovery vs. Forward Recovery

Backward Recovery

Rollback / Backward Recovery: returns in the history to
recover from failures

Spends time to re-execute computations

Rebuilds states already reached

Typical: checkpointing techniques
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Backward Recovery vs. Forward Recovery

Forward Recovery

Forward Recovery: proceeds without returning

Pays additional costs during (failure-free) computation to
maintain consistent redundancy

Or pays additional computations when failures happen

General technique: Replication

Application-Specific techniques: Iterative algorithms with
fixed point convergence, ABFT, ...
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Algorithm Based Fault Tolerance (ABFT)

Principle

Limited to Linear Algebra computations

Matrices are extended with rows and/or columns of checksums

M =

5 1 7 13
4 3 5 12
4 6 9 19


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ABFT and fail-stop errors

Missing checksum data

M =

5 1 7 13
4 3 5
4 6 9 19


Simple recomputation: 4+3+5 = 12.

Missing original data

M =

5 1 7 13
4 5 12
4 6 9 19


Simple recomputation: 12-(4+5) = 3.
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ABFT and silent data corruption

M =

5 1 7 13
4 3 5 13
4 6 9 19


Error detection: 4 + 3 + 5 6= 13
Limitations

The following matrix would have successfully passed the
sanity check:

M =

5 1 7 13
5 3 5 13
4 6 9 19


Can detect one error and correct zero.
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ABFT and silent data corruption

One row and one column of checksums

M =


5 1 7 13
4 3 5 11
4 6 9 19

13 9 21 43


Checksum recomputation to look for silent data corruptions:

5 + 1 + 7 = 13
4 + 3 + 5 = 12
4 + 6 + 9 = 19

13 + 10 + 21 = 44


Checksums do not match !
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ABFT and silent data corruption

M =


5 1 7 13
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

5 + 1 + 7 = 13
4 + 3 + 5 = 12
4 + 6 + 9 = 19

13 + 10 + 21 = 44
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Both checksums are affected, giving out the location of the error.
We solve:

4 + x + 5 = 11 1 + x + 6 = 9

Recomputing the checksums we find that:
5 + 1 + 7 = 13
4 + 2 + 5 = 11
4 + 6 + 9 = 19

13 + 9 + 21 = 43

 Checksums match ,

Can detect two errors and correct one
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ABFT for Matrix-Matrix multiplication

Aim: Computation of C = A× B

Let eT = [1, 1, · · · , 1], we define

Ac :=

(
A

eTA

)
, B r :=

(
B Be

)
, C f :=

(
C Ce

eTC eTCe

)
.

Where Ac is the column checksum matrix, B r is the row checksum
matrix and C f is the full checksum matrix.

Ac × B r =

(
A

eTA

)
×
(
B Be

)
=

(
AB ABe

eTAB eTABe

)
=

(
C Ce

eTC eTCe

)
= C f
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In practice... things are more complicated!

When do errors strike? Are all data always protected?

Computations are approximate because of floating-point
rounding

Error detection and error correction capabilities depend on the
number of checksum rows and columns
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Example: block LU factorization

A A'

U

L

U

Solve A · x = b (hard)

Transform A into a LU factorization

Solve L · y = b, then U · x = y
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U U

L

U
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TRSM - Update row block

GEMM: Update
the trailing

matrix

L

U
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Example: block LU factorization

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2
1 3
0 2
1 3
0 2
1 3
0 2
1 3

Failure of rank 2

2D Block Cyclic Distribution (here 2× 3)

A single failure ⇒ many data lost
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Algorithm Based Fault Tolerant LU decomposition

M

P
mb

nb
Q

N
< 2N/Q + nb

+
+
+

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

4
5

0 2
1 3

Checksum: invertible operation on the data of the row /
column

Checksum blocks are doubled, to allow recovery when data
and checksum are lost together
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Algorithm Based Fault Tolerant LU decomposition

M

P mb

nb
Q

N
N/Q

+
+
+

0 2 4
1 3 5

0 2 4
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0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 A
1 3 B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

0 2 4
1 3 5

0 2 4
1 3 5

0 2
1 3

Checksum: invertible operation on the data of the row /
column

Checksum replication can be avoided by dedicating computing
resources to checksum storage
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Algorithm Based Fault Tolerant LU decomposition

M

P mb

nb
Q

N
N/Q

+
+
+

“Checkpoint”

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

A
B

A A
B B

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

1 3 5
0 2 4
1 3 5
0 2 4
1 3 5

B
A
B
A
B

Checkpoint the next set of Q-Panels to be able to return to it
in case of failures
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Algorithm Based Fault Tolerant LU decomposition
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0 2 A
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A A
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0 2 4
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0 2 4
1 3 5

0 2 A
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A A
B B

GETF2 GEMM

TRSM

Idea of ABFT: applying the operation on data and checksum
preserves the checksum properties
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Algorithm Based Fault Tolerant LU decomposition

+
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For the part of the data that is not updated this way, the
checksum must be re-calculated
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Algorithm Based Fault Tolerant LU decomposition
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GETF2 GEMM

TRSM

To avoid slowing down all processors and panel operation,
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Algorithm Based Fault Tolerant LU decomposition
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Algorithm Based Fault Tolerant LU decomposition
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Algorithm Based Fault Tolerant LU decomposition
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Then, update the missing coverage. Keep checkpoint block
column to cover failures during that time
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Algorithm Based Fault Tolerant LU decomposition
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In case of failure, conclude the operation, then

Missing Data = Checksum - Sum(Existing Data)
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Algorithm Based Fault Tolerant LU decomposition
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In case of failure, conclude the operation, then

Missing Checksum = Sum(Existing Data)
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Failure inside a Q−panel factorization
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Failures may happen while inside a Q−panel factorization
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Failure inside a Q−panel factorization
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Valid Checksum Information allows to recover most of the
missing data, but not all: the checksum for the current
Q−panels are not valid
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Failure inside a Q−panel factorization
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We use the checkpoint to restore the Q−panel in its initial
state
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Failure inside a Q−panel factorization
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and re-execute that part of the factorization, without applying
outside of the scope
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ABFT LU decomposition: implementation

MPI Implementation

PBLAS-based: need to provide “Fault-Aware” version of the
library

Cannot enter recovery state at any point in time: need to
complete ongoing operations despite failures

Recovery starts by defining the position of each process in the
factorization and bring them all in a consistent state
(checksum property holds)

Need to test the return code of each and every MPI-related
call
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ABFT QR decomposition: performance
0:22 A. Bouteiller, T. Herault, G. Bosilca, P. Du, and J. Dongarra
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Fig. 11. Weak scalability of FT-QR: run time overhead on Kraken when failures strike

local snapshots have to be used along with re-factorization to recover the lost data and
restore the matrix state. This is referred to as the ”failure within Q panels.”

Figure 10 shows the overhead from these two cases for the LU factorization, along
with the no-error overhead as a reference. In the “border” case, the failure is simulated
to strike when the 96th panel (which is a multiple of grid columns, 6, 12, · · · , 48) has just
finished. In the “non-border” case, failure occurs during the (Q + 2)th panel factoriza-
tion. For example, when Q = 12, the failure is injected when the trailing update for the
step with panel (1301,1301) finishes. From the result in Figure 10, the recovery pro-
cedure in both cases adds a small overhead that also decreases when scaled to large
problem size and process grid. For largest setups, only 2-3 percent of the execution
time is spent recovering from a failure.

7.4. Extension to Other factorization
The algorithm proposed in this work can be applied to a wide range of dense matrix
factorizations other than LU. As a demonstration we have extended the fault toler-
ance functions to the ScaLAPACK QR factorization in double precision. Since QR uses
a block algorithm similar to LU (and also similar to Cholesky), the integration of fault
tolerance functions is mostly straightforward. Figure 11 shows the performance of QR
with and without recovery. The overhead drops as the problem and grid size increase,
although it remains higher than that of LU for the same problem size. This is expected:
as the QR algorithm has a higher complexity than LU ( 4

3N3 v.s. 2
3N3), the ABFT ap-

proach incurs more extra computation when updating checksums. Similar to the LU
result, recovery adds an extra 2% overhead. At size 160,000 a failure incurs about
5.7% penalty to be recovered. This overhead becomes lower, the larger the problem or
processor grid size considered.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 0, Article 0, Publication date: January 2013.
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ABFT LU decomposition: performance

As supercomputers grow ever larger in scale, the Mean Time to Failure becomes shorter and shorter, making the complete and 
successful execution of complex applications more and more difficult. FT-LA delivers a new approach, utilizing Algorithm-Based 
Fault Tolerance (ABFT), to help factorization algorithms survive fail-stop failures. The FT-LA software package extends 
ScaLAPACK with ABFT routines, and in sharp contrast with legacy checkpoint-based approaches, ABFT does not incur I/O overhead, 
and promises a much more scalable protection scheme.

ABFT THE IDEA

Cost of ABFT comes only from 
extra flops (to update checksums) 
and extra storage

Cost decreases with machine 
scale (divided by Q when using 
PxQ processes)

PROTECTION

Matrix protected by block row checksum

The algorithm updates both the 
trailing matrix AND the checksums

RECOVERY

Missing blocks reconstructed by inverting 
the checksum operation

FUNCTIONALITY COVERAGE

Linear Systems of Equations

Least Squares

Cholesky, LU 

QR (with protection of the upper and lower factors)

FEATURES

WORK IN PROGRESS

Covering four precisions: double complex, single complex, double real, single real (ZCDS)

Deploys on MPI FT draft (ULFM), or with “Checkpoint-on-failure”

Allows toleration of permanent crashes

Hessenber Reduction, Soft (silent) Errors

Process grid: p x q
F: simultaneous failures tolerated

 

Protection against 2 faults on 
192x192 processes => 1% overhead

Usually F << q; 
Overheads in F/q

Protection cost is inversely 
proportional to machine scale!

Computation

Memory

Flops for the checksum update

Matrix is extended with 
2F columns every q columns 

FIND OUT MORE AT http://icl.cs.utk.edu/ft-la
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ABFT QR decomposition: performance
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5.3 Checkpoint-on-Failure QR Performance

Supercomputer Performance: Figure 2 presents the performance on the Kraken
supercomputer. The process grid is 24⇥24 and the block size is 100. The CoF-QR
(no failure) presents the performance of the CoF QR implementation, in a fault-
free execution; it is noteworthy, that when there are no failures, the performance
is exactly identical to the performance of the unmodified FT-QR implementa-
tion. The CoF-QR (with failure) curves present the performance when a failure
is injected after the first step of the PDLARFB kernel. The performance of the
non-fault tolerant ScaLAPACK QR is also presented for reference.

Without failures, the performance overhead compared to the regular ScaLA-
PACK is caused by the extra computation to maintain the checksums inherent
to the ABFT algorithm [12]; this extra computation is unchanged between CoF-
QR and FT-QR. Only on runs where a failure happened do the CoF protocols
undergoe the supplementary overhead of storing and reloading checkpoints. How-
ever, the performance of the CoF-QR remains very close to the no-failure case.
For instance, at matrix size N=100,000, CoF-QR still achieves 2.86 Tflop/s after
recovering from a failure, which is 90% of the performance of the non-fault toler-
ant ScaLAPACK QR. This demonstrates that the CoF protocol enables e�cient,
practical recovery schemes on supercomputers.

Impact of Local Checkpoint Storage: Figure 3 presents the performance of the
CoF-QR implementation on the Dancer cluster with a 8 ⇥ 16 process grid. Al-
though a smaller test platform, the Dancer cluster features local storage on nodes
and a variety of performance analysis tools unavailable on Kraken. As expected
(see [12]), the ABFT method has a higher relative cost on this smaller machine.
Compared to the Kraken platform, the relative cost of CoF failure recovery is
smaller on Dancer. The CoF protocol incurs disk accesses to store and load
checkpoints when a failure hits, hence the recovery overhead depends on I/O
performance. By breaking down the relative cost of each recovery step in CoF,
Figure 4 shows that checkpoint saving and loading only take a small percentage
of the total run-time, thanks to the availability of solid state disks on every node.
Since checkpoint reloading immediately follows checkpointing, the OS cache sat-
isfy most disk access, resulting in high I/O performance. For matrices larger than

Checkpoint on Failure - MPI Performance

Open MPI; Kraken supercomputer;
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Outline

1 In-memory checkpointing

2 Probabilistic models for advanced methods

3 Forward-recovery techniques
Introduction: Matrix-Matrix Multiplication
ABFT for Linear Algebra applications
Composite approach: ABFT & Checkpointing

4 Conclusion
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Fault tolerance techniques

General techniques

Replication

Rollback recovery

Coordinated checkpointing
Uncoordinated checkpointing &
Message logging
Hierarchical checkpointing

Application-specific techniques

Algorithm Based Fault Tolerance
(ABFT)

Iterative convergence

Approximated computation
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Application

Typical Application

f o r ( an insanenumber ) {
/∗ E x t r a c t data from
∗ s i m u l a t i o n , f i l l up
∗ m a t r i x ∗/

sim2mat ( ) ;

/∗ F a c t o r i z e matr ix ,
∗ S o l v e ∗/

d g e q r f ( ) ;
d s o l v e ( ) ;

/∗ Update s i m u l a t i o n
∗ w i t h r e s u l t v e c t o r ∗/

vec2s im ( ) ;
}

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve the checksums on
the data

/ modify data not covered by
ABFT algorithms
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Application

Typical Application

f o r ( an insanenumber ) {
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∗ S o l v e ∗/
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d s o l v e ( ) ;
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vec2s im ( ) ;
}
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Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve the checksums on
the data

/ modify data not covered by
ABFT algorithms

Goodbye ABFT?!
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Application

Typical Application

f o r ( an insanenumber ) {
/∗ E x t r a c t data from
∗ s i m u l a t i o n , f i l l up
∗ m a t r i x ∗/

sim2mat ( ) ;

/∗ F a c t o r i z e matr ix ,
∗ S o l v e ∗/

d g e q r f ( ) ;
d s o l v e ( ) ;

/∗ Update s i m u l a t i o n
∗ w i t h r e s u l t v e c t o r ∗/

vec2s im ( ) ;
}

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

LIBRARY Phase GENERAL Phase

Characteristics

, Large part of (total)
computation spent in
factorization/solve

Between LA operations:

/ use resulting vector / matrix
with operations that do not
preserve the checksums on
the data

/ modify data not covered by
ABFT algorithms

Problem Statement

How to use fault tolerant operations(∗) within a
non-fault tolerant(∗∗) application?(∗∗∗)

(*) ABFT, or other application-specific FT
(**) Or within an application that does not have the same kind of FT

(***) And keep the application globally fault tolerant...
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ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: no failure

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Periodic
Checkpoint

Split
Forced

Checkpoints
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ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: failure during Library phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during LIBRARY)

Rollback
(partial)

Recovery

ABFT
Recovery
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ABFT&PeriodicCkpt

ABFT&PeriodicCkpt: failure during General phase

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

Failure
(during GENERAL)

Rollback
(fulll)

Recovery
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ABFT&PeriodicCkpt: Optimizations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

ABFT&P
ERIO

DICC
KPT

ABFT&PeriodicCkpt: Optimizations

If the duration of the General phase is too small: don’t add
checkpoints

If the duration of the Library phase is too small: don’t do
ABFT recovery, remain in General mode

this assumes a performance model for the library call
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ABFT&PeriodicCkpt: Optimizations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

ABFT&P
ERIO

DICC
KPT

GENERAL
Checkpoint Interval

ABFT&PeriodicCkpt: Optimizations

If the duration of the General phase is too small: don’t add
checkpoints

If the duration of the Library phase is too small: don’t do
ABFT recovery, remain in General mode

this assumes a performance model for the library call
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A few notations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

T0

TG TL

PG

Times, Periods

T0: Duration of an Epoch (without FT)
TL = αT0: Time spent in the Library phase
TG = (1− α)T0: Time spent in the General phase
PG : Periodic Checkpointing Period
Tff,Tff

G ,T
ff
L : “Fault Free” times

t lost
G , t lost

L : Lost time (recovery overhreads)
T final
G ,T final

L : Total times (with faults)
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A few notations

Process 0

Process 1

Process 2

Application

Application

Application

Library

Library

Library

C CLCL

Costs

CL = ρC : time to take a checkpoint of the Library data set
CL̄ = (1− ρ)C : time to take a checkpoint of the General data
set
R,RL̄: time to load a full / General data set checkpoint
D: down time (time to allocate a new machine / reboot)
ReconsABFT: time to apply the ABFT recovery
φ: Slowdown factor on the Library phase, when applying ABFT
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Overall

Overall

Time (with overheads) of Library phase is constant (in PG ):

T final
L =

1

1− D+RL̄+ReconsABFT

µ

× (α× TL + CL)

Time (with overehads) of General phase accepts two cases:

T final
G =


1

1−D+R+
TG +C

L̄
2

µ

× (TG + CL) if TG < PG

TG

(1− C
PG

)(1−D+R+
PG

2
µ

)

if TG ≥ PG

Which is minimal in the second case, if

PG =
√

2C (µ− D − R)
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Waste

From the previous, we derive the waste, which is obtained by

Waste = 1− T0

T final
G + T final

L
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Toward Exascale, and beyond!

Let’s think at scale

Number of components ↗⇒ MTBF ↘
Number of components ↗⇒ Problem size ↗
Problem size ↗⇒

Computation time spent in Library phase ↗

, ABFT&PeriodicCkpt should perform better with scale

ĳ/ By how much?
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Competitors

FT algorithms compared

PeriodicCkpt Basic periodic checkpointing

Bi-PeriodicCkpt Applies incremental checkpointing techniques to
save only the library data during the library phase

ABFT&PeriodicCkpt The algorithm described above
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Weak Scale #1

Weak Scale Scenario #1

Number of components, n, increase

Memory per component remains constant

Problem size increases in O(
√
n) (e.g. matrix operation)

µ at n = 105: 1 day, is in O( 1
n )

C (=R) at n = 105, is 1 minute, is in O(n)

α is constant at 0.8, as is ρ.

(both Library and General phase increase in time at the
same speed)
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Weak Scale #1
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Weak Scale #2

Weak Scale Scenario #2

Number of components, n, increase

Memory per component remains constant

Problem size increases in O(
√
n) (e.g. matrix operation)

µ at n = 105: 1 day, is O( 1
n )

C (=R) at n = 105, is 1 minute, is in O(n)

ρ remains constant at 0.8, but Library phase is O(n3) when
General phases progresses in O(n2) (α is 0.8 at n = 105

nodes).
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Weak Scale #2
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Weak Scale #3

Weak Scale Scenario #3

Number of components, n, increase

Memory per component remains constant

Problem size increases in O(
√
n) (e.g. matrix operation)

µ at n = 105: 1 day, is O( 1
n )

C (=R) at n = 105, is 1 minute, stays independent of n
(O(1))

ρ remains constant at 0.8, but Library phase is O(n3) when
General phases progresses in O(n2) (α is 0.8 at n = 105

nodes).
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Weak Scale #3
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Outline

1 In-memory checkpointing

2 Probabilistic models for advanced methods

3 Forward-recovery techniques

4 Conclusion
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Leitmotiv

Resilient research on resilience

Models needed to assess techniques at scale
without bias ,
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Conclusion

Multiple approaches to Fault Tolerance

Application-Specific Fault Tolerance will always provide more
benefits:

Checkpoint Size Reduction (when needed)
Portability (can run on different hardware, different
deployment, etc..)
Diversity of use (can be used to restart the execution and
change parameters in the middle)
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Conclusion

Multiple approaches to Fault Tolerance

General Purpose Fault Tolerance is a required feature of the
platforms

Not every computer scientist needs to learn how to write
fault-tolerant applications
Not all parallel applications can be ported to a fault-tolerant
version

Faults are a feature of the platform. Why should it be the role
of the programmers to handle them?
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Conclusion

Application-Specific Fault Tolerance

Fault Tolerance is introducing redundancy in the application

replication of computation
maintaining invariant in the data

Requirements of a more Fault-friendly programming
environment

MPI-Next evolution
Other programming environments?
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Conclusion

General Purpose Fault Tolerance

Software/hardware techniques to reduce checkpoint, recovery,
migration times and to improve failure prediction

Multi-criteria scheduling problem
execution time/energy/reliability
add replication
best resource usage (performance trade-offs)

Need combine all these approaches!

Several challenging algorithmic/scheduling problems ,
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