
Scheduling computational workflows
on failure-prone platforms

Guillaume Aupy, Anne Benoit,
Henri Casanova & Yves Robert

ENS Lyon

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/~abenoit

CR02 - 2016/2017

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit

Models Results Heuristic evaluation Conclusion

Motivation

Many HPC applications can be represented as computational
workflows.

Represented by a DAG:

Vertices are tightly coupled
parallel tasks

Edges represent data
dependencies

Eg. CyberShake workflow (used to

characterize earthquake hazards) as

presented by Pegasus.

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 2/ 22

Models Results Heuristic evaluation Conclusion

Outline

1 Models
Platform
Fault-tolerance
Application

2 Results
Computation of the expected makespan
NP-hardness, polynomial algorithms for special graphs

3 Efficient heuristic evaluation
Heuristics
Evaluation

4 Conclusion

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 3/ 22

Models Results Heuristic evaluation Conclusion

Platform and processor assignments

Failure-prone platform:

p processors

Exponential failure distribution, MTBF: µ = 1
λ

Mixed parallelism is hard. Even without failures.

Assignment of processors to tasks? (throughput)

Traversal of the graph? (scheduling)

Data redistribution? (model redistribution cost)

Simplified scenario

Each task uses all available processors; workflow is linearized.

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 4/ 22

Models Results Heuristic evaluation Conclusion

Platform and processor assignments

Failure-prone platform:

p processors

Exponential failure distribution, MTBF: µ = 1
λ

Mixed parallelism is hard. Even without failures.

Assignment of processors to tasks? (throughput)

Traversal of the graph? (scheduling)

Data redistribution? (model redistribution cost)

Simplified scenario

Each task uses all available processors; workflow is linearized.

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 4/ 22

Models Results Heuristic evaluation Conclusion

Platform and processor assignments

Failure-prone platform:

p processors

Exponential failure distribution, MTBF: µ = 1
λ

Mixed parallelism is hard. Even without failures.

Assignment of processors to tasks? (throughput)

Traversal of the graph? (scheduling)

Data redistribution? (model redistribution cost)

Simplified scenario

Each task uses all available processors; workflow is linearized.

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 4/ 22

Models Results Heuristic evaluation Conclusion

Fault tolerance

We use the checkpoint technique for fault-tolerance.

Checkpointing within tasks is expensive or hard:

Expensive: for application-agnostic checkpoint, need to checkpoint
the full image

Hard: modifying the implementation of the tasks to checkpoint only
what is necessary

Checkpoint model

We only checkpoint the output data of tasks.

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 5/ 22

Models Results Heuristic evaluation Conclusion

Application model

Given a DAG: G = (V ,E). For all tasks Ti , we know:

wi : their execution time
ci : the time to checkpoint their output
ri : the time to recover their output

DAG-CkptSched

In which order should the tasks be executed?

Which tasks should be checkpointed?

We want to minimize the expected execution time.

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 6/ 22

Models Results Heuristic evaluation Conclusion

Motivational example

T0 T1

T2 T3

T4

T5

T6

T7

A solution (schedule):

Order: T0T1T2T3T4T5T6T7

Ckpted: T1,T4

Time

fault

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6 w2 w3 w7

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 7/ 22

Models Results Heuristic evaluation Conclusion

Motivational example

T0 T1

T2 T3

T4

T5

T6

T7

T0 T1

T2 T3

T4

A solution (schedule):

Order: T0T1T2T3T4T5T6T7

Ckpted: T1,T4

Time

fault

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6 w2 w3 w7

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 7/ 22

Models Results Heuristic evaluation Conclusion

Motivational example

T0 T1

T2 T3

T4

T5

T6

T7

A solution (schedule):

Order: T0T1T2T3T4T5T6T7

Ckpted: T1,T4

Time

fault

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6 w2 w3 w7

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 7/ 22

Models Results Heuristic evaluation Conclusion

Motivational example

T0 T1

T2 T3

T4

T5

T6

T7

A solution (schedule):

Order: T0T1T2T3T4T5T6T7

Ckpted: T1,T4

Time

fault

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6 w2 w3 w7

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 7/ 22

Models Results Heuristic evaluation Conclusion

Motivational example

T0 T1

T2 T3

T4

T5

T6

T7

T1

T5

A solution (schedule):

Order: T0T1T2T3T4T5T6T7

Ckpted: T1,T4

Time

fault

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6 w2 w3 w7

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 7/ 22

Models Results Heuristic evaluation Conclusion

Motivational example

T0 T1

T2 T3

T4

T5

T6

T7

T1

T5

T4

T6

A solution (schedule):

Order: T0T1T2T3T4T5T6T7

Ckpted: T1,T4

Time

fault

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6 w2 w3 w7

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 7/ 22

Models Results Heuristic evaluation Conclusion

Motivational example

T0 T1

T2 T3

T4

T5

T6

T7

T1

T5

T4

T6

T2 T3 T7

A solution (schedule):

Order: T0T1T2T3T4T5T6T7

Ckpted: T1,T4

Time

fault

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6 w2 w3 w7

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 7/ 22

Models Results Heuristic evaluation Conclusion

Outline

1 Models
Platform
Fault-tolerance
Application

2 Results
Computation of the expected makespan
NP-hardness, polynomial algorithms for special graphs

3 Efficient heuristic evaluation
Heuristics
Evaluation

4 Conclusion

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 8/ 22

Models Results Heuristic evaluation Conclusion

Previous results (Bougeret et al. 2011)

Let E[t(w; c; r)] the expected time to execute a single application:

w sec. of computation in a fault-free execution

c sec. to checkpoint the output

r sec. to recover (if a failure occurs)

E[t(w; c; r)] = eλr
(

1

λ
+ D

)(
eλ(w+c) − 1

)

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 9/ 22

Models Results Heuristic evaluation Conclusion

Theorem

Given a DAG, and a schedule for this DAG, it is possible to
compute the expected execution time in polynomial time.

Xi : execution time between the end of the first successful
execution of Ti−1 and the end of the first successful execution
of Ti (RV).

Time

X0 X1 X5 X7

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6 w2 w3 w7

We want to compute E[
∑

i Xi] =
∑

i E[Xi].

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 10/ 22

Models Results Heuristic evaluation Conclusion

Theorem

Given a DAG, and a schedule for this DAG, it is possible to
compute the expected execution time in polynomial time.

Xi : execution time between the end of the first successful
execution of Ti−1 and the end of the first successful execution
of Ti (RV).

TimeX0 X1 X5 X7

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6 w2 w3 w7

We want to compute E[
∑

i Xi] =
∑

i E[Xi].

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 10/ 22

Models Results Heuristic evaluation Conclusion

Theorem

Given a DAG, and a schedule for this DAG, it is possible to
compute the expected execution time in polynomial time.

Xi : execution time between the end of the first successful
execution of Ti−1 and the end of the first successful execution
of Ti (RV).

TimeX0 X1 X5 X7

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6 w2 w3 w7

We want to compute E[
∑

i Xi] =
∑

i E[Xi].

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 10/ 22

Models Results Heuristic evaluation Conclusion

Sketch of Proof (1/2)

Z i
k : “There was a fault during Xk and no fault during Xk+1 to Xi−1”

(= when starting Xi , the last fault was during Xk).

→ E[Xi] =
i−1∑
k=0

P(Z i
k)E[Xi |Z i

k]

T ↓ki : all Tj ’s whose output should be computed during Xi if Z i
k .

We separate their impact on the execution time into W i
k and R i

k

(depending upon whether Tj was checkpointed).

T0

T2 T3

T4

T6

T7

T1

T5

T4

T6

T4 ∈ T↓5
6 R6

5 = r4

T1,T5,T2,T3 /∈ T↓5
6

T2,T3 ∈ T↓5
7 W 7

5 = w2 + w3

Time

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 11/ 22

Models Results Heuristic evaluation Conclusion

Sketch of Proof (1/2)

Z i
k : “There was a fault during Xk and no fault during Xk+1 to Xi−1”

(= when starting Xi , the last fault was during Xk).

→ E[Xi] =
i−1∑
k=0

P(Z i
k)E[Xi |Z i

k]

T ↓ki : all Tj ’s whose output should be computed during Xi if Z i
k .

We separate their impact on the execution time into W i
k and R i

k

(depending upon whether Tj was checkpointed).

T0

T2 T3

T4

T6

T7

T1

T5

T4

T6

T4 ∈ T↓5
6 R6

5 = r4

T1,T5,T2,T3 /∈ T↓5
6

T2,T3 ∈ T↓5
7 W 7

5 = w2 + w3

Time

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 11/ 22

Models Results Heuristic evaluation Conclusion

Sketch of Proof (1/2)

Z i
k : “There was a fault during Xk and no fault during Xk+1 to Xi−1”

(= when starting Xi , the last fault was during Xk).

→ E[Xi] =
i−1∑
k=0

P(Z i
k)E[Xi |Z i

k]

T ↓ki : all Tj ’s whose output should be computed during Xi if Z i
k .

We separate their impact on the execution time into W i
k and R i

k

(depending upon whether Tj was checkpointed).

T0

T2 T3

T4

T6

T7

T1

T5

T4

T6

T4 ∈ T↓5
6 R6

5 = r4

T1,T5,T2,T3 /∈ T↓5
6

T2,T3 ∈ T↓5
7 W 7

5 = w2 + w3

Time

w0 w1 c1 w2 w3 w4 c4 r1 w5 r4 w6

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 11/ 22

Models Results Heuristic evaluation Conclusion

Sketch of Proof (2/2)

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 12/ 22

Let i , k s.t. 0 ≤ k < i − 1:

P(Z i
i−1) = 1−

i−2∑
k=0

P(Z i
k)

P(Z i
k) = e−λ

∑i−1
j=k+1(W

j
k+R j

k+wj+δjcj) · P(Z k+1
k)

Models Results Heuristic evaluation Conclusion

Sketch of Proof (2/2)

Probability of successful execution of Xk+1 to Xi−1 given that there is a
fault in Xk .

Xj = W j
k + R j

k + wj + δjcj when Z i
k

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 12/ 22

Let i , k s.t. 0 ≤ k < i − 1:

P(Z i
i−1) = 1−

i−2∑
k=0

P(Z i
k)

P(Z i
k) = e−λ

∑i−1
j=k+1(W

j
k+R j

k+wj+δjcj) · P(Z k+1
k)

Models Results Heuristic evaluation Conclusion

Sketch of Proof (2/2)

Probability that there is a fault in Xk .

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 12/ 22

Let i , k s.t. 0 ≤ k < i − 1:

P(Z i
i−1) = 1−

i−2∑
k=0

P(Z i
k)

P(Z i
k) = e−λ

∑i−1
j=k+1(W

j
k+R j

k+wj+δjcj) · P(Z k+1
k)

Models Results Heuristic evaluation Conclusion

Sketch of Proof (2/2)

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 12/ 22

Let i , k s.t. 0 ≤ k < i − 1:

P(Z i
i−1) = 1−

i−2∑
k=0

P(Z i
k)

P(Z i
k) = e−λ

∑i−1
j=k+1(W

j
k+R j

k+wj+δjcj) · P(Z k+1
k)

E[Xi |Z i
k] =

E[t
(
W i

k + R i
k + wi ; δici ; W i

i + R i
i −

(
W i

k + R i
k

))
]

Models Results Heuristic evaluation Conclusion

Sketch of Proof (2/2)

By definition of W i
k and R i

k , this is the work to be done after Z i
k .

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 12/ 22

Let i , k s.t. 0 ≤ k < i − 1:

P(Z i
i−1) = 1−

i−2∑
k=0

P(Z i
k)

P(Z i
k) = e−λ

∑i−1
j=k+1(W

j
k+R j

k+wj+δjcj) · P(Z k+1
k)

E[Xi |Z i
k] =

E[t
(
W i

k + R i
k + wi ; δici ; W i

i + R i
i −

(
W i

k + R i
k

))
]

Models Results Heuristic evaluation Conclusion

Sketch of Proof (2/2)

δi = 0 if Ti is not checkpointed, 1 otherwise

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 12/ 22

Let i , k s.t. 0 ≤ k < i − 1:

P(Z i
i−1) = 1−

i−2∑
k=0

P(Z i
k)

P(Z i
k) = e−λ

∑i−1
j=k+1(W

j
k+R j

k+wj+δjcj) · P(Z k+1
k)

E[Xi |Z i
k] =

E[t
(
W i

k + R i
k + wi ; δici ; W i

i + R i
i −

(
W i

k + R i
k

))
]

Models Results Heuristic evaluation Conclusion

Sketch of Proof (2/2)

If there is a failure during Xi , then the work to be done becomes
W i

i + R i
i + wi .

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 12/ 22

Let i , k s.t. 0 ≤ k < i − 1:

P(Z i
i−1) = 1−

i−2∑
k=0

P(Z i
k)

P(Z i
k) = e−λ

∑i−1
j=k+1(W

j
k+R j

k+wj+δjcj) · P(Z k+1
k)

E[Xi |Z i
k] =

E[t
(
W i

k + R i
k + wi ; δici ; W i

i + R i
i −

(
W i

k + R i
k

))
]

Models Results Heuristic evaluation Conclusion

Sketch of Proof (2/2)

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 12/ 22

Let i , k s.t. 0 ≤ k < i − 1:

P(Z i
i−1) = 1−

i−2∑
k=0

P(Z i
k)

P(Z i
k) = e−λ

∑i−1
j=k+1(W

j
k+R j

k+wj+δjcj) · P(Z k+1
k)

E[Xi |Z i
k] =

E[t
(
W i

k + R i
k + wi ; δici ; W i

i + R i
i −

(
W i

k + R i
k

))
]

LEMMA: We can compute W i
k and R i

k in polynomial time.

Models Results Heuristic evaluation Conclusion

Other results

Theorem (Complexity)

DAG-CkptSched for fork DAGs can be solved in linear time.
DAG-CkptSched for join DAGs is NP-complete.

Theorem

DAG-CkptSched for a join DAG where ci = c and ri = r for
all i can be solved in quadratic time.

Open Problem

Complexity of DAG-CkptSched for a general DAG where
ci = c and ri = r for all i?

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 13/ 22

Models Results Heuristic evaluation Conclusion

Other results

Theorem (Complexity)

DAG-CkptSched for fork DAGs can be solved in linear time.
DAG-CkptSched for join DAGs is NP-complete.

Theorem

DAG-CkptSched for a join DAG where ci = c and ri = r for
all i can be solved in quadratic time.

Open Problem

Complexity of DAG-CkptSched for a general DAG where
ci = c and ri = r for all i?

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 13/ 22

Models Results Heuristic evaluation Conclusion

Outline

1 Models
Platform
Fault-tolerance
Application

2 Results
Computation of the expected makespan
NP-hardness, polynomial algorithms for special graphs

3 Efficient heuristic evaluation
Heuristics
Evaluation

4 Conclusion

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 14/ 22

Models Results Heuristic evaluation Conclusion

Efficient heuristic evaluation

Designing efficient heuristics used to take:

Numerous, time-consuming and expensive stochastic
experiments on an actual platform

Numerous, time-consuming simulations with a fault-generator

Now we can simply compute the expected makespan!

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 15/ 22

Models Results Heuristic evaluation Conclusion

2-step heuristics

Linearization strategies

DF Depth First (prio tasks by decreasing outweight)

BF Breadth First (prio tasks by decreasing outweight)

RF Random First

Checkpoint strategies

CkNvr Never checkpoint
(default)

CkAlws Always checkpoint
(default)

Below: extensive search for
|checkpoint| from 1 to n − 1

CkPer “Periodic” checkpoint

CkW Prioritize large wi

CkC Prioritize small ci

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 16/ 22

Models Results Heuristic evaluation Conclusion

Methodology

We use the Pegasus Workflow Generator to generate realistic synthetic
workflows:

Montage: mosaics of the sky Average wi ≈ 10s.
Ligo: gravitational waveforms Average wi ≈ 220s.
CyberShake: earthquake hazards Average wi ≈ 25s.
Genome: genome sequence processing Average wi > 1000s.

We plot the ratio of the expected execution time (T) over the
execution time of a failure-free, checkpoint-free execution (Tinf)

No downtime

ci = ri = 0.1wi (similar for other values)

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 17/ 22

Models Results Heuristic evaluation Conclusion

Results
BF DF RF

CkNvr CkAlws CkPer CkW CkC

100 200 300 400 500 600 700
1.08

1.16

1.25

1.33

1.42

1.5

number of tasks

T / Tinf

100 200 300 400 500 600 700
1.3

1.35

1.4

1.45

1.5

1.55

number of tasks

T / Tinf

Montage: λ = 0.001 Ligo: λ = 0.001

100 200 300 400 500 600 700
1.08

1.14

1.21

1.27

1.34

1.4

number of tasks

T / Tinf

100 200 300 400 500 600 700
1.64

1.79

1.94

2.1

2.25

2.4

number of tasks

T / Tinf

CyberShake: λ = 0.001 Genome: λ = 0.0001

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 18/ 22

Models Results Heuristic evaluation Conclusion

Results
BF DF RF

CkNvr CkAlws CkPer CkW CkC

100 200 300 400 500 600 700
1.08

1.16

1.25

1.33

1.42

1.5

number of tasks

T / Tinf

100 200 300 400 500 600 700
1.3

1.35

1.4

1.45

1.5

1.55

number of tasks

T / Tinf

Montage: λ = 0.001 Ligo: λ = 0.001

100 200 300 400 500 600 700
1.08

1.14

1.21

1.27

1.34

1.4

number of tasks

T / Tinf

100 200 300 400 500 600 700
1.64

1.79

1.94

2.1

2.25

2.4

number of tasks

T / Tinf

CyberShake: λ = 0.001 Genome: λ = 0.0001

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 18/ 22

Models Results Heuristic evaluation Conclusion

Results
BF DF RF

CkNvr CkAlws CkPer CkW CkC

100 200 300 400 500 600 700
1.08

1.16

1.25

1.33

1.42

1.5

number of tasks

T / Tinf

100 200 300 400 500 600 700
1.3

1.35

1.4

1.45

1.5

1.55

number of tasks

T / Tinf

Montage: λ = 0.001 Ligo: λ = 0.001

100 200 300 400 500 600 700
1.08

1.14

1.21

1.27

1.34

1.4

number of tasks

T / Tinf

100 200 300 400 500 600 700
1.64

1.79

1.94

2.1

2.25

2.4

number of tasks

T / Tinf

CyberShake: λ = 0.001 Genome: λ = 0.0001

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 18/ 22

Models Results Heuristic evaluation Conclusion

Results
BF DF RF

CkNvr CkAlws CkPer CkW CkC

100 200 300 400 500 600 700
1.08

1.16

1.25

1.33

1.42

1.5

number of tasks

T / Tinf

100 200 300 400 500 600 700
1.3

1.35

1.4

1.45

1.5

1.55

number of tasks

T / Tinf

Montage: λ = 0.001 Ligo: λ = 0.001

100 200 300 400 500 600 700
1.08

1.14

1.21

1.27

1.34

1.4

number of tasks

T / Tinf

100 200 300 400 500 600 700
1.64

1.79

1.94

2.1

2.25

2.4

number of tasks

T / Tinf

CyberShake: λ = 0.001 Genome: λ = 0.0001

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 18/ 22

Models Results Heuristic evaluation Conclusion

Results
BF DF RF

CkNvr CkAlws CkPer CkW CkC

100 200 300 400 500 600 700
1.08

1.16

1.25

1.33

1.42

1.5

number of tasks

T / Tinf

100 200 300 400 500 600 700
1.3

1.35

1.4

1.45

1.5

1.55

number of tasks

T / Tinf

Montage: λ = 0.001 Ligo: λ = 0.001

100 200 300 400 500 600 700
1.08

1.14

1.21

1.27

1.34

1.4

number of tasks

T / Tinf

100 200 300 400 500 600 700
1.64

1.79

1.94

2.1

2.25

2.4

number of tasks

T / Tinf

CyberShake: λ = 0.001 Genome: λ = 0.0001

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 18/ 22

Models Results Heuristic evaluation Conclusion

BF is not a good heuristic for linearization

CkPer is not a good heuristic for checkpointing DAGs

DF seems to be a good heuristic for linearization

CkW, CkC seem to be good heuristics for checkpointing
(especially CkW)

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 19/ 22

Models Results Heuristic evaluation Conclusion

Outline

1 Models
Platform
Fault-tolerance
Application

2 Results
Computation of the expected makespan
NP-hardness, polynomial algorithms for special graphs

3 Efficient heuristic evaluation
Heuristics
Evaluation

4 Conclusion

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 20/ 22

Models Results Heuristic evaluation Conclusion

Conclusion

Framework: Applications are scheduled on the whole platform,
subject to IID exponentially distributed failures.

A polynomial time algorithm to compute the expected
makespan for general DAGs.

Polynomial-time algorithm for fork DAGs, some join DAGs,
intractability in the general case.

Evaluation of several heuristics on representative workflow
configurations.
→ Periodic checkpoint is not good for general DAGs.

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 21/ 22

Models Results Heuristic evaluation Conclusion

Future directions

Our key result has opened the road to designing efficient
heuristics.

On a theoretical point of view:

(i) Non-blocking checkpoint
(ii) Remove linearization assumption

Anne.Benoit@ens-lyon.fr CR02 DAG scheduling with failures 22/ 22

	Models
	Platform
	Fault-tolerance
	Application

	Results
	Computation of the expected makespan
	NP-hardness, polynomial algorithms for special graphs

	Efficient heuristic evaluation
	Heuristics
	Evaluation

	Conclusion

