Scheduling computational workflows

on failure-prone platforms

Guillaume Aupy, Anne Benoit,
Henri Casanova & Yves Robert

ENS Lyon

Anne.Benoit@ens-1lyon.fr

http://graal.ens-1lyon.fr/~abenoit

CRO2 - 2016/2017

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit

Motivation

Many HPC applications can be represented as computational
workflows.

//1\ /\\

Represented by a DAG: / 77%& W \

@ Vertices are tightly coupled N

parallel tasks

ExiractSGT () SeismogramSynthesis

o Edges represent data
dependencies

ZipSeis. PeakValCalcOkaya ZipPSA

Eg. CyberShake workflow (used to
characterize earthquake hazards) as

presented by Pegasus.

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models

Outline

© Models
@ Platform
@ Fault-tolerance
@ Application

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
Platform and processor assignments

Failure-prone platform:
@ p processors

@ Exponential failure distribution, MTBF: u = %

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
Platform and processor assignments

Failure-prone platform:
@ p processors

@ Exponential failure distribution, MTBF: u = %

Mixed parallelism is hard. Even without failures.
@ Assignment of processors to tasks? (throughput)
@ Traversal of the graph? (scheduling)

@ Data redistribution? (model redistribution cost)

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
Platform and processor assignments

Failure-prone platform:
@ p processors

@ Exponential failure distribution, MTBF: u = %

llelism is hard. Even without failur

Data redistribution? (model redistribution cost

Simplified scenario

Each task uses all available processors; workflow is linearized.

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
°

Fault tolerance

We use the checkpoint technique for fault-tolerance.

Checkpointing within tasks is expensive or hard:

@ Expensive: for application-agnostic checkpoint, need to checkpoint
the full image

@ Hard: modifying the implementation of the tasks to checkpoint only
what is necessary

Checkpoint model

We only checkpoint the output data of tasks.]

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
Application model

Given a DAG: G = (V, E). For all tasks T;, we know:

w;: their execution time
¢i: the time to checkpoint their output
ri: the time to recover their output

DAG-CKPTSCHED

@ In which order should the tasks be executed?

@ Which tasks should be checkpointed?

We want to minimize the expected execution time.

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
oe

Motivational example

° e e e A solution (schedule):
v Order: ToT1ToT3T4Ts5TeT7

Ckpted: T1, Ta

Time

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
oe

Motivational example

a a e e A solution (schedule):
v Order: To Tl T2 T3 T4T5 T@ T7

Ckpted: T1, Ta

[[mH e[~

Time

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
oe

Motivational example

° e e e A solution (schedule):
v Order: To Tl T2 T3 T4T5 T@ T7

Ckpted: T1, Ta

fault

[[wH =]~ H

Time

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
oe

Motivational example

° e e e A solution (schedule):
v Order: To Tl T2 T3 T4T5 T@ T7

Ckpted: T1, Ta

[vo [o[e T T [W

Time

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
oe

Motivational example

° a e e A solution (schedule):
v Order: To Tl T2 T3 T4T5 T@ T7

Ckpted: T1, Ta

(e[H o« W

Time

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
oe

Motivational example

° a e a A solution (schedule):
v Order: ToTiTaT3T4TsTe T

Ckpted: T1, Ta

[= o [[F > W~

Time

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Models
oe

Motivational example

° a e a A solution (schedule):
v Order: ToT1T2T3T4T5T6T7

Ckpted: T1, Ta

[= f o[[A > W~ =[]

Time

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results

Outline

© Results

@ Computation of the expected makespan
@ NP-hardness, polynomial algorithms for special graphs

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results

Previous results (Bougeret et al. 2011)

Let E[t(w; c; r)] the expected time to execute a single application:
w sec. of computation in a fault-free execution
¢ sec. to checkpoint the output

r sec. to recover (if a failure occurs)

E[t(w; c; r)] = e <§\ + D) (e)‘(WJrC) - 1)

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
®00

Given a DAG, and a schedule for this DAG, it is possible to
compute the expected execution time in polynomial time.

(o [B [[~ B W = W~ [[]

Time

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
®00

Given a DAG, and a schedule for this DAG, it is possible to
compute the expected execution time in polynomial time.

execution time between the end of the first successful
execution of T;_1 and the end of the first successful execution
of T; (RV).

|
wo Jz wy |c1| wy | w3 | wy |C4| . Ws l We | w2 | w3 | wr |
I 1 M
Xo X1 \))) Xs \) X7 \ Time

DAG scheduling with failures

Anne.Benoit@ens-lyon.fr

Results
®00

Given a DAG, and a schedule for this DAG, it is possible to
compute the expected execution time in polynomial time.

X;: execution time between the end of the first successful
execution of T;_1 and the end of the first successful execution
of T; (RV).

| | | | | |
| wo w1 |C1| w2 | w3 | wa |54| . W5 l We | w2 | w3 | wr |
1 1
. ! ! ! Xs . !

X7 , Time

CXe voX
We want to compute E[Y . Xi] = >, E[Xj].

DAG scheduling with failures

Anne.Benoit@ens-lyon.fr

Results
oY 1]

Sketch of Proof (1/2)

Z,i: “There was a fault during Xy and no fault during Xy1 to Xj_1"
(= when starting X;, the last fault was during Xy).

i—1

— E[X] =) _P(Z)E[X|Z]]
k=0

Time

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
oY 1]

Sketch of Proof (1/2)

Z,i: “There was a fault during Xy and no fault during Xy1 to Xj_1"
(= when starting X;, the last fault was during Xy).
i—1
- E[X] =) P(Z)E[X;|Z]]
k=0

T all T;'s whose output should be computed during X; if Z,’(‘
We separate their impact on the execution time into W, and R,
(depending upon whether T; was checkpointed).

®
@3

wi fa] v [ws [v [v

Anne.Benoit@ens-lyon.fr

T.€TY Ré=n
T, Ts, T2, T3 ¢ Tg®

Time

DAG scheduling with failures

Results
oY 1]

Sketch of Proof (1/2)

Z,i: “There was a fault during Xy and no fault during Xy1 to Xj_1"
(= when starting X;, the last fault was during Xy).
i—1
- E[X] =) P(Z)E[X;|Z]]
k=0

T all T;'s whose output should be computed during X; if Z,’(‘
We separate their impact on the execution time into W, and R,
(depending upon whether T; was checkpointed).

@) Ga (%)
W T T3eTy W =w+ws

wi fa] v [ws [v [v s

Anne.Benoit@ens-lyon.fr

Time

DAG scheduling with failures

Results
ooe

Sketch of Proof (2/2)

@ letikst. 0<k<i—1:

i—2
P(Zl_y)=1-) P(Z)
k=0

P(Zi) = e Ziren(WitRitwitog) | p(zksly

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
ooe

Sketch of Proof (2/2)

@ letikst. 0<k<i—1:

i—2
P(Z) =1-) P(Z)
k=0
P(Zi) = e ta(WiRivwise) | p(zie)

Probability of successful execution of Xy,1 to X;_1 given that there is a
fault in Xj. . . .
Xj = W + R, + w; + djc; when Z;

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
ooe

Sketch of Proof (2/2)

@ letikst. 0<k<i—1:

i—2
P(Zl_y)=1-) P(Z)
k=0

P(Zi) = e Ziren(WitRitwitog) | p(zktl)

Probability that there is a fault in X.

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
ooe

Sketch of Proof (2/2)

@ letikst. 0<k<i—1:
. ’_2 .
P(Zl,)=1-) P(Z)
k=0
P(Zi) = e Ziren(WitRitwitog) | p(zksly

o E[Xi|Z]] =
E[t(Wi+ R +wi ; dici; Wi+ Rl — (W +R]))]

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
ooe

Sketch of Proof (2/2)

@ letikst. 0<k<i—1:
. ’_2 .
P(Zl,)=1-) P(Z)
k=0
P(Zi) = e Ziren(WitRitwitog) | p(zksly

o E[X|Z]] =
E[t(Wi+ R +wi ; dici; Wi+ Rl — (W] + R]))]

By definition of W/ and R, this is the work to be done after Z;.

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
ooe

Sketch of Proof (2/2)

@ letikst. 0<k<i—1:
. ’_2 .
P(Zl,)=1-) P(Z)
k=0
P(Zi) = e Ziren(WitRitwitog) | p(zksly

o E[Xi|Z]] =
E[t(Wi+ R +wi ; dici; Wi+ Rl — (W] + R]))]

6; = 0 if T; is not checkpointed, 1 otherwise

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
ooe

Sketch of Proof (2/2)

@ letikst. 0<k<i—1:
. ’_2 .
P(Zl,)=1-) P(Z)
k=0
P(Zi) = e Ziren(WitRitwitog) | p(zksly

o E[Xi|Z]] =
E[t(Wi+ R+ wi ; dici; Wi+ R — (W + R]))]

If t_here [s a failure during X;, then the work to be done becomes
VV,-' + R" =+ w;.

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
ooe

Sketch of Proof (2/2)

@ letikst. 0<k<i—1:
. ’_2 .
P(Zl,)=1-) P(Z)
k=0
P(Zi) = e Ziren(WitRitwitog) | p(zksly

o E[Xi|Z]] =
E[t(Wi+ R +wi ; dici; Wi+ Rl — (W +R]))]

@ LEMMA: We can compute W and R} in polynomial time. [J

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
°

Other results

Theorem (Complexity)

DAG-CKPTSCHED for fork DAGs can be solved in linear time.
DAG-CKPTSCHED for join DAGs is NP-complete.

DAG-CKPTSCHED for a join DAG where ¢; = ¢ and r; = r for
all i can be solved in quadratic time.

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Results
°

Other results

Theorem (Complexity)

DAG-CKPTSCHED for fork DAGs can be solved in linear time.
DAG-CKPTSCHED for join DAGs is NP-complete.

DAG-CKPTSCHED for a join DAG where ¢; = ¢ and r; = r for
all i can be solved in quadratic time.

Open Problem

Complexity of DAG-CKPTSCHED for a general DAG where
¢ci=cand r, = rforall i?

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Heuristic evaluation

Outline

© Efficient heuristic evaluation
@ Heuristics
@ Evaluation

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Heuristic evaluation

Efficient heuristic evaluation

Designing efficient heuristics used to take:

@ Numerous, time-consuming and expensive stochastic
experiments on an actual platform

@ Numerous, time-consuming simulations with a fault-generator

Now we can simply compute the expected makespan!

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Heuristic evaluation
°

2-step heuristics

Linearization strategies

DF Depth First (prio tasks by decreasing outweight)
BF Breadth First (prio tasks by decreasing outweight)
RF Random First

Checkpoint strategies .

Below: extensive search for
|checkpoint| from 1 to n—1

CkKNVR Never checkpoint

(default) CKPER “Periodic” checkpoint
CKALWS Always checkpoint CKW Prioritize large w;
(default)

CKC Prioritize small ¢;

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Heuristic evaluation
®00

Methodology

We use the Pegasus Workflow Generator to generate realistic synthetic

workflows:
MONTAGE: mosaics of the sky Average w; = 10s.
Lico: gravitational waveforms Average w; = 220s.
CYBERSHAKE: earthquake hazards Average w; = 25s.
GENOME: genome sequence processing Average w; > 1000s.

@ We plot the ratio of the expected execution time (T) over the
execution time of a failure-free, checkpoint-free execution (Tinf)

@ No downtime

@ ¢; = r; = 0.1w; (similar for other values)

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Heuristic evaluation
oY I¢]

—— BF —— DF —=— RF
— CKNVR — CKALwS — CKPER —— CKW CKkC
T/ Tt T/ Tt

T Nmbests T Mmbects
MONTAGE: A = 0.001 Lico: A =0.001
T/ Tt T/ T
- " XWmmvber u;biasks - - " number of tasks
CYBERSHAKE: A = 0.001 GENOME: A = 0.0001

oit@ens-lyon.fr DAG scheduling with failures

Heuristic evaluation
oY I¢]

—— BF —— DF —=— RF
— CKNVR — CKALwS — CKPER —— CKW CKkC
T/ Tt T/ Tt

number of tasks

MONTAGE: A = 0.001 Lico: A =0.001

number of tasks

number of tasks number of tasks

CYBERSHAKE: A = 0.001 GENOME: A = 0.0001

oit@ens-lyon.fr DAG scheduling with failures

oit@ens-lyon.fr

Heuristic evaluation
oY I¢]

—— BF —— DF —=— RF

= CKNVR = CKALws = CKPER =—— CKW CkC

number of tasks

MONTAGE: A = 0.001

number of tasks

CYBERSHAKE: A = 0.001

number of tasks

Lico: A =0.001

number of tasks

GENOME: A = 0.0001

DAG scheduling with failures

Heuristic evaluation
oY I¢]

—— BF —— DF —=— RF
= CKNVR = CKALws = CKPER =—— CKW CkC

number of tasks number of tasks

MONTAGE: A = 0.001 Lico: A =0.001

number of tasks number of tasks
CYBERSHAKE: A = 0.001 GENOME: A = 0.0001

oit@ens-lyon.fr DAG scheduling with failures

Heuristic evaluation
oY I¢]

—— BF —— DF —=— RF
— CKNVR — CKALwS — CKPER —— CKW CKkC
T/ Tt T/ Tt

number of tasks

MONTAGE: A = 0.001 Lico: A =0.001

number of tasks

number of tasks number of tasks

CYBERSHAKE: A = 0.001 GENOME: A = 0.0001

oit@ens-lyon.fr DAG scheduling with failures

Heuristic evaluation
ooe

BF is not a good heuristic for linearization

CKPER is not a good heuristic for checkpointing DAGs

DF seems to be a good heuristic for linearization

o CkW, CkKC seem to be good heuristics for checkpointing
(especially CKW)

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Conclusion

Outline

@ Conclusion

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Conclusion
Conclusion

@ Framework: Applications are scheduled on the whole platform,
subject to IID exponentially distributed failures.

@ A polynomial time algorithm to compute the expected
makespan for general DAGs.

@ Polynomial-time algorithm for fork DAGs, some join DAGs,
intractability in the general case.

@ Evaluation of several heuristics on representative workflow
configurations.
— Periodic checkpoint is not good for general DAGs.

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

Conclusion
Future directions

@ Our key result has opened the road to designing efficient
heuristics.

@ On a theoretical point of view:
(i) Non-blocking checkpoint
(i) Remove linearization assumption

Anne.Benoit@ens-lyon.fr DAG scheduling with failures

	Models
	Platform
	Fault-tolerance
	Application

	Results
	Computation of the expected makespan
	NP-hardness, polynomial algorithms for special graphs

	Efficient heuristic evaluation
	Heuristics
	Evaluation

	Conclusion

