
High-performance Energy-efficient Recursive Dynamic Programming with
Matrix-multiplication-like Flexible Kernels

Jesmin Jahan Tithi Pramod Ganapathi Aakrati Talati Sonal Aggarwal Rezaul Chowdhury

Department of Computer Science, Stony Brook University, New York, 11790-4400, USA
E-mail:{jtithi, pganapathi, atalati, soaggarwal, rezaul}@cs.stonybrook.edu

Abstract—Dynamic Programming (DP) problems arise in
a wide range of application areas spanning from logistics to
computational biology. In this paper, we show how to obtain
high-performing parallel implementations for a class of DP
problems by reducing them to highly optimizable flexible
kernels through cache-oblivious recursive divide-and-conquer
(CORDAC). We implement parallel CORDAC algorithms for
four non-trivial DP problems, namely the parenthesization
problem, Floyd-Warshall’s all-pairs shortest path (FW-APSP),
sequence alignment with general gap penalty (gap problem)
and protein accordion folding. To the best of our knowledge our
algorithms for protein accordion folding and the gap problem
are novel. All four algorithms have asymptotically optimal
cache performance, and all but FW-APSP have asymptotically
more parallelism than their looping counterparts.

We show that the base cases of our CORDAC algorithms
are predominantly matrix-multiplication-like (MM-like) flexi-
ble kernels that expose many optimization opportunities not
offered by traditional looping DP codes. As a result, one can
obtain highly efficient DP implementations by optimizing those
flexible kernels only. Our implementations achieve 5 − 150×
speedup over their standard loop based DP counterparts
while consuming order-of-magnitude less energy on modern
multicore machines with 16 − 32 cores. We also compare
our implementations with parallel tiled codes generated by
existing polyhedral compilers: Polly, PoCC and PLuTo, and
show that our implementations run significantly faster. Finally,
we present results on manycores (Intel Xeon Phi) and clusters
of multicores obtained using simple extensions for SIMD and
shared-distributed-shared-memory architectures, respectively,
demonstrating the versatility of our approach. Our optimiza-
tion approach is highly systematic and suitable for automation.

Keywords-cache-oblivious, recursive, divide-and-conquer,
flexible kernel, polyhedral compiler, dynamic programming

I. INTRODUCTION

Dynamic programming (DP) [2], [19], [25] is a popular

algorithm design technique for finding optimal solutions

to a problem by combining optimal solutions to many

overlapping subproblems. DP is used in a wide variety of

application areas [20] including operations research, compil-

ers, sports and games, economics, finance, and agriculture.

DP is extensively used in computational biology, such as

in protein-homology search, gene-structure prediction, motif

search, phylogeny analysis, analysis of repetitive genomic

elements, RNA secondary-structure prediction, and interpre-

tation of mass spectrometry data [1], [9], [17], [31].

This work is partially supported by NSF grant OCI-1053575 and uses Extreme
Science and Engineering Discovery Environment (XSEDE). Rezaul Chowdhury and
Pramod Ganapathi are supported in part by NSF grants CCF-1162196 and CCF-
1439084.

Traditional Loop-based DP Algorithms. Dynamic pro-

grams are traditionally implemented using simple loop-based

algorithms. For example, Fig. 2 shows looping code snippets

for four DP problems. Such loop-based algorithms are

straightforward to implement, sometimes have good spatial
locality1, and benefit from hardware prefetchers. But looping

codes suffer in performance due to poor temporal cache
locality2. Low temporal locality leads to increased pressure

on memory bandwidth which increases with the number

of active cores. More cache misses also results in more

energy consumption. Therefore, there is a significant room

for improvement in the cache usage of these algorithms, and

consequently also in their running times and energy usage,

especially on parallel machines.

LOOP-PARENTHESIS(c, n) {Inflexible Code}
(Input is an n × n matrix c[1 : n, 1 : n] with c[i, j] = vj for
1 ≤ i = j − 1 < n and c[i, j] =∞ otherwise (i.e., i �= j − 1).)

1) for i← n− 2 downto 1 do
2) for j ← i + 2 to n do
3) for k ← i + 1 to j do
4) c[i, j]← min { c[i, j], c[i, k] + c[k, j] + w(i, k, j) }

LOOP-MM(d, a, b, n) {Flexible Code}
(Inputs are disjoint n×n matrices a, b and d. This
function computes the product of a and b in d.)

1) for i← 1 to n do
2) for j ← 1 to n do
3) for k ← 1 to n do
4) d[i, j]← d[i, j] + a[i, k]× b[k, j]

Figure 1. Inflexible looping code for the parenthesization problem vs. the
flexible looping code for matrix multiplication.

Flexible vs. Inflexible Kernels. Iterative DP implementa-

tions are often inflexible in the sense that the loops and the

data in the DP table cannot be suitably reordered in order to

optimize for better spatial locality, parallelization and/or vec-

torization. Such inflexibility arises from the strict read-write

ordering of the DP table cells imposed by the code that reads

from and writes to the same table. For example, irrespective

of whether matrix c is stored in row-major order or column-

major order, the given i-j-k ordering of the loops in LOOP-

PARENTHESIS of Fig. 1 incurs Θ
(
n3

)
cache misses under

the ideal cache model [13]. Observe that i-k-j ordering

of the loops will incur only O (
n3/B + n2

)
cache misses,

where B is the cache line size, and will also lead to better

stride lengths for efficient vectorization. However, the i-k-

j ordering will make the algorithm incorrect. Compare this

DP implementation with the iterative matrix multiplication

(MM) code LOOP-MM shown in Fig. 1. Both code snippets

look similar except that LOOP-MM reads from and writes

to two disjoint matrices making all 6 orderings of the loops

valid, and thus making the code much easier to optimize.

1Spatial locality — whenever a cache block is brought into the cache, it contains
as much useful data as possible.

2Temporal locality — whenever a cache block is brought into the cache, as much
useful work as possible is performed on it before removing the block from the cache.

2015 IEEE 29th International Parallel and Distributed Processing Symposium

1530-2075/15 $31.00 © 2015 IEEE

DOI 10.1109/IPDPS.2015.107

303

Though the given i-j-k ordering will incur Θ
(
n3

)
cache

misses, one can easily reduce that to O (
n3/B + n2

)
either

by reordering the loops to i-k-j or by storing matrix b in

column-major order and a in row-major order. Also since no

cell in d depends on any other cell of d, one can correctly

update all its n2 cells in parallel by parallelizing both i-
and j-loops. One cannot extract that much parallelism from

LOOP-PARENTHESIS because almost every cell in c depends

on many other cells of c, and thus imposes an order in

which the cells must be updated. We refer to kernels, such

as LOOP-MM, that perform reads and writes on disjoint

matrices as flexible kernels.

DP using Recursive Divide-and-Conquer. DP algorithms

based on the cache-oblivious recursive divide-and-conquer

(CORDAC) technique can often overcome many limitations

of their iterative counterparts. Because of their recursive

nature such algorithms are known to achieve excellent (and

often optimal) temporal locality. Efficient implementations

of these recursive algorithms use iterative kernels when

the problem size becomes reasonably small [32]. In this

paper, we show that for several DP problems the recur-

sive decomposition reduces the original inflexible looping

code into recursive functions and iterative kernels that are

predominantly flexible (i.e., reading from and writing to

disjoint submatrices). Such flexibility does not only lead

to highly optimizable codes, but often to algorithms with

asymptotically better parallelism than the original looping

code. The size of the iterative kernel can often be kept

independent of the cache parameters3 without paying a

significant performance penalty, and thus keeping the algo-

rithms both cache-efficient and cache-oblivious4 [13].

Tiled Loops vs. Recursive Divide-and-Conquer. Though

one can achieve optimal cache performance by tiling the

looping code, unlike CORDAC tiling remains a cache-aware

approach. Moreover, simply tiling a parallel loop nest does

not improve its asymptotic parallelism. While tiling can

produce flexible iterative kernels too, CORDAC’s strength

lies in its ability to utilize flexible recursive functions. High

level of parallelism achieved by these functions often leads

to a CORDAC-based DP algorithm with asymptotically

more parallelism than its parallel looping counterpart.

Our Contributions. We consider four DP problems. Among

them, the parenthesization problem (also known as the

parenthesis problem [15]) arises in sequence analysis and in

RNA secondary structure prediction [21], [26] as well as in

optimal matrix chain multiplication, construction of optimal

binary search trees, and optimal polygon triangulation. The

gap problem occurs in sequence alignment with gaps, Floyd-
Warshall’s all-pairs shortest path (FW-APSP) has applica-

tions in computing transitive closure and phylogeny analysis

3since cache sizes on modern machines are almost never less than 8KB
4Cache-oblivious algorithms — algorithms that do not use the knowledge of cache

parameters in the algorithm description.

[22], and the protein accordion folding (PAF) problem has

its roots in protein structure prediction.

Our major contributions are as follows.

� [Reduction to Flexible Computations for Better Paral-
lelism and Optimizations] We show that for our benchmark

problems the CORDAC approach basically reduces the

computations to flexible recursive functions and highly opti-

mizable flexible kernels which asymptotically dominate the

total computation cost. The flexible recursive functions often

lead to asymptotic improvements in parallelism over the

corresponding parallel looping codes (with/without tiling).

� [Novel CORDAC Algorithms] We present the first efficient

parallel CORDAC algorithms for protein accordion folding

and sequence alignment with general gap penalty. We ana-

lyze their theoretical time and cache complexities.

� [Optimizations and Experimental Analyses on Shared-
Memory Machines] We describe general optimization strate-

gies for our CORDAC implementations that can lead up to

5 − 150× speedup w.r.t. to the optimized parallel looping

implementations on multicores with 16 − 32 cores, and

up to 180× speedup on Intel Xeon Phi manycores. Our

optimization approach is systematic enough for automation

and incorporation into a compiler.

� [Comparison with Codes Generated by Polyhedral Com-
pilers] We show that our CORDAC implementations run

significantly faster than parallel tiled DP implementations

generated by PLuTo [3], PoCC [23] and Polly [16].

� [Energy, Power and Runtime Tradeoff] We show that

CORDAC implementations consume significantly less en-

ergy than looping implementations. They can afford to slow-

down (by using fewer cores) to reduce power consumption

while still running faster than loops. We explore this tradeoff

between power consumption and running time.

� [Extension to Heterogeneous Platforms] We show that

CORDAC algorithms achieve almost linear scalability on

multicores for large enough inputs, and reasonable scala-

bility when run on a cluster of multicore machines under

hierarchical dynamic load-balancing without any change in

the basic CORDAC structure. Moreover, CORDAC also

performs very well on manycores Xeon Phi as well as on

hybrid CPU + Xeon Phi platforms.

II. ALGORITHMS

In this section we present standard parallel loop-based and

CORDAC algorithms for the protein accordion folding, FW-

APSP, gap, and parenthesization problems. For simplicity of

exposition we assume n = 2t for some integer t ≥ 0 for all

problems, where n × n is the size of the DP table. Table I

lists span and cache complexity of all the four CORDAC

algorithms and their iterative counterparts. We show the

analysis for the parenthesization problem and omit the rest

since they can be derived similarly.

304

PAR-LOOP-PARENTHESIS(c, n) (Input is an n × n matrix c[1 : n, 1 : n] with

c[i, j] = vj for 1 ≤ i = j−1 < n and c[i, j] =∞ otherwise (i.e., i �= j−1).)

1) for t← 2 to n− 1 do
2) parallel for i← 1 to n− t do
3) j ← t + i

4) for k ← i + 1 to j do
5) c[i, j]← min { c[i, j], c[i, k] + c[k, j] + w(i, k, j) }

PAR-LOOP-FW(d, n) (Input is an n×n matrix d[1 : n, 1 : n] with d[i, j] for
1 ≤ i, j ≤ n initialized with entries from a closed semiring (S,⊕,�, 0, 1).)

1) for k ← 1 to n do
2) parallel for i← 1 to n do
3) parallel for j ← 1 to n do
4) d[i, j]← d[i, j]⊕ (d[i, k]� d[k, j])

PAR-LOOP-PROTEIN-FOLDING(S, F, n) (Inputs are two n × n

matrices S[1 : n, 1 : n] and F [1 : n, 1 : n]. For a given protein
sequence P[1 : n], the cost of an optimal accordion score of the segment
P[i : j] will be computed in S[i, j]. F is a precomputed array with
F [j + 1,min (k, 2j − i + 1)], 1 ≤ i < j < k − 1 < n, storing
the number of aligned hydrophobic amino acids when the protein segment
P[i : k] is folded only once at indices (j, j + 1). For n− 1 ≤ j ≤ n,
each S[i, j] is initialized to 0.)

1) for i← n− 1 downto 1 do
2) parallel for j ← n− 1 downto i + 1 do
3) for k ← j + 2 to n do

4) S[i, j] ← max

{
S[i, j], S[j + 1, k]

+F [j + 1,min (k, 2j − i + 1)]

}

PAR-LOOP-GAP(G, x, m, y, n) (Inputs are two sequences x =
x1x2 . . . xm and y = y1y2 . . . yn, and an (m + 1) × (n + 1)
matrix G[0 : m, 0 : n]. Row 0 and column 0 of G re assumed to be
appropriately initialized.)

1) for t← 2 to m + n do
2) parallel for i← max {1, t− n} to min {t− 1,m} do
3) j ← t− i

4) G[i, j]← G[i− 1, j − 1] + s(xi, yj)

5) for q ← 0 to j − 1 do
6) G[i, j]← min {G[i, j], G[i, q] + w1(q, j)}
7) for p← 0 to i− 1 do
8) G[i, j]← min {G[i, j], G[p, j] + w2(p, i)}

Figure 2. Loop-based parallel codes for the parenthesis problem (PAR-LOOP-PARENTHESIS), Floyd-Warshall’s APSP (PAR-LOOP-FW), the gap problem
(PAR-LOOP-GAP) and protein accordion folding (PAR-LOOP-PROTEIN-FOLDING). In addition to the parallel for loops already shown, the serial for loops
in lines 5 and 7 of LOOP-GAP and in line 4 of LOOP-PARENTHESIS and PAR-LOOP-PROTEIN-FOLDING can be parallelized using reducers [12].

A. Parenthesization Problem

The parenthesization problem [15] asks for the minimum

parenthesization cost of a given sequence X = x1x2 · · ·xn.

Let c[i, j] denote the minimum cost of parenthesizing

xi · · ·xj . For 1 ≤ i < n, each c[i, i + 1] is assumed to

be already known (= vi+1), and for 1 ≤ i ≤ n each c[i, i]
is assumed to be ∞.

A function w(·, ·, ·) is given such that for 1 ≤ i < k ≤ n,

w(i, k, j) returns the cost of combining parenthesizations

of xi · · ·xk and xk · · ·xj which can be computed without

additional cache/memory accesses. Then for 0 ≤ i < j−1 <
n, c[i, j] is computed as follows.

c[i, j] = min
i≤k≤j

{
(c[i, k] + c[k, j]) + w(i, k, j)

}

The optimal parenthesizing cost c[1, n] for the entire

sequence can be found using the parallel looping code

PAR-LOOP-PARENTHESIS given in Fig. 2. Observe that the

parallel looping code is different from the serial code LOOP-

PARENTHESIS shown in Fig. 1 as none of the loops in

that serial code can be directly parallelized because of the

dependencies in the order of cell computation. PAR-LOOP-

PARENTHESIS computes cells diagonal by diagonal starting

from c[1, 1] and ending at c[n, n]. All cells on the same

diagonal can now be computed in parallel.

A parallel CORDAC algorithm for solving the parenthe-

sization problem is shown in Fig. 3 which is a special case

of the algorithm we proposed in [7]. This algorithm uses

three recursive functions: Apar, Bpar and Cpar.

Function Apar(X) updates the upper triangular part

of square matrix X (initially X ≡ c[1 : n, 1 : n]) using

data from X , i.e., each c[i, j] in X is updated using only

the 〈c[i, k], c[k, j]〉 pairs that lie completely inside X . The

recurrence for c[i, j] suggests that X11 and X22 are self-

dependent like X , and hence can be updated recursively by

Apar. Then we need to update the cells in X12, and each

such update of a cell c[i, j] ∈ X12 must use 〈c[i, k], c[k, j]〉
pairs such that either c[i, k] ∈ X11 ∧ c[k, j] ∈ X12 or

c[i, k] ∈ X12∧c[k, j] ∈ X22. This is done by calling function

Bpar(X, U, V) with X = X12, U = X11 and V = X22,

which updates a square matrix X (= X12) using data from

itself and upper triangular matrices U (to the left of X) and

V (below X).

In function Bpar(X, U, V), clearly, X12 depends

only on data in upper triangular submatrices U22 and V11,

and hence can be updated recursively. Observe that each

update of a cell c[i, j] ∈ X11 must use either (i) c[i, k] ∈
U12 ∧ c[k, j] ∈ X21, or (ii) c[i, k] ∈ U11 ∧ c[k, j] ∈ X11, or

(iii) c[i, k] ∈ X11 ∧ c[k, j] ∈ V11. Case (i) is handled by

calling function Cpar(X11, U12, X21) which we describe

later, and the remaining two cases are handled by calling

Bpar(X11, U11, V11) recursively. Similar argument holds

for updating X22. Each update of a cell c[i, j] ∈ X12

must use either (i) c[i, k] ∈ U12 ∧ c[k, j] ∈ X22, or (ii)
c[i, k] ∈ X11∧c[k, j] ∈ V12, or (iii) c[i, k] ∈ U11∧c[k, j] ∈
X12, or (iv) c[i, k] ∈ U12 ∧ c[k, j] ∈ V22. The first two

cases can be solved by calling Cpar(X12, U12, X22) and

Cpar(X12, X11, V12) recursively, and the last two cases

are solved by calling Bpar(X12, U11, V22) recursively.

Function Cpar(X, U, V) updates square X using data

from squares U and V , i.e., c[i, j] ∈ X is updated using

〈c[i, k], c[k, j]〉 pairs such that c[i, k] lies inside U and c[k, j]
lies inside V , and hence, Cpar is MM-like, and has the same

form as recursive square matrix-multiplication algorithm.

Table I shows that the kernel function of Cpar is asymptot-

ically dominating (i.e., invoked asymptotically more times

than the other two kernel functions) and is also the only

flexible kernel among the three.

�������

	
���
��
�������
�����
����������
� � ��� ����

��	

������
�� ��
���
��
���
�����
��
�������
��

��	

����
���

���
�����
��
�������
���

��	

����
���

������ ������� ������� �������

���������
���
��
�� ����! � � � �� � �� � � �� � �� �� �� �� � ����� �
 � ��� !��

�����
��"��#
�$�
�� �����! � � � �� � �� � �� � �� � ���� �� �� �� � ����� �
 � �"#$��

%�����������
�� �	��! � � � �� � �� � � �� � �� � �� �� �� � ����� �
 � ��� ! �

"�&'����
�� �
�! � � � �� � �� � �� � �� � ���� � �"#$�� � ����� �
 � � "#$� �

Table I
COMPLEXITIES OF THE ITERATIVE AND CORDAC ALGORITHMS, AND THE

NUMBER OF INVOCATIONS OF ITERATIVE KERNELS BY CORDAC ALGORITHMS

WHEN RUN ON AN INPUT MATRIX OF SIZE n× n WITH BASE-CASE SIZE ≤ b× b.

FLEXIBLE KERNELS ARE SHOWN ON YELLOW BACKGROUND AND

ASYMPTOTICALLY DOMINATING KERNELS ARE SHOWN IN RED. HERE, M = SIZE

OF THE CACHE AND B = CACHE LINE SIZE. RUNTIME ON p PROCESSING

ELEMENTS IS Tp = O (T1/p + T∞), CACHE COMPLEXITY IS

Qp = O (Q1 + p(M/B)T∞) (W.H.P.) WHEN RUN UNDER CILK’S

WORK-STEALING SCHEDULER.

Serial Cache Complexity. For f ∈ {A,B,C}, let

Qf (n) denote the cache complexity of fpar on a matrix

305

of size n × n when run on a serial machine. Then

Qf (n) = O (
n+ n2/B

)
if n2 ≤ γfM for some suitable

constant γf ∈ (0, 1]. Otherwise, QA(n) = 2QA (n/2) +
QB (n/2), QB(n) = 4 (QB (n/2) +QC (n/2)),
and QC(n) = 8QC (n/2). Solving, QA(n) =

O
(
n+ n2/B + n3/M + n3/

(
B
√
M

))
.

Span. For f ∈ {A,B,C}, let Tf (n) denote the span of

fpar on a matrix of size n × n. Then Tf (n) = Θ (1) if

n = 1. Otherwise, TA(n) = TA (n/2) + TB (n/2) + Θ (1),
TB(n) = 3 (TB (n/2) + TC (n/2)) + Θ (1), and TC(n) =
2TC (n/2) + Θ (1). Solving, TA(n) = O

(
nlog2 3

)
.

B. Protein Accordion Folding

In the protein accordion folding problem (PAF) we as-

sume that a protein is folded into a 2D square lattice in

such a way that the number of pairs of hydrophobic amino

acids that are next to each other in the grid (vertically or

horizontally) without being next to each other in the protein

sequence is maximized. We assume that the fold is always an

accordion fold where the sequence first goes straight down,

then straight up, then again straight down, and so on. Beta

sheets in proteins often fold this way.

The recurrence below computes the optimal accordion
score (see [18]) S[i, j] of the protein segment P[i : j] which

assumes S[i, j] = 0 for j ≥ n − 1. The optimal score for

the entire sequence is given by max1<j≤n {S[1, j]}.
S[i, j] = max

j+1<k≤n
{SOF(i, j, k) + S[j + 1, k]}

The function SOF(i, j, k) counts the number of aligned

hydrophobic amino acids when the protein segment P [i : k]
is folded only once at indices (j, j + 1). Observe that

SOF(i, j, k) = SOF(1, j, k) if k ≤ 2j − i + 1, and

SOF(i, j, k) = SOF(1, j, 2j − i + 1) otherwise. Hence, in

O (
n2

)
time one can precompute an array F[1 : n, 1 : n]

such that for all 1 ≤ i < j < k − 1 < n, SOF(i, j, k)
= F[j + 1,min {k, 2j − i+ 1}]. Then S[i, j] = max

j+1<k≤n

{F[j + 1,min {k, 2j − i+ 1}] + S[j + 1, k]} for j < n−1.

In Fig. 3 we present a CORDAC algorithm for computing

S[1 : n, 1 : n] based on the recurrence above. The algorithm

uses four recursive functions Afold, Bfold, Cfold and Dfold.

Function Afold(X) updates the upper triangular part of X
(which is originally set to 〈S[1 : n, 1 : n], F [1 : n, 1 :
n]〉) using data completely inside that part of X . Function

Afold recursively calls itself and functions Bfold and Cfold.

Function Bfold(X, V) updates a square X using data from

X and from the upper triangular part of another square V
that lies below X in the original input n × n square. This

function recursively calls itself and function Dfold. Function

Cfold(X, U) updates the upper triangular part of X using

data from X and a square U that lies to the right of X .

Function Cfold recursively calls itself and function Dfold.

Finally, function Dfold(X, V) updates a square X using

data from another square V that lies below and to the right of

X . This function recursively calls only itself and is flexible.

Table I shows that though the iterative kernels Bfold−loop

and Dfold−loop are both flexible (no read-write constraint),

only Dfold−loop is asymptotically dominating.

C. Sequence Alignment with General Gap Penalty

The problem of sequence alignment with general gap
penalty (gap problem) [14], [15], [31] is a generalization of

the edit distance problem that arises in molecular biology,

geology, and speech recognition. When transforming a string

X = x1x2 . . . xm into another string Y = y1y2 . . . yn, a

sequence of consecutive deletes corresponds to a gap in X ,

and a sequence of consecutive inserts corresponds to a gap

in Y . An affine gap penalty function is predominantly used

in bioinformatics, for which O(n2) algorithms are available

[31], [6]. However, in many applications the cost of such a

gap is not necessarily equal to the sum of the costs of each

individual deletion (or insertion) in that gap. In this paper, to

handle any general case, two new cost functions w and w′

are defined, where w(p, q) (0 ≤ p < q ≤ m) is the cost of

deleting xp+1 . . . xq from X , and w′(p, q) (0 ≤ p < q ≤ n)
is the cost of inserting yp+1 . . . yq into X . The substitution

function S(xi, yj) is the same as that of the standard edit

distance problem. Let G[i, j] denote the minimum cost of

transforming Xi = x1x2 . . . xi into Yj = y1y2 . . . yj (where

0 ≤ i ≤ m and 0 ≤ j ≤ n) under this general setting.

Then G[0, 0] = 0, G[0, j] = w(0, j) for 1 ≤ j ≤ n, and

G[i, 0] = w′(0, i) for 1 ≤ i ≤ m. Otherwise,

G[i, j] = min

⎧⎨
⎩

G[i− 1, j − 1] + S(xi, yj),
min0≤q<j { G[i, q] + w(q, j) },
min0≤p<i { G[p, j] + w′(p, i) }

⎫⎬
⎭.

In the rest of the paper we will assume m = n for simplicity.

The parallel iterative DP algorithm PAR-LOOP-GAP

shown in Fig. 2 solves the gap problem. In Fig. 3 we present

a parallel CORDAC algorithm for solving the problem which

uses three recursive functions Agap, Bgap and Cgap. The it-

erative kernels invoked by Bgap and Cgap are asymptotically

dominating and flexible (Table I). Table I shows the span and

cache complexity of these algorithms.

D. All Pairs Shortest Path Problem

Consider a directed graph G = (V,E), where V =
{v1, v2, . . . , vn}, and each edge (vi, vj) is labeled by an

element l(vi, vj) of some closed semiring (S,⊕,�, 0, 1).
For i, j ∈ [1, n] and k ∈ [0, n], let d(k)[i, j] denote

the cost of the smallest cost path from vi to vj with no

intermediate vertex higher than vk. Then d(n)[i, j] is the cost

of the shortest path from vi to vj . The following recurrence

computes all d(k)[i, j] for k > 0 assuming d0[i, i] = 1 and

d0[i, j] = l(vi, vj) for all i, j ∈ [1, n]:

d(k)[i, j] = d(k−1)[i, j]⊕
(
d(k−1)[i, k]� d(k−1)[k, j]

)
.

306

Apar(X)

1) if X is a small matrix then Apar−loop(X)

else
2) parallel : Apar(X11), Apar(X22)

3) Bpar(X12, X11, X22)

Bpar(X, U, V)

1) if X is a small matrix then Bpar−loop(X, U, V)

else
2) Bpar(X21, U22, V11)

3) parallel : Cpar(X11, U12, X21), Cpar(X22, X21, V12)

4) parallel : Bpar(X11, U11, V11), Bpar(X22, U22, V22)

5) Cpar(X12, U12, X22)

6) Cpar(X12, X11, V12)

7) Bpar(X12, U11, V22)

Cpar(X, U, V) {Flexible Kernel}
1) if X is a small matrix then Cpar−loop(X, U, V)

else
2) parallel : Cpar(X11, U11, V11), Cpar(X12, U11, V12),

Cpar(X21, U21, V11), Cpar(X22, U21, V12)

3) parallel : Cpar(X11, U12, V21), Cpar(X12, U12, V22),

Cpar(X21, U22, V21), Cpar(X22, U22, V22)

Afold(X)

1) if X is a small matrix then Afold−loop(X)

else
2) Afold(X22)

3) Bfold(X12, X22)

4) Cfold(X11, X12)

5) Afold(X11)

Bfold(X, V) {Flexible Kernel}
1) if X is a small matrix then Bfold−loop(X, V)

else
2) parallel : Bfold(X11, V11), Bfold(X12, V22), Bfold(X21, V11), Bfold(X22, V22)

3) parallel : Dfold(X11, V12), Dfold(X21, V12)

Cfold(X, U)

1) if X is a small matrix then Cfold−loop(X, U)

else
2) parallel : Cfold(X11, U11), Dfold(X12, U21), Cfold(X22, U21),

3) parallel : Cfold(X11, U12), Dfold(X12, U22), Cfold(X22, U22),

Dfold(X, V) {Flexible Kernel}
1) if X is a small matrix then Dfold−loop(X, V)

else
2) parallel : Dfold(X11, V11), Dfold(X12, V21), Dfold(X21, V11), Dfold(X22, V21)

3) parallel : Dfold(X11, V12), Dfold(X12, V22), Dfold(X21, V12), Dfold(X22, V22)

Agap(X)

1) if X is a small matrix then Agap−loop(X)

else
2) Agap(X11)

3) parallel : Bgap(X12, X11), Cgap(X21, X11)

4) parallel : Agap(X12), Agap(X21)

5) Bgap(X22, X21)

6) Cgap(X22, X12)

7) Agap(X22)

Bgap(X, U) {Flexible Kernel}
1) if X is a small matrix then Bgap−loop(X, U)

else
2) parallel : Bgap(X11, U11), Bgap(X12, U11),

Bgap(X21, U21), Bgap(X22, U21)

3) parallel : Bgap(X11, U12), Bgap(X12, U12),

Bgap(X21, U22), Bgap(X22, U22)

Cgap(X, V) {Flexible Kernel}
1) if X is a small matrix then Cgap−loop(X, V)

else
2) parallel : Cgap(X11, V11), Cgap(X12, V12),

Cgap(X21, V11), Cgap(X22, V12)

3) parallel : Cgap(X11, V21), Cgap(X12, V22),

Cgap(X21, V21), Cgap(X22, V22)

Figure 3. Parallel CORDAC algorithms for solving the parenthesization problem, the protein accordion folding problem, and the gap problem. For
simplicity, we assume n to be a power of 2. Initial function calls are as follows. (1) parenthesization problem: Apar(c) for an n× n input matrix c, (2)
protein accordion folding: Afold(X), where X = 〈S[1 : n, 1 : n], F [1 : n, 1 : n]〉, and (3) gap problem: Agap(G[1 : n, 1 : n]), where G[0 : n, 0 : n]
is the (n+ 1)× (n+ 1) input matrix.

Floyd-Warshall’s all pairs shortest path (FW-APSP) al-

gorithm [10], [30] performs computations over a particular

closed semiring (
,min,+,+∞, 0).
Fig. 2 includes an iterative algorithm (PAR-LOOPS-FW)

that computes the entries in d[1 : n, 1 : n] assuming that

each d[i, j] is initialized with the weight of edge (vi, vj).
The pseudocode for the CORDAC algorithm for solving this

problem can be found in [8]. Table I shows that among the

four recursive functions in the CORDAC algorithm, only

DFW is flexible which is also the dominating one.

III. OPTIMIZATIONS

In this section we discuss optimization strategies that we

have used to significantly speed up implementations of the

CORDAC algorithms described in Section II.

A. Hybrid CORDAC

To retain the benefits of both iterative and recursive

algorithms, in practice all cache-efficient algorithms use a

hybrid approach where recursive subdivision continues until

the problem size becomes small enough (often called the

base-case size) to fit into one of the cache levels (often

the smallest one), after which a loop-based code is used

to perform the computation [32]. These hybrid implementa-

tions expose optimization opportunities offered by neither

the pure iterative nor the pure recursive implementation.

The base-case kernels enjoy all benefits of loop-based DP

(spatial locality, compiler assisted optimizations, such as,

prefetching of required data, automatic vectorization, paral-

lelization, processor pipelining, ILP, and so on), in addition

to the temporal locality achieved by recursive divide-and-

conquer. Moreover, for DP problems, this hybrid approach

generates flexible instances of recursive functions and base-

case kernels which brings the following additional benefits.

� Asymptotic Improvement in Parallelism: In our two-way

divide-and-conquer approach a flexible recursive function

can update all four quadrants of its output submatrix in

parallel as long as it avoids race conditions by not updat-

ing the same quadrant simultaneously from two or more

different recursive function calls. Such a function achieves

Θ(n) span (i.e., Θ
(
n2

)
parallelism) which is the same

as that achieved by the cache-oblivious recursive matrix

multiplication algorithm [13]. Table I shows that each of

our CORDAC algorithms has at least one such flexible

function and such functions are asymptotically dominating

in the sense that almost all computations in the algorithm

are performed inside the base cases of those functions. As a

result, our CORDAC algorithms often have asymptotically

better parallelism than the original parallel looping code (see

Table I) with or without tiling.

� Highly Optimizable Base Cases: Running loop-based code

on small flexible base-cases is often more efficient than

running the same code on the original larger input as the for-

mer has better opportunities for vectorization, parallelization
(comes from flexibility) and spatial locality (due to flexible

loop reordering and copy-optimization).

For example, although Apar−loop in Fig. 3 has the same

inflexible implementation as PAR-LOOP-PARENTHESIS in

Fig. 2, Cloop is much more flexible and amenable to opti-

mizations than Aloop. While Bloop is not as optimizable as

Cloop, it still can be optimized better than Aloop. Thus the

recursive decomposition exposes many optimization oppor-

tunities over the traditional looping code. Simply by convert-

ing the loop algorithm to a hybrid CORDAC algorithm, we

got around 4− 75× speedup without optimizing it further.

B. Optimizing Kernel Functions

In addition to compiler-assisted optimizations (e.g., vec-

torization) we use the following major optimizations to

speed up the iterative kernels of our CORDAC algorithms.

� Copy-optimization: We copy the data into local b × b (b
= base-case size) static arrays inside the kernel, and then

307

read from those local arrays during actual computation. This

can improve performance provided the cost of computation

is asymptotically higher than the cost of copying. Copy-

optimization improves spatial locality as those copied arrays

are allocated in thread local stacks, and can be accessed

using a stride length of b instead of a stride length of n if

originally read in a column-major order. Indeed, we only

need to copy those matrices that are accessed in non-unit

strides. The benefits of the copy-optimization become even

more significant if one of the input matrices is accessed

in column-major order (non-unit stride), and is converted

to row-major while copying, so that it can be accessed in

row-major order during the actual computation. Transposing

the column-major accessed matrix during copy-optimization

reduces cache-misses further as the converted local array

can be accessed in unit-stride after the conversion. Copy-

optimization also helps in reducing conflict misses signifi-

cantly in set-associative caching systems.

� Loop Reordering: Inside flexible kernels it is possible to

change the looping order without hampering the correct-

ness of the algorithm which often improves spatial locality

and vectorization efficiency. For example, it is well-known

that for matrix multiplication (MM), i-k-j ordering (cache

complexity: Θ
(
n3/B + n2

)
, where B is cache line size)

is typically faster than the i-j-k ordering (cache complex-

ity: Θ(n3)). We observed the same for MM-like kernels

when copy-optimization is not used. However, if copy-

optimization is used inside the kernel to ensure unit stride

data access, i-j-k looping order becomes faster than i-k-j
looping order, especially for large n. Hence, we used i-j-k
ordering with copy-optimization.

C. Data Layout

Laying out data in memory matching the order in which

they are accessed during program execution can reduce

cache misses by leveraging better spatial locality. For

CORDAC algorithms, use of hybrid Z-Morton Row-Major
(ZM RM) layout is beneficial because that improves both

temporal and spatial localities. In our experiments we have

observed that for some values of n (e.g., powers of 2), use

of ZM RM layout instead of simple row-major layout can

speed up a CORDAC algorithm by almost a factor of 2.

Furthermore, use of ZM RM layout reduces set-associativity

conflict misses and capacity misses, if an appropriate base-

case size is chosen. In all algorithms presented in this paper,

we have used this ZM RM layout and found that use of

hybrid ZM RM layout along with copy-optimization can

remove the conflict miss problem almost entirely and gives

consistently better performance.

� Z-Morton for any n: One of the contributions of this paper,

which is, indeed, a by-product of our optimization efforts,

is the use of a hybrid ZM RM layout that works for any

arbitrary m× n matrix and uses exactly mn space to store

fX(X,m, n, ...) (X is a pointer to an m×n matrix stored in ZM RM layout. In O (1) time

we compute pointers X11, X12, X21 and X22 pointing to the start of the 1st, 2nd, 3rd and 4th
quadrants of X , respectively.)

1) c = largest power of 2 < max(m,n)

2) m′ = min(c,m), n′ = min(c, n), m′′ = max(0,m− c), n′′ = max(0, n− c)

3) X11 = X , X12 = X11 + m′n′, X21 = X12 + m′n′′, X22 = X21 + m′′n′

Figure 4. On-the-fly computations of Z-Morton-row-major pointers.

mn elements. Although it is very straightforward to layout

the data in ZM RM when m = n = 2t for some t > 0, we

are not aware of any prior work that uses hybrid ZM RM

for any arbitrary m, n while using exactly mn space. Also

there is no closed form formula that can convert a row-

major index to the corresponding ZM RM index when the

dimensions are arbitrary positive integers. There are ways

of making Z-Morton work for any n through padding (see

[28]), but padding uses extra space. As shown in the code

snippet in Fig. 4, to use ZM RM for any m × n, in a

(two-way) CORDAC algorithm, we first calculate a c such

that max (m,n) > c ≥ max (m,n)/2. Next we compute

dimensions for four quadrants as shown in the pseudocode.

Then we recursively put m′ × n′ items in the 1st quadrant

(X11), m′×n′′ items in the 2nd quadrant (X12), m′′×n′ in

the 3rd quadrant (X21), and remaining m′′×n′′ items in the

4th quadrant (X22) in ZM RM order. Hence, we do not need

any extra space to hold the data for this kind of recursive

ZM RM data layout. From the size of each quadrant, we

figure out the starting pointer of each quadrant (where to

read/write the data) recursively using a CORDAC algorithm.

After laying out data in ZM RM layout in this way, during

the computation, we use ZM RM pointers and actual row-

major indices to compute the locations on-the-fly inside the

recursive functions which incurs only O (1) overhead per

recursion level.

D. Auto vs. Explicit Vectorization

Sometimes explicit vectorization can lead to significant

speedup over compiler-assisted auto-vectorization as com-

pilers cannot always automatically detect all possible vector-

ization opportunities. Often vectorizing the base-case of the

dominating kernel only (e.g., Cloop for the parenthesization

problem) is enough to get the major share of the speedup.

Opportunities for Automation. Our optimization approach

for CORDAC algorithms as described above is highly sys-

tematic, and we have observed that they work really well in

practice. They are suitable for automation and perhaps in-

corporation into a smart compiler specialized for CORDAC.

IV. EXPERIMENTAL RESULTS

In this section we demonstrate performance benefits of

parallel CORDAC approach compared to parallel looping

and parallel tiled approaches on multicores, manycores

(Xeon Phi) and cluster of multicores. All implementations

are in C++ with Intel Cilk Plus extension for shared memory

and MPI for distributed memory parallelization. For each

problem, we implemented four versions:

308

� LOOPDP: optimized parallel looping code with padding

to mitigate set-associativity problem at powers of 2.

� CO: unoptimized parallel CORDAC.

� CO Opt: optimized CORDAC with copy-optimization.

� COZ: CO Opt with ZM RM layout for data storage.

For Parenthesization and FW-APSP problems, we further

optimized COZ versions with explicit vectorization for CPU

and Xeon Phi architectures separately. Furthermore, we

implemented a hybrid CPU + Xeon Phi version where we

dynamically offload subproblems to the coprocessor if it

is idle and use the CORDAC approach to solve them on

the coprocessor. All versions incorporate compiler-assisted

optimizations. We compiled all programs with -O3 -ip
-parallel -AVX optimization parameters. We used a

base-case size of 64 × 64 for parenthesis, gap and protein

folding and 128 × 128 for FW-APSP. Machines from the

Stampede Supercomputing Cluster [27] were used to run

the experiments and the system specifications can be found

in Table II. We used PAPI-5.2 [4] to collect cache misses

and LIKWID [29] for the energy/power statistics. Metrics

shown in Table III were used to compare performance of

different algorithms.

�������� �����	
 �������
������ ���������������������
������� ��������	��

���������
��������	��

��������

������
�	����

��	����

� ������

������ �	
� ���� �	
� ��� � �	�� ���

�������� �����
�� �������� �� ��������

��������������
�
��
�
�
�
�
�
�

������� �������� ������ ����� �����
� �����

!����� � ���
� �� ����
� ��

"� ��������	
 ��������	
 ��������	
 �� �!�

�������� �"" #�
	�� �"" #�
	� �"" #�
	� �"" #�
	�

Table II
SYSTEM SPECIFICATIONS. INTEL16E: USED FOR POWER & ENERGY ANALYSIS.

Table III
METRICS USED FOR PERFORMANCE COMPARISON.

A. Performance on Shared-Memory Machines

Speedup and Scalability on CPU, Xeon Phi and Hybrid
Platforms. We ran all programs on the Intel16 and Xeon Phi

Machines with n ≈ 100 to n ≈ 16000 where n×n is size of

the DP table. Table IV summarizes the results. We observed

that explicit vectorization contributed up to 5× speedup over

the auto-vectorized code. For parenthesization problem, the

explicitly vectorized COZ runs 278× and hybrid CPU +
Xeon Phi version runs 395× faster; for FW-APSP explicitly

vectorized COZ is 24× and CPU + Xeon Phi is 35× faster

than LOOPDP for n = 32768.

Overall, hybrid CPU + Xeon Phi version runs 42− 50%

faster than the pure vectorized CPU version for n ≈ 215.

Runtime, Cache Miss, Energy Performance and Scala-
bility.

�������

������������	��
�
���������
�����������������
�� � �����	

��
�
����	����� � ��
���
� �
������������ 	������

��� �������� ������������
���������� �� ����
�

(�	�)*�����	���
+��	���,��

)*�����	���
+��	���,��

)*�����	���
+��	���,��

)*�����	���
+��	���,�� (�	�)*�����	���+��	���,��

�
���	����,
	���
� ��� �
� ��� ������ ������
-
� �
 � � � ������ ������

./01��� �� �� �� �� ������ �	��	�	
	�����	
���	���.�����2 � � � � ������ �	��	�	
	�����	

Table IV
A SUMMARY OF THE EXPERIMENTAL RESULTS.

Fig. 5 shows performance trends for all four problems on

Intel16 in terms of UPS, Strong Scalability, cache-miss and

energy consumption ratios. Clearly, CORDAC algorithms

(COZ, CO Opt, CO) outperform LOOPDP under all these

metrics. Overall, COZ algorithms are 1.2−2× and CO Opt

algorithms are 1.1 − 1.8× faster than the corresponding

unoptimized CO algorithms. For all four problems, the

UPS curve of the unoptimized CO algorithm has occasional

dips due to set-associativity conflict misses. We were able

to avoid those dips in CO Opt and COZ versions using

our optimizations. For parenthesization and gap problems

the speedups w.r.t LOOPDP are more compared to FW-

APSP and protein folding. Theoretical bounds listed in

Table I also support this result. Observe that the serial

cache complexity of iterative algorithms of the first group

is Θ
(
n3

)
and the second group is Θ

(
n3/B

)
. Similarly,

the scalability of LOOPDP for the first group of problems

is also better than the second group. Fig. 5(b) shows that

CORDAC algorithms always incur fewer cache misses in

all levels of caches for n ≥ 1000 which is one of the main

contributing factors in the reduction of running times and

energy consumptions. Fig. 5(d) shows that in addition to

being faster than LOOPDP, CORDAC algorithms consume

4 − 30× less energy for the entire Package (die), PP0

(cores and their private caches) and DRAM. Clearly, smaller

running times and fewer cache misses contributed to this

reduction in energy consumption.

2

8

32

128

1000 11000 21000 31000 41000

Sp
ee

d
up

 w
.r.

t L
O

O
PD

P
(lo

g
sc

al
e)

n

Larger Input on Inte32

Parenthesis FW-APSP Gap

Figure 6. Speedup w.r.t LOOPDP
with larger input sizes on Intel32.

Results on Larger In-
put Sizes. In Fig. 6

we show that on Intel32

speedup of CORDAC al-

gorithms w.r.t LOOPDP

increases with the in-

crease of the number of

cores, p and input size, n.

The speedup numbers on

Intel32 are almost 2× of what we achieved on Intel16 for

n ≤ 16K. Seemingly, the LOOPDP algorithms are not able

to get the benefit of increased number of cores to the same

extent as the CORDAC algorithms are able to do.

Tradeoff Between Runtime and Power Consumption.
Since Power = Energy

T ime , as running time increases, power

consumption decreases if energy remains constant. However,

in general, energy consumption also increases with running

time. Energy consumption per computation increases as

309

���
�
�
�
�
�	

�
	�

���� 	��� ����� �	��� !
"#
$%
&�

��
��

��
�	

�

��

��

��

���
�

��

�

��������	
	��
���
��������������

��

������
��
������

���

�

��

���

����

���� ���� ����� �����

��
�
#�

��
��

��
	
�

��

�

�

��

�

��������	
	���������
		����
��

�	
��
�� ��
��
�� ��
��
��

	��

�

�

��

��

���

� � � � ��

�

��������	
	���������������
�
���

�	

�		�
�

�$�

���

�
��
�
�
�

���
��

�	

�

��

���

�

�

�

�

�	

�

���� 	��� ����� �	�����
�

��
��

��
��

	
�

�

��
�

��

�

��������	
	�������������
��

���� ��� ��� ����

	��

���

�

�

�

�

�	

���� 	��� ����� �	��� !
��

��
��

��
��

��
�	

�

��

��

��

���
�

��

�

��	
��
�����������������

���
������
��
���	
	

���

�

�

�

���

���

����
��� ����� �
���

��
�

��
��

��
��

	
�

�

��
�

��

�

��	
�����
��	��������

�������	 �
�����	 �������	

	��

�

�

�

�

��

� � � � �

�

��	
���
���������������

��

����
� ���

�	�

�
��
�
�
�

���
��

�	

�

��

�

�

�

�

���� 	���
��� ���� ���� �������
�

��
��

��
��

	
�

�

��
�

��

�

��	
��

�����������

���� 	
� 		� �
��

	��

�

�

��

��

��

���

���� ���� ����� ����� !
��

��
��

��
��

��
�	

�

��

��

��

���
�

��

�

	
��
�
��������������	�����

	
�
	
�

�
	

�

���

���

�

�

��

��

���

���� ���� ����� �����

��
�

��
��

��
��

	
�

�

��
�

��

�

��
�����������������	
��

��
��
��

��
��
��

��
��
��

	��

�

�

�

�

��

	�

��

� � � � ��

�

�
�������������������	
�
��

��

����
�

�
�

�	�

�
��
�
�
�

���
��

�	

�

��
�

�

�

�

��

	�

���� ���� ���� �	�����
�

��
��

��
��

	
�

�

��
�

��

�

�������������������	
�

���� 	
� 		� ����

	��

�

��

��

��

���

���� ���� ����� ����� !
��

��
��

��
��

��
�	

�

��

��

��

���
�

��

�

��
���������������������

	
�
	
�

�
	

�

���

���

(b)

1

4

16

64

1000 6000 11000 16000

LO
O

PD
P/

CO
Z

(lo
g

sc
al

e)

n

PAF: Cache Miss Ratio

L3 Ratio L2 Ratio L1 Ratio

(b)

�

�

�

�

��

	�

� � � � ��

�

�	
��
�
����
����������

��

����
�

�

�	�

�
��
�
�
�

���
��

�	

�

��

���

�

�

�

�

�	

���� 	��� ����� �	���

��
�

��
��

��
��

	
�

�

��
�

��

�

��	
��

�����������

���� ��� ��	
��

	��

Figure 5. (a) Giga updates per second achieved by all algorithms, (b) ratios of total shared and private cache misses, (c) strong scalability with #cores,
p when n is fixed at 8192, and (d) ratios of total joule energy consumed by Package (PKG), Power Plane 0 (PP0) and DRAM.

0.8

3.2

12.8

51.2

161116(L
O

O
PD

P_
16

/C
O

Z)
 (l

og
 sc

al
e)

p

Parenthesis:
Power Vs. Runtime, n = 15000

Runtime_ratio
Energy_ratio
Power_ratio

0.8

1.6

3.2

6.4

12.8

161116(L
O

O
PD

P_
16

/C
O

Z)
 (l

og
 sc

al
e)

p

FW-APSP:
Power Vs. Runtime , n = 16384

Runtime_ratio
Energy_ratio
Power_ratio

Figure 7. COZ has the flexibility to use fewer number of cores while still
running faster but consuming less energy and power than LOOPDP.

the number of cores, p decreases, but energy consumption

per memory access increases as p increases. Therefore, the

relationship is not linear. To explore the power and runtime

tradeoff, we ran the LOOPDP version on p = 16 cores on

Intel16E and then varied p from 16 down to 1 to get the

power, runtime and energy values for the COZ version. Fig.

7 shows the result. As we decrease p, power consumption of

COZ algorithm decreases (ratio LOOPDP
COZ increases), while

the running time as well as energy consumption increases.

On 16 cores, although CORDAC algorithms consume less

energy and run 5 − 40× faster than LOOPDP, the power

consumed is approximately the same (ratio is close to 1)

for a given input size. On the other hand, on 2 cores,

although CORDAC algorithms consume less energy and

power, they still run faster than LOOPDP. Therefore, if

power consumption is a concern, CORDAC algorithms have

the flexibility to run on fewer cores, while still running faster

than LOOPDP.

Comparison with Parallel Tiled Codes Generated by
Polyhedral Compilers. We compare our COZ and LOOPDP

implementations with parallel tiled codes generated by state-

of-the-art polyhedral compilers, PLuTo [3], PoCC [23]

0.03125
0.125

0.5
2
8

32
128
512

0 5000 10000 15000 20000

Ti
m

e
in

 se
co

nd
s (

lo
g

sc
al

e)

n

FW-APSP: PoCC

Tiled/Par
COZ
LOOPDP
Blocked_loop

Figure 8. Comparison with parallel
tiled code generated using polyhedral
compilers PLuTo [3], PoCC [23] and
Polly [16].

and Polly [16]. Fig.

8 and 9 show compari-

son of our implementa-

tions with the best result

obtained from these com-

pilers. Clearly, CORDAC

algorithms run 3 − 30×
faster in the given input

range. After analyzing the

codes generated by these

compilers, we found that

310

for each of these problems, the compilers were able to

parallelize only one of the 3 nested for loops. Hence for

FW-APSP, the parallelism and span of the generated code

were worse than our LOOPDP implementation which had 2
parallel for loops.

0.03125
0.125

0.5
2
8

32
128
512

0 5000 10000 15000 20000

Ti
m

e
in

 se
co

nd
s (

lo
g

sc
al

e)

n

Parenthesis: PLuTo

Tiled/Par
COZ
LOOPDP

0.03125
0.125

0.5
2
8

32
128
512

2048

0 5000 10000 15000 20000

Ti
m

e
in

 se
co

nd
s (

lo
g

sc
al

e)

n

Gap: PoCC

Tiled/Par
COZ
LOOPDP

Figure 9. Comparison with parallel tiled code generated using polyhedral
compilers PLuTo [3], PoCC [23] and Polly [16].

We implemented a parallel tiled version for FW-APSP

with 2 nested for loops, and the results are comparable to that

of LOOPDP. For parenthesization and gap problems, both

our LOOPDP and the codes generated by the polyhedral

compilers used 1 parallel for loop, however, the two codes

were parallelized differently in each case. None of the

generated tiled codes had temporal locality.

V. EXTENSION TO DISTRIBUTED-MEMORY SETTINGS

In this section we describe how to extend a CORDAC

algorithm to the shared-distributed-shared-memory setting

which applies to all four of our CORDAC algorithms.

Prior Work. To implement divide-and-conquer algorithms

under distributed-memory settings, both static and dynamic

load-balancing strategies have been used. In [26], a pure

distributed-memory algorithm has been implemented for the

parenthesization problem, where the rows are evenly dis-

tributed among the processes each of which uses a CORDAC

algorithm to solve the subproblem assigned to it. Dynamic

load-balancing approaches map the recursive division part to

the available MPI processes, and then use a shared-memory

algorithm inside each process when no more process is left

to take the responsibility of a division. In [24] this approach

has been used for mergesort algorithm, and the authors con-

cluded that in general, a shared-memory algorithm provides

better performance than the corresponding distributed or

distributed-shared-memory algorithms while using the same

number of cores. Although this approach can be used for

our CORDAC algorithms, it is likely to be more complicated

than mergesort due to the nested nature of multiple recursive

functions, since we may need to devise different algorithms

for each of the A, B, C and D functions.

Our Approach. In this paper, we propose a novel

shared-distributed-shared-memory (SDSM) framework for

our CORDAC algorithms which performs dynamic load-

balancing on a cluster of multicores without any change in

the basic CORDAC structure. We use hierarchical dynamic

load-balancing and work-stealing to balance the load among

the processes. In this approach the available processes are

arranged in a multi-level hierarchy of masters and workers

with all non-master pure workers placed as leaves. We

describe a 3−level hierarchy below.

If we have K processes, we use one of them as a super-

master, some M ′ of them as masters and the rest as workers.

The super-master, masters and workers run multithreaded

codes on p cores. The master processes work as workers for

the super-master. In the super-master and master processes,

1 out of p threads is used as a dispatcher which dispatches

work dynamically to the available free workers and also

collects the results back from the workers.

Each super-master and master process maintains a shared

job queue that can be accessed exclusively by all threads in

it. If a thread is about to run a function (e.g., C) on input size

x, where min offload threshold ≤ x ≤ max offload threshold,

the thread tries to lock the job queue and in case of

a successful locking, it puts at most l − 1 out of its l
parallelly executable recursive sub-divisions in the job queue

and works on the rest while waiting for the results of the

offloaded parts to come back. If a thread finishes before all

its submitted jobs in the queue are processed, it steals back

its latest submitted jobs left in the job queue in the current

recursion level (if available) and works on the stolen part

using the original SDSM algorithm as before. If a thread is

unable to submit a job (because the job queue is full), it

will simply go ahead and divide the job even further and try

again to access the job queue in the next recursion level.

A worker process, on the other hand, waits for jobs from

its master, and if it gets one, it solves that using the shared-

memory parallel CORDAC approach and returns the result

back after it is done.

Distribution with Cannon’s/Fox’s Algorithms. One may

argue that the dynamic distribution is not scalable for

distributed settings. We show that dynamic distribution

works pretty well for these algorithms since the overall

communication complexity is asymptotically lower than the

computational complexity. Nevertheless, it is possible to

adapt the popular Cannon’s [5] or Fox’s [11] algorithms

for matrix-multiplication that have linear scalability and unit

efficiency for distribution, if the flexible kernel looks MM-

like (i.e., two input matrices and one output matrix) which

is indeed the case for our dominating flexible kernels.

16

64

256

1024

16 64 256 1024Sp
ee

du
p

w
.r.

t 1
 c

or
e

(lo
g

Sc
al

e)

p

Parenthesis: SDSM for n = 41000 (a)

16

32

64

128

256

16 64 256 1024Sp
ee

du
p

w
rt

 1
 co

re
 (l

og
 sc

al
e)

p

Scalability of different distributions

SDSM

Cannon's algo

Fox's algo

(b)

Figure 10. Parenthesization Problem: (a) Scalability of shared-distributed-
shared-memory algorithm (offloading functions C and B). (b) Performance
comparison of different work distribution techniques (offloading C only).

To distribute using Cannon’s/Fox’s method, one thread

311

of the master process first locks all worker processes and

then uses the Cannon’s/Fox’s algorithm to distribute the

work evenly among the processes. Once that thread of the

master process gets the results back, it frees the lock and

the workers become available for use by any thread.

A. Shared-Distributed-Shared-Memory Results

We implemented our SDSM algorithm for parenthesiza-

tion problem. Fig. 10(a) shows strong scalability (T1/Tp,

where Tp = running time on p cores and T1 = running time

of CORDAC on 1 core) of our SDSM algorithm for the

parenthesization problem where we allowed offloading of

functions B and C. Function A was executed entirely on

the super-master. Offloading B in addition to C improves

performance by 20%. For this experiment, we fixed n at

41K and allowed offloading of problems with a size in the

range of 256−2048. We found that the scalability was almost

linear till p = 64 cores, and overall the algorithm scaled well

till 1024 cores. As we increased the number of cores, the

average percentage of idle time as well as communication

time increased suggesting that there was not enough work

to keep all cores busy all the time (at each recursion level).

In Fig. 10(b) we compare the performance of 3 different

work-distribution strategies (SDSM, Fox’s and Cannon’s)

for distributing work in Cpar(X,U, V). For this version of

SDSM we only allowed distribution of function C since

function B is not MM-like and cannot be distributed using

Cannon’s/Fox’s algorithms. We found that SDSM performs

better than the other two approaches even though it uses a

hierarchical dynamic load-balancing strategy.

B. Communication Complexity

Computing precise communication complexity of our

SDSM algorithm is quite involved because of dynamic load-

balancing and interactions with Cilk’s randomized work-

stealing scheduler. However, deriving an upper bound is

fairly straightforward. Table I shows that each problem

generates O((n/b)3) subproblems of size b× b each. If we

only solve subproblems of size 2s× 2s where q ≤ s ≤ r on

worker processes, communication complexity will be upper-

bounded by O(
∑

q≤s≤r ((n/2
s)3)× (2s)2) = O(n3/2q).

For example, we used 2q = Ω(
√
n) in our experiments

which led to an O(n2.5) bound. Since the master process

holds the entire DP table, the same bound holds for our

approach based on Cannon’s MM algorithm.

REFERENCES

[1] V. Bafna and N. Edwards, “On de novo interpretation of tandem mass
spectra for peptide identification,” in Proc. RECOMB, 2003.

[2] R. Bellman, Dynamic Programming. Princeton Univ. Press, 1957.

[3] U. Bondhugula, A. Hartono, J. Ramanujam, and P. Sadayappan, “A
practical automatic polyhedral parallelizer and locality optimizer,”
ACM SIGPLAN Notices, 43(6):101–113, 2008.

[4] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci, “A scal-
able cross-platform infrastructure for application performance tuning
using hardware counters,” in Proc. SC, 2000.

[5] L. Cannon, “A cellular computer to implement the Kalman filter
algorithm,” Ph.D. Thesis, Montana State University, 1969.

[6] R. Chowdhury, H.-S. Le, and V. Ramachandran, “Cache-oblivious
dynamic programming for bioinformatics,” TCBB, 7(3):495–510,
2010.

[7] R. Chowdhury and V. Ramachandran, “Cache-efficient dynamic pro-
gramming algorithms for multicores,” in Proc. SPAA, 2008.

[8] R. Chowdhury and V. Ramachandran, “The cache-oblivious Gaussian
elimination paradigm: theoretical framework, parallelization and ex-
perimental evaluation,” TOCS, 47:878–919, 2010.

[9] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison, Biological sequence
analysis: probabilistic models of proteins and nucleic acids. Cam-
bridge Univ. press, 1998.

[10] R. Floyd, “Algorithm 97 (Shortest path),” CACM, 5:345, 1962.

[11] G. Fox, S. Otto, and A. Hey, “Matrix algorithms on a hypercube I:
Matrix multiplication,” Parallel Computing, 4(1):17–31, 1987.

[12] M. Frigo, P. Halpern, C. Leiserson, and S. Lewin-Berlin, “Reducers
and other Cilk++ hyperobjects,” in Proc. SPAA, 2009.

[13] M. Frigo, C. Leiserson, H. Prokop, and S. Ramachandran, “Cache-
oblivious algorithms,” in Proc. FOCS, 1999.

[14] Z. Galil and R. Giancarlo, “Speeding up dynamic programming with
applications to molecular biology,” TCS, 64(1):107–118, 1989.

[15] Z. Galil and K. Park, “Parallel algorithms for dynamic programming
recurrences with more than O(1) dependency,” JPDC, 21:213–222,
1994.

[16] T. Grosser, A. Groesslinger, and C. Lengauer, “Polly – performing
polyhedral optimizations on a low-level intermediate representation,
PPL, 22(4), 2012.

[17] D. Gusfield, Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge Univ. Press, 1997.

[18] J. Karlander, “Algorithms and complex-
ity (exercise 3+4),” 2013. [Online]. Available:
www.csc.kth.se/utbildning/kth/kurser/DD2352/algokomp13/

[19] C. Leiserson, R. Rivest, C. Stein, and T. Cormen, Introduction to
Algorithms. The MIT press, 2001.

[20] A. Lew and H. Mauch. Dynamic Programming: A Computational
Tool, volume 38. Springer, 2006.

[21] R. Lyngs, M. Zuker, and C. Pedersen, “Fast evaluation of inter-
nal loops in RNA secondary structure prediction.” Bioinformatics,
15(6):440–445, 1999.

[22] Y. Park, S. Shackney and R. Schwartz, “Network-based inference of
cancer progression from microarray data”. TCBB, 6: 200-212, 2009.

[23] L. Pouchet, U. Bondhugula, C. Bastoul, A. Cohen, J. Ramanujam, and
P. Sadayappan, “Combined iterative and model-driven optimization in
an automatic parallelization framework,” in Proc. SC, 2010.

[24] A. Radenski, “Shared memory, message passing, and hybrid merge
sorts for standalone and clustered SMPs,” in Proc. PDPTA, 2011.

[25] M. Sniedovich, Dynamic Programming: Foundations and Principles.
CRC press, 2010.

[26] G. Tan, S. Feng, and N. Sun, “Locality and parallelism optimization
for dynamic programming algorithm in bioinformatics,” in Proc. SC,
2006.

[27] Texas Advanced Computing Center, https://www.tacc.utexas .edu/.

[28] J. Thiyagalingam, O. Beckmann, and P. Kelly, “Minimizing associa-
tivity conflicts in Morton layout,” in Proc. PPAM, 2006.

[29] J. Treibig, G. Hager, and G. Wellein, “LIKWID: A lightweight
performance-oriented tool suite for x86 multicore environments,” in
Proc. ICPPW, 2010.

[30] S. Warshall, “A theorem on Boolean matrices,” JACM, 9:11–12, 1962.

[31] M. Waterman, Introduction to Computational Biology: Maps, Se-
quences and Genomes. Chapman & Hall Ltd, 1995.

[32] K. Yotov, T. Roeder, K. Pingali, J. Gunnels, and F. Gustavson,
“An experimental comparison of cache-oblivious and cache-conscious
programs,” in Proc. SPAA, 2007.

312

