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Abstract—Soft Error Resiliency is a major concern for Pet-
ascale high performance computing (HPC) systems. Blue Gene/Q 
(BG/Q) is the third generation of IBM’s massively parallel, ener-
gy efficient Blue Gene series of supercomputers. The principal 
goal of this work is to understand the interaction between Blue-
Gene/Q’s hardware resiliency features and high-performance 
applications through proton irradiation of a real chip, and soft-
ware resiliency inherent in these applications through applica-
tion-level fault injection (AFI) experiments. From the proton 
irradiation experiments we derived that the mean time between 
correctable errors at sea level of the SRAM-based register files 
and Level-1 caches for a system similar to the scale of Sequoia 
system. From the AFI experiments, we characterized relative 
vulnerability among the applications in both general purpose and 
floating point register files. We categorized and quantified the 
failure outcomes, and discovered characteristics in the applica-
tions that lead to many masking improvement opportunities. 

Keywords—soft error rate, co-design, chip irradiation, fault in-
jection, high-performance applications 

I. INTRODUCTION 
Soft Error Resiliency is a major concern for Petascale high 

performance computing systems.  Blue Gene/Q (BG/Q) is the 
third generation of IBM’s massively parallel, energy efficient 
Blue Gene series of supercomputers.  An overview of the 
BG/Q compute chip is given in [11].  In designing Blue 
Gene/Q (BG/Q), many mechanisms are deployed to target soft 
errors including extensive use of Silicon-On-Insulator tech-
nology (SOI), radiation-hardened latches [2][18][19], and de-
tection and correction for on-chip arrays, register files and 
caches.  On the other hand, it is well known that many appli-
cations are inherently resilient to soft error.  The principal goal 
of this work is to understand the interaction between BG/Q’s 
hardware resiliency features and high-performance applica-
tions through chip irradiation, and software resiliency inherent 
in these applications through application-level fault (AFI) in-
jection experiments. 

Soft errors are transient fails that do not damage the hard-
ware, and there is a short window of opportunity to detect 
them. Soft errors are caused by high-energy particle incidence. 
These energetic particles have the ability to deposit charge in a 
transistor body. If the charge is sufficiently large, a non-
conducting transistor can become inadvertently conducting for 
a short period of time. This can have the detrimental effect of 
inadvertently causing unwarranted bit flips in computation, 
control and data. Detailed soft error rate (SER) assessment is 
necessary to quantify a chip’s reliability.  

A soft error can be a single event upset (SEU) or a multi 
bit upset (MBU).  In today’s modern microprocessor designs, 
architectural states held on-chip, typically in the form of 
SRAM-based register file and cache, are often protected from 
SEU in the form of parity detection from SEU, or single-error 
correct double-error detect (SECDED) error correction code 
(ECC) from MBU.  When a soft error is detected, it can be 
recoverable or unrecoverable. A recoverable error has typical-
ly no impact other than temporary performance degradation. If 
the soft error is detected but unrecoverable, it leads to a check-
stop (no forward progress) in the form of a hang, a partition 
outage or a system outage.  SRAM cells and latches built in 
SOI have a significantly reduced soft error rate compared to 
their bulk counterparts.  In addition, BG/Q uses radiation-
hardened stacked-latch [2][18][19], and detection and correc-
tion circuitry to enable high reliability at HPC scale.   

Fault injection through accelerated irradiation is an effec-
tive way to evaluate the overall soft error resiliency of micro-
processors [6][7]. By irradiating a microprocessor chip run-
ning an application with high-energy particles, an accurate 
assessment of fault masking and behavior under faults can be 
obtained without being biased by the designer expectation or 
existing fault injection facilities at the level of pre-silicon 
models.  The results can then be analyzed to project actual 
long term failure rate for larger-scale HPC systems. 

Application-level fault injection (AFI) has also been 
shown to be very effective in estimating resiliency inherent in 
the applications.  Application behavior under faults can be 
gathered and analyzed by repeating runs and injecting faults 
(e.g., bit flips) statistically in time and space (e.g., in register) 
during the application run.  Typically, faults are injected in 
software-based methodology such as using GNU GDB or in-
serting injection code into the applications. 

We performed our proton irradiation and AFI experiments 
on the BG/Q compute chip over a variety of selected applica-
tions [1] as shown in Figure 1.  

In order to study the software behavior under soft errors in 
the register file, we designed our software-based AFI method-
ology to intentionally bypass hardware detection in the regis-
ter files. If the hardware detection had not been bypassed, a 
potential bit flip in the register files would have been detected 
and corrected by the BG/Q hardware before propagating into 
software-visible states.  Thus, it should be put in perspective 
that the results of these AFI experiments do not directly ex-
trapolate to silent data corruption (SDC) rate on any hardware. 

We selected AMG2006, UMT, LAMMPS, WUPWISE, 
QCD ad LINPACK as our software applications because they 
are widely used in the HPC environments.  Of the selected 
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applications, AMG2006, UMT and LAMMPS were chosen 
from the full-application versions of the Sequoia Benchmark 
[1].  AMG2006 (Algebraic MultiGrid) is a parallel algebraic 
multigrid solver for linear systems arising from problems on 
unstructured grids.  UMT (Unstructured-Mesh deterministic 
radiation Transport) is a 3D, deterministic, multigroup, photon 
transport simulation program for unstructured meshes.   
LAMMPS (Large-scale Atomic and Molecular Massively Par-
allel Simulator) is a simulation program for classical molecu-
lar dynamics.  WUPWISE (Wuppertal Wilson Fermion Solver) 
is a simulation program in the area of lattice gauge theory in 
quantum chromodynamics [14].  QCD (Quantum Chromo 
Dynamics) is an application for simulating the dynamics of 
quarks and gluons [15].  LINPACK is a benchmark that solves 
a dense system of linear equations and is widely used to meas-
ure performance of HPC systems [16]. 

In order to rationalize results across experiments, we modi-
fied the applications as described below while maintaining 
their behavior.  To focus our application study at the chip lev-
el, we modified multi-node MPI (Message Passing Interface) 
applications to run as stand alone, single chip instances to ex-
clude the effects on MPI software stacks. In order to collect 
more statistics, all applications were made to execute in 
roughly one minute, so that many different applications could 
be run in a short time under similar conditions. The applica-
tions are configured to use all 64 threads on the BG/Q chip to 
maximize the utilization of BG/Q cores and interconnect. 
 
 
 
 
 
 

Table I: Applications for the BG/Q compute chip functional 
irradiation test and AFI (DP: Double-precision; SIMD: Sin-
gle-Instruction-Multiple-Data). 

Benchmark Threading FP Characteristics 
AMG2006 16 * 4-thread  DP 
UMT 16 * 4-thread  SIMD DP 
LAMMPS 16 * 4-thread  DP 
WUPWISE 16 * 4-thread  DP 
QCD 1 * 64-thread  SIMD DP 
LINPACK 1 * 64-thread  SIMD DP 

 
Table I provides details of the applications studied. The 

applications were compiled with the highest performance 
compiler options available at the time. To ensure that the mod-
ified applications are representative of larger-scale, multi-node 
runs, we collected and computed statistics such as perfor-
mance throughput and cache miss rates using the BG/Q on-
chip performance counters.  The statistics are shown in Table 
II; they are comparable to larger-scale multi-node runs. Table 
II also shows that the applications cover a representative range 
of architectural behaviors, namely cache miss rates, instruc-
tion-per-cycle throughput (IPC), as well as floating point 
(FPU) and integer (XU) operations per cycle. 

We observe the following results: 
• We quantified BG/Q compute core’s hardware resiliency 

in the register files and Level-1 caches. 
• We quantified BG/Q application’s inherent software 

resiliency to potential single and multiple bit flips in the 
register files. 

• We identified GPR1, GPR2 and GPR13 to be the most 
vulnerable over other GPRs. 

• We identified signage and exponent bits in the FPRs to be 
most vulnerable over other bits, and normalization as the 
mechanism for resiliency in the FPR. 

• We identified vulnerable functions in each application. 

 

 

 

Table II: Performance counters and statistics. 

 AMG2006 UMT LAMMPS WUPWISE QCD LINPACK 
 Mean Statistics are per core 

Instructions /cycle 0.71 0.52 0.65 0.97 0.28 1.24 
Loads/cycle 0.18 0.14 0.23 0.20 0.08 0.48 
L1 misses/cycle 0.00 0.02 0.03 0.01 0.04 0.08 
L1 miss ratio 0.03 0.11 0.12 0.03 1.36 0.56 
L1p miss/cycle 0.00 0.01 0.02 0.00 0.00 0.00 
XU instructions/cycle 0.68 0.42 0.45 0.81 0.16 0.64 
FPU instructions/cycle 0.03 0.10 0.20 0.15 0.16 0.64 
Flops/cycle 0.04 0.36 0.29 0.27 0.92 4.08 
 Mean Statistics are per chip (16 user cores) 
L2 hits/cycle 1.38 1.51 1.06 1.37 0.64 0.67 
L2 misses/cycle 0.01 0.06 0.01 0.01 0.06 0.01 
L2 miss ratio 0.00 0.04 0.01 0.01 0.09 0.02 
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II. BG/Q 150 MEV PROTON IRRADIATION 

A. Background 
Fault injection through chip irradiation[6][7][10][12] is 

an effective way to assess reliability and soft error resiliency 
of microprocessors and applications within a short period of 
time, typically a day.  By placing a functional chip running 
applications under irradiation, the resiliency and behavior 
under errors of the system can be quantified, and the col-
lected data can be extrapolated to model long term mean-
time-between-failures (MTBF) for large-scale HPC systems. 
Highly energetic cosmic rays have the ability to generate a 
variety of daughter particles in the Earth's atmosphere. Of 
these, predominantly neutrons with energies > 10 MeV have 
the ability to cause soft errors in terrestrial microelectronics, 
since they are still energetic enough to cause secondary par-
ticles in a spallation event within the chip. In addition, alpha 
particles from packaging materials, as well as thermal neu-
trons in combination with 10Boron, can cause soft errors. 
However, due to better process control, the contributions 
from alpha particles and thermal neutrons are diminished 
today.   

The cosmic ray flux depends on the Earth's magnetic 
field (i.e. latitude, longitude, sunspot activity) and most crit-
ically on altitude (atmospheric depth). The resulting ener-
getic neutron flux is customarily quoted for the reference 
location New York City (40.7 deg N, 74 deg W) at sea lev-
el, and is 12.9 neutrons per cm2 per hour.  Separate experi-
ments [7] have shown that the effects of the cosmic ray-
induced neutron flux are modeled well by a 150 MeV pro-
ton beam. In the proton beam experiment, the average pro-
ton flux is approximately 1.0 x 1010 protons / cm2 / hour, 
achieving an acceleration factor of 775 Million.  To bridge 
the modeling gap of the neutron energy spectrum (from 10 
MeV to 1 GeV) being replaced by a proton beam, we make 
use of a previous analysis [7] for the same 150 MeV proton 
beam as we used for our experiment.   

B. Methodology 
The experiment was carried out at the Massachusetts 

General Hospital Proton Therapy Center.  We chose to 
beam a single BG/Q chip in a fan-cooled I/O drawer be-
cause it provided maximum flexibility for aligning with the 
proton beam (Figure 1).  The chip we selected for the exper-
iment represented nominal voltage setting (VDD=0.88V).  
In order to accurately assess the SER of the BG/Q chip, we 
protected other components of the system such as main 
memory, power supply and FPGA controllers from the pro-
ton beam and daughter particles resulting from collisions 
between the beam and the BG/Q chip.  To that end, we em-
ployed lead bricks outside the system  (Figure 2) and light-
er-weight polymethyl metacrylate (Plexiglas™) shielding 
inside the system enclosure around the chip, including the 
DRAM memory system (Figure 3).  We aligned the beam 
such that the entire BG/Q chip, plus an extra 1 mm on all 
sides, was exposed perpendicularly and uniformly.  The 
proton beam was positioned to enter through the metal heat 
spreader and exit though the backside (substrate side) of the 
processor module. Figure 4 shows that proton-sensitive film 
was used to calibrate the beam to irradiate only the compute 
chip, confirmed by the shaded area on the film. 

In the experiments, we enabled the chip diagnostic mode 
where all detected-and-corrected errors were recorded in the 
RAS (Reliability, Availability and Serviceability) logs.  
This enabled us to validate the design of on-chip fault toler-
ance features including hardware autonomous detection and 
correction in the register files.  The application output files, 
diagnostic output files and RAS logs from the runs were 
saved for post-processing.  To determine if applications ran 
correctly, application output files of completed runs were 
compared with a known-good output file that was obtained 
in a test run before the proton irradiation test.  In determin-
ing if an application had hung, we set a timeout period for 
the runs at twice the average execution times for each appli-
cation. 

�  
Figure 1: BG/Q IO drawer on stage for beam alignment. 

 
Figure 2: BG/Q IO drawer behind final aperture and lead 
wall. 

Figure 3: Plexiglas™ was used to protect board compo-
nents other than the chip. 
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Figure 4: Proton-sensitive film was used for calibration of 
the beam. 

C. Correctable Errors 
On the BG/Q compute cores, many considerations were 

put into modeling and designing circuitry for soft error resil-
iency to enable high reliability at the scale of HPC require-
ments.  In the compute core, all the SRAM arrays and regis-
ters are protected by either ECC or parity.  The compute 
core also has a lower risk of unscheduled disruption because 
the architecture circuitry warrants low-latency, autonomous 
detection and recovery from single-bit upsets.  Because L1 
data cache and directory has a write-through replacement 
policy, it can recover from a detected error by copying the 
correct states from L2 cache.  Similarly, the read-only L1 
instruction cache and directory can also recover by copying 
correct states from the L2 cache.  As a novel IBM innova-
tion that is first implemented in BG/Q compute core, the 
FPU and GPR register files are parity-protected but can re-
cover from single-bit errors in hardware: because the regis-
ter files are already duplicated to provide high bandwidth, 
the hardware autonomously recovers from a single-bit parity 
error in one register file array by copying correct states from 
its duplicate [9]. 
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Figure 5: Measured and extrapolated FIT rates of detected-
and-corrected errors. 

Figure 5 shows the FIT rate per chip (in number-of-
failure per billion power-on hours) measured during the chip 
irradiation test and normalized for New York City sea level 
for each application.  In computing these corrected error rate 
we collected statistics only from completed runs with no 
faults such that the irradiation duration can be accurately 
accounted for with the completion time of each run.  In the 
BG/Q core, both level-1 instruction (I-cache) and data (D-
cache) caches are 16kB in effective size. 

From Figure 5, even though I-cache and D-cache have 
the same size, the I-cache detected significantly more bit 
flip incidents.  The reason that I-cache had higher detected 
error rate can be explained by its cache replacement behav-
ior with respect to D-cache.  Bit flips in the caches can be 

masked if the corresponding physical cache line is replaced 
where new content are stored over the old, faulty content.  
In these applications, because data space tends to have a 
much larger footprint then instruction space, D-cache has a 
higher replacement rate and therefore higher masking fac-
tors.   From Figure 5, LAMMPS and WUPWISE detected 
more errors in the D-cache because they loaded from D-
cache more often, as shown in the performance statistics in 
Table II, characterized by the higher number of load access-
es and L1p misses and relatively lower L1 miss rates.  
LINPACK also had higher detection rate because it had wid-
er SIMD access load width per cache line and its wider ac-
cess triggers wider parity domain checking.  When compar-
ing LINPACK to QCD, both of which regularly exercised 
SIMD load instructions, QCD had a higher cache miss rate 
than LINPACK and thus a higher masking factor.  In FPR, 
more errors were detected during QCD and LINPACK be-
cause these applications heavily exercised the SIMD regis-
ter file. 

While these correctable errors had no visible perfor-
mance or functional effects on the applications, it is im-
portant to use the results in projecting mean time between 
correctable errors to validate that the circuitry for detection 
and correction envisioned at design time properly functions 
and provides the expected value to the system.  Assuming 
the application mix used in this study, we extrapolated these 
results to predict the mean time between correctable errors 
in the GPRs and FPRs of sixteen cores for a system similar 
to the scale of Sequoia to be 16 days.  Similarly, when ac-
counting for instruction cache, data cache, and GPR and 
FPR register files, the mean time between correctable errors 
is predicted to be 1.5 days.  The high rates of detected-and-
corrected errors significantly validated the necessity to in-
clude autonomous hardware detection and recovery at the 
cost of design effort, silicon area and power. 

III. APPLICATION-LEVEL FAULT INJECTION (AFI) 

A. BACKGROUND 
Mukherjee et al. introduced the concept of Architectural 

Vulnerability Factor (AVF) and ACE Analysis as a means 
to estimate SER early in the design cycle [17]. This metric 
evaluates the masking provided at the microarchitecture 
level. In order to accurately estimate the SER of any given 
system it is critical to evaluate the masking provided at the 
application level. In this paper we present a framework to 
understand the application-level masking using the debug-
ging utility provided in systems.  

Ref. [20][22][23] and [24] use circuit-level simulation to 
profile propagation of low-level errors, particularly due to 
single-event upset (SEU) in latches and flip-flops, into high-
level errors in architectural states.  Ref. [23] proposes gen-
eration of instruction sequences that mimic the propagation 
of errors, and [22] focuses on generation of error propaga-
tion matrices to drive high-level simulations.  Unlike 
[20][22][23] and [24] which use architectural simulators for 
high-level error injection, our approach is different because 
we run the applications at native hardware speed, resulting 
in efficient profiling of error propagation and application-
specific error outcomes on a large number of AFI runs of 
large scientific programs.  Our use of debugging utility also 
enables profiling of precise application information such as 
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program counter, program stack and symbol table at the 
point of injection. 

Ref. [20] and [25] quantitatively show inaccuracies in 
the high-level error injection experiments when modeling 
flip-flop errors.  Our work is fundamentally different be-
cause we target soft error in the SRAM-based register files.  
Our work also differs from prior works in that we compare 
the results from our high-level error injection experiment to 
our proton irradiation experiment, whereas [20][22][23] and 
[24] study flip-flop errors with architectural simulations and 
compare the results to their respective circuit simulations. 

There is also prior literature related to correction of soft 
errors.  Ref. [21] proposes selective error correction code 
(ECC) for SRAM-based registers based on life time usage.  
However it does not capture the additional masking due to 
algorithm and floating-point format as we observe in our 
AFI experiments.  Ref. [26] and [27] propose application-
based detection and correction of soft errors through analy-
sis of the algorithms.  Our work differs from these prior 
works in that our proposal targets a general, automated ap-
proach that relies less on application programmers. 

 
Figure 6: A high-level description of the Application-fault 
injection Framework.  

In this paper we propose a framework which runs on the 
native hardware and can inject faults into application in a 
non-intrusive manner. Figure 6 presents the high-level pic-
ture of the framework highlighting the different components 
of this framework. The proposed application-level fault in-
jection (AFI) enables the detailed understanding of applica-
tion masking using statistical fault injection experiments 
while the application is executing on native hardware.  The 
application fault injector has the ability to examine and 
modify the core image and the registers of the application 
being analyzed.  
B. Methodology 

By analyzing key statistics on injection points (e.g., reg-
ister and memory locations, execution time stack, instruc-
tion mix), the behavior of the applications under fault can be 
better understood.  By comparing the error rates between 
different applications, more error tolerant algorithm and 
systems can be derived in the future.   

In the proton irradiation experiment, we obtained the er-
ror rates detected and corrected by the BG/Q hardware cir-
cuitry.  In order to understand the benefit of these detection 
and correction circuitry, we need to analyze the behavior of 

the applications without them.  Therefore, in the AFI exper-
iments, we intentionally bypass the existing on-chip protec-
tions in the hardware.  Because the software-based AFI in-
tentionally bypassed hardware detection in our specially 
controlled experiment setup, it should be put in perspective 
that the results of these AFI experiments do not directly 
extrapolate to failure rate on any hardware detection tech-
nique or on any particular machine including BG/Q and the 
chip irradiation results in section II. 

The method takes advantage of available program de-
bugger software in providing the fault injection capability.  
The Compute Node Kernel (CNK) deployed on BG/Q sup-
ports a remote debugging facility, gdbtool. To provide GDB 
support for the compute node, the GDB server, gdbtool, is 
first started for each rank to be debugged. The tool can be 
started by running the start_tool command. When using the 
start_tool command, the gdbtool server is attached to a run-
ning job at a random time during its execution.  Once the 
gdbtool attaches to and stops the execution of the applica-
tion, any given architected state can be read and modified.  
The gdbtool server then detects and the job continues its 
execution with the injected fault. 

In our experiments, we target pseudo-random fault injec-
tions to corrupt the register-state of a workload (or applica-
tion program) running on the BG/Q compute node.  We 
target register states because unlike the Level-1 read-only 
instruction cache and write-through data cache that can re-
cover by loading correct states from lower-memory hierar-
chy, a detected error in the register file cannot be easily re-
covered and often requires duplicate (as in the case of 
BG/Q) or adding ECC which often affects critical timing 
path in the circuit designs.  Therefore, we seek to identify 
application attributes that could improve power and area 
efficiency of error detection and correction in the register 
files for future designs. 

 Pseudo-random fault injection experiments are made 
into the architected register space in each controlled exper-
iment for the corresponding benchmark. Each such injection 
can lead to one of five outcomes:  

i. Vanished - The bit that is flipped via the injection 
has no effect on the final program output. In this 
paper, it is used synonymously with the term 
“Masked”. 

ii. Mismatched - The injected bit-flip results in a  
mismatch in the program output when compared to a 
known-good run. 

iii. Mismatched but passed – Similar to “Mismatched”, 
the injected bit-flip results in a mismatch in the 
program output.  However, the application’s build-in 
algorithm determines that the obtained solution is 
within tolerable range of the desired solution. 

iv. Crashed - The injected error results in the operating 
system terminating the program due to a detected 
runtime error (e.g., divide-by-zero, segmentation  
fault, etc.). 

v. Hung - The injected bit-flip results in a hung state, 
where there is no forward progress of the program 
execution. 

In our definition, a failure occurs when an injected fault 
is not masked and results exclusively in one of the outcomes 
ii, iii, iv and v listed above. 
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A soft error can be a single event upset (SEU) or a multi 
bit upset (MBU).  In addition to injecting SEU through AFI, 
we also studied the effects of MBU.  Conventional circuit-
level detection such as parity and error correction code 
(ECC) protects against odd number of bit flips, whereas 
ECC or parity with bit-wise interleaving can also detect 
two-bit flips at relatively reasonable circuitry cost.  The next 
MBU case of interest is a four-bit flip.  Therefore, we eval-
uated the effects of four-bit flips in our AFI MBU experi-
ments to observe the differences in outcome distributions 
between single and four-bit flips. 

C. Register File Injections 
The AFI methodology enabled us to analyze the resili-

ency of a given application. The application resilience is 
directly correlated to the temporal and spatial usage of the 
architected state. Figure 7 shows the fault-distribution of 
various applications for injection into the 64-bit general-
purpose and 64-bit, four-way SIMD floating-point registers. 
General-purpose registers (GPR) show higher vulnerability 
as compared to floating-point registers (FPR) for all the 
benchmarks. This phenomenon can be attributed to the use 
of general-purpose register in address calculations along 
with arithmetic operations. For a given application, differ-
ences can be observed for the different functions and proce-
dures.  

 

 
Figure 7: Outcome distribution resulting from AFI injection 
into GPR and FPR. 

Figure 7 shows the fault distribution resulting from the 
AFI experiments.  For each application, the upper graph 
refers to single and four-bit injections into the general pur-
pose register file (GPR), and the lower graph refers to single 
and four-bit injections into the floating point register file 

(FPR).  From Figure 7, LINPACK produced the most Mis-
matches (i.e., outcome ii and iii).  In all the applications, 
going from SBU (1b) to MBU (4b) did not significantly but 
only slightly increased the overall failure (i.e., not masked) 
ratio.  All applications also produced a higher percentage of 
crashes (i.e., outcome iv) when going to MBU while Mis-
matches decreased by similar percentage points.  This phe-
nomenon can be understood as follows: if an effective ad-
dress is changed by a four-bit flip rather than single, it is 
more likely to become out of bound with the array or TLB 
page boundaries.  Another phenomenon consistent across all 
applications is that GPR injection caused more failure cases 
in terms of hung, crashes and mismatches than FPR injec-
tion due to the higher masking rate of FPR operation.  We 
further explore the masking in the FPR in Section III.D.  In 
the FPR fault injection experiment LINPACK is most vul-
nerable.  LINPACK is roughly 50X more sensitive than 
AMG2006 and UMT, and 5X over other applications, alt-
hough its built-in validation test is also able to self-check for 
correctness of the results.  AMG2006 and UMT are highly 
resilient to FPR faults – although the root cause of this resil-
iency is not understood yet. 

In LINPACK, a validation test was included as part of 
the benchmark to check for acceptable accuracy of the com-
puted results.  The test, called a residual test, checks for 
magnitude differences between the computed solution and 
the ideal solution.  In our experiments, the validation test 
would pass if the scaled residual computed within the appli-
cation is less than 16.0.  As discussed in section III.B, be-
cause our applications were performed under controlled 
conditions, a run would be classified as mismatch if its re-
sults are different from the known-good run even if the re-
sults are accepted by the residual test.  However, in the in-
terest of application analysis, we differentiate two types of 
mismatches for LINPACK results in Figure 7: Mismatched 
but passed which shows the percentage of runs passing the 
residual test despite having produced different output, and 
Mismatched which shows the percentage failing the residual 
test.  Figure 7 shows that almost all of the GPR injection 
runs failed residual tests, whereas nearly half of the FPR 
injections still passed the residual tests.  This phenomenon 
shows that LINPACK is much less tolerant to faults in GPR 
than FPR. 

As shown in Figure 7, the FPR were less vulnerable 
compared to the GPR; with around 90% masking on the 
average across all the registers.  This can be attributed to the 
nature of usage of FPR. Most of the high-performance com-
puting check for error-bounds and slight error in the values 
due to rounding, therefore errors caused by flipping the 
lower bits has less effect on the correctness of the overall 
computation. This is in contrast to the GPRs, which are pri-
marily used in address calculation and increment values. 
D. Masking in the floating point format 

The IEEE 754 double-precision binary floating point 
format describes a 64-bit representation of 1-bit signage, 11-
bit exponent and 52-bit fraction, as is supported in the BG/Q 
FPU.   Theoretically, although the sign and exponent have 
fewer bits, they should have a more significant impact if 
flipped because they will change the magnitude and direc-
tion of the represented number.  The fraction, although larg-
er in bit count, may have a smaller impact on average be-
cause only a few bits represent the significant numbers in 
the representation.  The significant bits are not easily identi-
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fiable because their positions depend on the normalization 
of the number and the precision of the represented numbers.  
However, when a floating point number is normalized, a bit 
flip in its fraction is less likely to impact the number repre-
sentation because the bit flip is more likely to impact the 
less significant bits in the fraction. Figure 8 shows the prob-
ability of failures if an error is injected into one of the por-
tions of an FPR register in the IEEE 754 representation.  To 
clarify, the failure probabilities in Figure 8 do not account 
for how probable whether signage, exponent or fraction bits 
would be flipped, which would depend on the number of 
bits for each portion and how they are computed, but they 
represent the probability of failures given that a bit flip is 
injected into each portion.  From Figure 8, LAMMPS and 
WUPWISE had higher failure ratio when their exponent bits 
were flipped, but were not sensitive when its signage bit 
was flipped.  The fraction bits, although as expected did 
have a significant impact more than the exponent bits, still 
represented a significant probability of failures.  In all three 
cases, bit flips did not lead to crashes except a few occur-
rences in LAMMPS.  The observation that the signage and 
exponent bits are more vulnerable suggests that these bits 
should be protected by a stronger ECC scheme in a future 
design.  However, one must note that depending on the en-
dian and precision mode, the physical locations of the sign-
age and exponent may change.  The envisioned ECC code 
must also accommodate the different precision and endian 
modes, or even mixed, dynamically adjustable precisions 
and endian modes in the floating point register file as speci-
fied in the ISA. 

 
Figure 8: The failure (i.e., not masked) distribution depend-
ing on the bit position of injection.   

E. Masking in the register allocation 
When studying software-level vulnerability and optimi-

zation opportunities, register usage and allocation in the 
application are important because architectural registers are 
the most commonly used interface between hardware and 
software.  While the POWERPC Instruction Set Architec-
ture (ISA) allows any register to be used in the general-
purpose sense, compiler specification often assigns specific 
role to each register for the sake of binary interfacing and 
standardization.  Note that these register usage corresponds 
to logical names of the register files.  In architectures that 
support register renaming, the most vulnerable registers are 
dependent on their usage and not its physical location.  In 
this analysis, we quantify the failure rates of these general 

purpose registers (GPR) and relate the observations to their 
assigned roles by the compiler specification. 

 
Figure 9: Failure distribution of AMG2006 with GPR injec-
tion based on register numbers/names.  GPR1 and GPR13 
can be seen to be highly vulnerable compared to the re-
maining GPRs, 

Figure 9 shows the fault distribution across the 32 gen-
eral purpose registers for AMG2006. Significant variation in 
the vulnerability of the registers can be observed, with 
GPR1, GPR2 and GPR13 having high vulnerability to the 
single-bit flips. GPR1 is used as a stack pointer and hence 
any corruption of the stack pointer would most likely lead to 
a crash or an error by moving the stack to some other point 
in computation. Such behavior was observed generally for 
GPR1 across all the benchmarks.  Similarly, GPR2 is used 
as pointer for Table of Content (TOC) of the current running 
routine to locate its variables.  Therefore a corrupted TOC 
will cause the execution to continuously load values from 
incorrect location of variables.  GPR13 in AMG2006 was 
also seen to be highly vulnerable with only 5% masking and 
this is mostly attributed to the nature of use GPR13. Be-
cause GPR13 is the preferred register in compiler stack-
based register allocation algorithm among the global varia-
ble registers (GPR13-GPR31 are global registers), GPR13 is 
mostly used for reads and mostly into load instructions. A 
bit flip in the value of GPR13 will lead to corruption of the 
load address.  The observation that some of these GPR reg-
isters are more vulnerable suggests that these registers 
should be protected by a stronger ECC scheme in a future 
design, assuming future compilers continue to adhere to the 
same register allocation schemes. 

F. Algorithmic Masking in the Application Functions 
Application-level fault injection helps to understand the 

resiliency of the application towards single or multiple-
event upsets. The resiliency depends strongly on utilization 
and residency of architectural states; making some proce-
dures or functions highly vulnerable compared to others. 
However, when predicting resiliency of a given function, 
the algorithmic masking in that function should also be tak-
en into account. In this section, we provide a study of the 
application performance behavior coupled with the failure 
characteristics of the key functions for the given applica-
tions.  A vulnerability analysis of each function can help 
application developers make the frequently called vulnera-
ble functions more resilient by altering the usage patterns of 
the architected state and hence reduce the overall vulnerabil-
ity of a given application. 
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Because GPR is more vulnerable than FPR, we focus 
our failure analysis of the applications based on the GPR 
AFI experiments.  Table IV - Table VIII show the failure 
distribution when faults are injected into the GPR coupled 
with the time spent in the top 5 functions for each applica-
tion.  A breakdown of the fault distribution of each function 
highlights the vulnerability of any given function.  In identi-
fying the most vulnerable code segments in an application 
for optimization opportunity, both failure rate and execution 
time of the code segment relative to the application have to 
be examined together.  For example; 
hypre_SeqVectorInnerProd was the most vulnerable 
function for AMG2006 because it had the lowest 60.2% 
masked factor when considered in isolation without 
accounting for the time spent in the function. However, it 
accounts for only 5.8% of the runtime of the application; 
and hence reduced the overall vulnerability of the function 

to 7.8%. It is also not uncommon in the applications where 
some functions are way more vulnerable than their portion 
of execution time would suggest.  For example, in Table VII 
which shows the failure rate breakdowns for QCD, the func-
tion _vmx_dwf_dp_lab was executed only 4.7% of overall 
execution time but was responsible for 21.3% of the failures 
in the GPR injection experiment. 
Synchronization functionality such as idle loop and thread 
scheduler account for non-trivial portion of the overall fail-
ure percentage.  For example, _pthread_cond_wait accounts 
for 10.2% in AMG2006, while _sched_yield and 
.SpinWaitTaskSwitchBGQ account for 3.7% and 2.6% in 
LAMMPS, respectively.   This observation shows that there 
are software-level reliability optimization opportunities in 
the runtime stack, outside the application’s and compiler’s 
regimes.

Table III: Execution time and failure distributions of GPR AFI for AMG2006. 
Function name Timeout Crash Mismatch Vanish % Time % failures 

hypre_CSRMatrixMatvecT 5.8% 5.7% 16.6% 71.9% 27.0% 25.4% 
hypre_BoomerAMGRelax 3.9% 10.1% 24.7% 61.3% 16.6% 21.5% 
hypre_CSRMatrixMatvec 5.0% 6.2% 20.4% 68.4% 16.7% 17.7% 
__pthread_cond_wait 8.1% 10.0% 5.8% 76.1% 12.8% 10.2% 
hypre_SeqVectorInnerProd 3.4% 16.9% 19.5% 60.2% 5.8% 7.8% 

Table IV: Execution time and failure distributions of GPR AFI for UMT. 
Function name Timeout Crash Mismatch Vanish % Time % failures 

Snswp3d 0.7% 22.7% 14.6% 62.1% 67.6% 72.9% 
Snqq 0.8% 15.7% 17.4% 66.1% 6.1% 5.9% 
.ThdCode 5.1% 14.6% 1.9% 78.3% 8.0% 4.9% 
Snneed 2.0% 13.7% 29.4% 54.9% 2.6% 3.3% 
Snflwxyz 0.0% 16.7% 30.6% 52.8% 1.8% 2.5% 

Table V:  Execution time and failure distributions of GPR AFI for LAMMPS. 
Function name Timeout Crash Mismatch Vanish % Time % failures 

PairEAM::compute 1.4% 20.8% 32.1% 45.7% 71.9% 84.2% 
Neighbor::half_bin_newton 1.9% 17.7% 13.5% 67.0% 10.8% 7.7% 
.__sched_yield 9.2% 9.8% 0.6% 80.5% 8.8% 3.7% 
.SpinWaitTaskSwitchBGQ 8.3% 11.9% 1.8% 78.0% 5.5% 2.6% 
FixNVE::initial_integrate 0.0% 16.7% 11.1% 72.2% 0.9% 0.5% 

Table VI:  Execution time and failure distributions of GPR AFI for WUPWISE. 
Function name Timeout Crash Mismatch Vanish % Time % failures 

Zgemm 1.1% 15.3% 31.7% 51.9% 33.3% 33.9% 
Zaxpy 1.2% 8.0% 38.7% 52.1% 16.8% 17.0% 
Memset 1.4% 16.2% 23.9% 58.6% 11.1% 9.7% 
Lsame 0.8% 6.2% 27.8% 65.1% 12.1% 8.9% 
Gammul 1.8% 13.5% 49.5% 35.1% 5.6% 7.6% 

Table VII:  Execution time and failure distributions of GPR AFI for QCD. 
Function name Timeout Crash Mismatch Vanish % Time % failures 

_vmx_dwf_dp_lab 0.0% 1.3% 67.9% 30.8% 4.7% 21.3% 
britney::randFermion(Fermion_t) 0.0% 6.7% 0.0% 93.3% 42.7% 18.6% 
_vmx_dwf_dp_dag_lab 1.9% 11.5% 53.8% 32.7% 3.2% 13.8% 
drand48 0.4% 11.5% 0.0% 88.1% 15.8% 12.2% 
vmx_cg 0.0% 0.0% 39.2% 60.8% 3.2% 8.0% 

Table VIII:  Execution time and failure distributions of GPR AFI for LINPACK. 
Function name Timeout Crash Mismatch Vanish % Time % failures 

.slow_stride 2.6% 0.0% 59.3% 38.0% 71.5% 80.6% 

.simple_nn_dgemm 3.7% 0.0% 67.9% 28.4% 5.2% 6.7% 

.HPL_dlaswp00N 2.4% 0.0% 81.2% 16.5% 4.0% 6.0% 

.HPL_dgemv 0.0% 0.0% 65.7% 34.3% 1.9% 2.3% 

.Copy_A_NonTranspose 0.0% 0.0% 38.7% 61.3% 1.8% 1.3% 
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IV. CONCLUSIONS 
The principal goal of this work is to understand the inter-

action between BlueGene/Q hardware and high-performance 
applications when it comes to SER through chip irradiation 
experiment and application-level fault injections experiments. 

From our irradiation experiments we derived that the mean 
time between correctable errors at sea level (New York City) 
of the SRAM-based register files and Level-1 caches for a 
system similar to the scale of Sequoia system with its roughly 
1.6 million cores running HPC workloads to be approximately 
1.5 days, an outstanding result for a system of this magnitude.  
In only the register files are considered, we found the mean 
time between correctable errors in the GPRs and FPRs of the 
similar system to be 16 days. The high rate of detected-and-
corrected errors significantly validated the necessity to include 
autonomous hardware detection and correction at the cost of 
design effort, silicon area and power.  In our AFI experiments, 
we characterized relative vulnerabilities among the applica-
tions in both general purpose (GPR) and floating-point (FPR) 
register files and the software attributes that lead to these vul-
nerabilities.  In order to study software behavior under fault, 
we designed our software-based AFI methodology to inten-
tionally bypass hardware detection in these register files. If the 
hardware detection had not been bypassed, a potential bit flip 
in the register files would have been detected and corrected by 
the aforementioned hardware before propagating into soft-
ware-visible states.  Thus, it should be put in perspective that 
the results of these AFI experiments do not directly extrapo-
late to silent data corruption (SDC) rate on any hardware.   

In our results, applications are shown to be more resilient 
to FPR faults than GPR faults.  In FPR fault injection experi-
ments, LINPACK is the most vulnerable to SDC, roughly 50X 
more than AMG2006 and UMT and 5X over other applica-
tions, although the built-in residual checking in LINPACK is 
also able to self-check for correctness of computed results.  
AMG2006 and UMT are highly resilient to FPR faults possibly 
due to their algorithms.  In GPR fault injection experiments, 
applications show similar resiliencies with masking factors 
ranging from 40% to 87%.  We also examined the register 
usage in GPR and determined the GPR registers that are the 
most vulnerable.  Going from single-bit upset (SBU) to multi-
bit upset (MBU) fault injections, we do not observe significant 
changes in overall fault rates except MBU produces more de-
tectable faults than SBU in GPR injection experiments.  The 
increase in detectable fault rates is due to the fact that GPR are 
mainly used for address computations and changes in multiple 
bits are most likely to cause addresses to be out-of-bound and 
detected by hardware memory management.  We also studied 
the most vulnerable code segments for each application, which 
would be useful for future tuning and improvement using 
software techniques such as resiliency register allocation or 
hardware transactional memory.  Our study reveals that the 
most vulnerable codes are not often the most executed code 
segment, that profiling is needed to guide such improvements. 
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