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Abstract: We present a new approach to fault tolerance for High Performance Computing system.
Our approach is based on a careful adaptation of the Algorithmic Based Fault Tolerance technique
(Huang and Abraham, 1984) to the need of parallel distributed computation. We obtain a strongly
scalable mechanism for fault tolerance. We can also detect and correct errors (bit-flip) on the fly of
a computation. To assess the viability of our approach, we have developed a fault tolerant matrix-
matrix multiplication subroutine and we propose some models to predict its running time. Our
parallel fault-tolerant matrix-matrix multiplication scores 1.4 TFLOPS on 484 processors (cluster
jacquard.nersc.gov) and returns a correct result while one process failure has happened. This
represents 65% of the machine peak efficiency and less than 12% overhead with respect to the fastest
failure-free implementation. We predict (and have observed) that, as we increase the processor count,
the overhead of the fault tolerance drops significantly.

1 Introduction

Much research has been conducted into the checkpointing of message passing applications [6]. The earlier
project proposing checkpoint/restart facilities for a parallel application based on MPI was CoCheck [30] and
some of the most current and widely used systems are LAM/MPI [7], MPICH-V/V2/V3 [6], CHARM++ [1]
and Open MPI [5]. The foundation for all of these projects is that the system does not force the MPI
application developers to handle the failures themselves, i.e., the underlying system, be it the Operating
System or the MPI library itself, is responsible for failure detection and application recovery. The user of
the system is not directly burdened with this at the MPI API layer.

System-level checkpointing in parallel and distributed computing settings has been studied extensively.
The issue of coordinating checkpoints to define a consistent recovery line has received the attention of
scores of papers, ably summarized in the survey paper of Elnozahy et al [12]. Nearly all implementations of
checkpointing (e.g. [2, 8, 11, 13, 19, 20, 23, 25, 27, 29, 30]) are based on globally coordinated checkpoints,
stored to a shared stable storage. The reason is that system-level checkpointers are complex pieces of code,
and therefore real implementations typically keep the synchronization among checkpoints and processors
simple [17]. While there are various techniques to improve the performance of checkpointing (again, see
[12] for a summary), it is widely agreed upon that the overhead of writing data to stable storage is the
dominant cost.

Diskless Checkpointing has been studied in various guises by a few researchers. As early as 1994, Silva
et al explored the performance gains of storing complete checkpoints in the memories of remote proces-
sors [28]. Kim et al. [24] presented a similar idea of diskless checkpointing in 1994 as well. This technique
was subsequently revised for SIMD machines by Chiueh [10]. More recently, diskless checkpointing of
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FFTs has been studied in [15]. Evaluations of diskless and diskless/disk-based hybrid systems have been
performed by Vaidya [31]. Lu presents a comparison between diskless checkpointing and disk based check-
pointing [21].

While these techniques can be effective in some specific cases, overall, automatic application–oblivious
checkpointing of message passing applications do suffer from scaling issues and in some cases can incur
considerable message passing performance penalties.

A relevant set-up of experimental conditions considers a constant failure rate per processor. Therefore,
as the number of processors increases, the overall reliability of the system decreases accordingly. Elnozahy
and Plank [14] proved that, in these conditions, checkpointing-restart is not a viable solution. Since the
failure rate of the system is increasing with the number of processors, a scalable application requires its
recovery time to decrease as the number of processors increases. The checkpoint-restart mechanism does
not enjoy this property (at best the cost for recovery is constant).

Our contribution with respect to existing HPC fault tolerant research is to present a methodology to
enrich existing linear algebra kernels with fault tolerance capacity at a low computational cost. We believe
it is the first time that a technique is devised that enables a fault-tolerant application to be able to reduce
the fault tolerance overhead while the number of processors increases and the problem size is kept constant.
Moreover not only can our method recover from process failures, it can also detect, locate and correct “bit-
flip” errors in the output data. The cause of these errors (communication error, software error, etc.) is not
relevant to the overall detection/location/correction process.

Algorithm-based fault tolerance (ABFT), originally developed by Huang and Abraham [16], is a low-
cost fault tolerance scheme to detect and correct permanent and transient errors in certain matrix operations
on systolic arrays. The key idea of the ABFT technique is to encode the data at a higher level using checksum
schemes and redesign algorithms to operate on the encoded data. These techniques and the flurry of papers
that augmented them [3, 4, 22, 26] opened the door for jettisoning system-level techniques and instead
focused on high-performance fault-tolerance of matrix operations.

The present manuscript focuses on exposing a new technique specific to linear algebra based on the
ABFT approach from Huang and Abraham [16]. Our contribution with respect to the original work of Huang
and Abraham is to extend ABFT to the parallel distributed context. Huang and Abraham were concerned
with error detection, location and recovery in linear algebra operation. Once a matrix-matrix multiplication
is performed (for example), then ABFT enables to recover from errors. This scenario is not ideal for HPC
where we want to be able to recover an errorless environment immediately after a failure. The contribution
is therefore to create algorithms for which ABFT can be used on the fly.

This manuscript focuses on obtaining an efficient fault-tolerant matrix-matrix multiplication subrou-
tine (PDGEMM). This application does not respond well to memory exclusion techniques [18], therefore
standard checkpointing techniques perform poorly. Matrix-matrix multiplication is a kernel of fundamental
importance to obtain efficient linear algebra subroutines. Our claim is that we can encapsulate all the fault
tolerance needed by the linear algebra subroutines in ScaLAPACK in a fault-tolerant Basic Linear Algebra
Subroutines (BLAS).

The third contribution of this manuscript is the presentation of model to predict the running time of our
routines.

The fourth contribution of this manuscript is a software based on FTMPI and some experimental re-
sults. Our parallel fault-tolerant matrix-matrix multiplication scores 1.4 TFLOPS on 484 processors (cluster
jacquard.nersc.gov) and returns a correct result while one process failure has happened. This repre-
sents 65% of the machine peak efficiency and less than 12% overhead with respect to the fastest failure-free
implementation.
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2 A new approach for HPC fault tolerance

2.1 Additional processors to store redundant information

During a computation, our data is spread across different processes. If one of these processes fails, we need
an efficient way to recover the lost part of the data. In that respect, we use additional processes to store
redundant information in a checksum format. Checksums represent an efficient and memory–effective way
of supporting multiple failures.

If a vector of data x is spread across p processes where xi is held by process i, then an additional process
is added for the storage of y such that y = a1x1 + . . . + apxp. (For the sake of simplicity, we assume the
size of x is constant on all the processes). In case of a single process failure, using the information in
the additional checksum process and the non-failed processes, the data on the failed process can trivially
be restored. (Assuming the ai are not 0.) This fault-tolerant mechanism is classically known as diskless
checkpointing and was first introduced by Plank et al. [24]. The name diskless comes from the fact that
checksums are stored on additional processes as opposed to being stored on disks.

In order to support f failures, f additional processes are added and f checksums are performed with the
following linear relation 

y1 = a11x1 + . . .+a1pxp,
...
y f = a f 1x1 + . . .+a f pxp.

A sufficient condition to recover from any f -failure set is that any f –by– f submatrix of the f –by–p matrix
A is nonsingular.

Checksums are traditionally performed in Galois Field arithmetic. Another natural choice to encode
floating-point numbers is to use the floating-point arithmetic. Galois Field always guarantees bit-by-bit
accuracy. Floating-point arithmetic suffers from numerical errors during the encoding and the recovery.
However, cancellation errors in the checksum are typically of the same order as the ones arising in the
numerical methods, therefore of no concern for the quality of the final solution; additionally, the f –by– f
recovery submatrix is statistically guaranteed to be well-conditioned if we take the checkpoint matrix A with
random values [9].

The ABFT technique presented in this manuscript is based on a floating-point checksum.

2.2 ABFT approaches to fault tolerance in FT-LA

In 1984, Huang and Abraham [16] proposed ABFT (Algorithm Based Fault Tolerance) to handle errors in
numerical computation. This section relies heavily on their idea. To illustrate the ABFT technique, we
consider two vectors x and y, spread among p processes, where process i holds xi and yi. An additional
checksum process has been added to store the checksum xc = x1 + . . . + xp and the checksum yc = y1 +
. . .+ yp. The checksums are performed in floating-point arithmetic. Assume now that one wants to realize
z = x + y. This involves the local computation on process i, i = 1, . . . , p : zi = xi + yi and the update of the
checksum zc. Instead of computing zc as z1 + . . .+ zp, as proposed in Section 2.1, ABFT simply performs
zc = xc + yc. While the traditional checkpoint method would require a global communication among the
n processes and an additional computational step, ABFT performs a local operation (no communication
involved) on an additional process during the time the active processes perform the same kind of operation.
Therefore, to maintain the checksum of zc consistent with the vector z, the penalty cost with respect to the
non-fault-tolerant case is an additional process.

The same idea applies to all linear algebra operations. For example matrix-matrix multiplication, LU
factorization, Cholesky factorization or QR factorization (see [3, 4, 16, 22, 26]).

3



As an example, we have studied ABFT in the context of the matrix-matrix multiplication. Assuming
that A and B have been checkpointed such that

AF =
(

A ACR

CT
C A CT

C ACR

)
and BF =

(
B BCR

CT
C B CT

C BCR

)
,

where CC and CR are the checksum matrices; then performing the matrix-matrix multiplication(
A

CT
C A

)(
B BCR

)
=
(

AB ABCR

CT
C AB CT

C ABCR

)
= (AB)F , (1)

we obtain the result (AB)F which is consistent, that is to say, it verifies the same checkpoint relation as AF

or BF . This consistency enables us to detect, localize and correct errors. In the context of erasure, one has
to be a more careful since we want not only the input and output matrices to be consistent, but we also want
any intermediate quantity to be consistent. Using the outer product version of the matrix-matrix product
(for k=1:n, Ck = Ck + A:,kBk,: ; end), as Ck is updated along the loop in k, the intermediate Ck matrices
are maintained consistently. Therefore a failure at any time during the algorithm can be recovered (see
Figure 1).

Figure 1: Algorithm-Based Fault-Tolerant DGEMM

If p2 processes are performing a matrix-matrix multiplication, maintaining the checksum consistent
requires (2p− 1) extra processes. The cost with respect to a non-failure-tolerant application occurs when
the information of the matrix A is broadcasted along the process rows. In this case, one extra processor needs
to receive the data. And vice versa for the matrix B: when the information of the matrix B is broadcasted
along the process columns, one extra processor needs to receive the data. These are the only extra costs
for being fault tolerant. From this analysis, we deduce that the main cost to enable ABFT in a matrix-
matrix multiplication is to dedicate (2p−1) processes over p2 for fault-tolerance sake. Therefore, the more
processors, the more advantageous the ABFT scheme is!

3 Model

3.1 PBLAS PDGEMM

It is behind the scope of this manuscript to describe every aspect of parallel matrix-matrix multiplication,
and we refer the reader to [32] for more information.

During a matrix-matrix multiplication, each block of A in the current column (of size mloc ∗ nb) is
broadcasted along the row to all other processes. The same happens to B: each block in the current row
(of size nb ∗ nloc) is broadcasted along the columns. After these two broadcasts, each process on the grid
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computes a local DGEMM. This step is repeated until the whole A and B matrices have been broadcasted to
every process.

For the sake of simplicity, we consider that the matrices are square, of size n–by–n, and distributed over
a square grid of p–by–p processes.

In SUMMA, we implement the broadcast as passing a message around the logical ring that forms the
row or column. In that case the time complexity becomes

(
√

p−1)(α+
n√
(p)

β)+(
√

p−1)(α+
n
√

p
β) (2)

+ k(
2n2

p
γ+α+

n
√

p
β+α+

n
√

p
β) (3)

+(c−2)(α+
n
√

p
β)+(

√
p−2)(α+

n
√

p
β) (4)

+
2n3

p
γ (5)

=
2n2(n+1)

p
γ+2(n+2

√
p−3)(α+

n
√

p
β) (6)

where α is the inverse of the bandwidth, β is the latency and γ is the inverse of the flop rate.
Equation (2) is the time required to fill the pipe (that is the time for the messages originating from A

and B to reach the last process in the row and in the column). The next term (3) is the time to perform the
sequential matrix-matrix multiplication and passing the messages. Then, contribution (4) is the time for the
final messages to reach the end of the pipe. The last term is the time for the final update at the node at the
end of the pipe.

This complexity is then approximately

2n3

p
γ+2(n+2

√
p−3)(α+

n
√

p
β) (7)

and the estimated efficiency is

E(n, p) =
1

1+O( p
n2 )+O(

√
p

n )
(8)

We can see that the method is weakly scalable: if we increase the number of processors while maintaining
constant the memory use per node (thus having p

n2 constant), this algorithm maintains its efficiency constant.
In the remainder, we neglect the latency term (β) in the communication cost.

3.2 ABFT PDGEMM (0 failure)

In this section, we derive a model for ABFT PDGEMM. If we perform a traditional matrix-matrix mul-
tiplication, the result will be a checkpointed matrix (see Equation 1). In the outer-product variant of the
matrix-matrix multiplication algorithm, rank-nb updates are applied to the global matrix C. Therefore, the
checksum stays consistent throughout the execution of the algorithm provided that all the processes go at
the same speed.

The last row of A (checksum) and the last column of B (checksum) are sent exactly in the same way as
the rest of the data (see Figure 1).

When no failure occurs, the overhead of the fault tolerance are:
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Figure 2: Overhead between no fault and one fault in ABFT SUMMA

• the initial checksum. However, if we call ABFT BLAS functions the ones after the other, we do not
have to recompute the checksum between each call. As a consequence, we do not consider the cost of
the initial checksum.

• the computation of an (n+nloc)–by–n–by–(n+nloc) matrix–matrix multiplication, instead of n–by–
n–by–n for a non fault-tolerant code.

• the broadcast which needs to be performed on q+1 processes along the rows and p+1 processes along
the columns, instead of respectively p and q for a non fault-tolerant matrix-matrix multiplication.

Using Equation (6), we can then write the complexity for ABFT PDGEMM with no fault :

2(n+nloc)2n
p

γ+2(n+2
√

p−3)(
n+nloc
√

p
β) (9)

The modification in the first term of the sum comes from the fact that the matrix-matrix multiplication
now involves n–by–(n +nloc) matrices on the same number of processors. The modification in the second
term shows that the pipeline is now longer than in regular SUMMA.

3.3 ABFT PDGEMM (1 failure)

When one fault happens, the timeline is illustrated in Figure 2 and explained below.

• Tdetection: All non-failed processes must be notified when a failure happens. Since processes are only
notified when attempting an MPI communication, odds are that at least one process will be doing a
full local DGEMM before being notified. So, basically, this overhead is more or less equal to the time
of one local DGEMM.

• Trestart: FT-MPI must spawn a new process to replace the failed one. This is a blocking operation and
the time for this step depends solely on the total number of processes involved in the computation.
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Figure 3: Data distribution in the ABFT BLAS framework for vectors and matrices over a 4-by-6 process
grid

• Tpushdata: The non-failed processes must reach the same consistent state. The time overhead consists in
filling and emptying the pipe once.

• Tchecksum: The last step in the recovery is to reconstruct the lost data of the failed process. This cost is
the cost of an MPI Reduce.

4 Experimental results

4.1 ABFT BLAS framework

A prototype framework ABFT BLAS has been designed and implemented. The ABFT BLAS application
relies on the FT-MPI library for handling process failures at the middleware level. The ABFT BLAS re-
sponsibilities is to (efficiently) recover the data lost during a crash.

Vectors over processes are created and then destroyed. Several operations over the vectors are possible:
scalar product, norm, vector addition, etc. Vectors are registered to the fault tolerant context. When a failure
occurs, all data registered in the fault tolerant context is recovered and the application is continued. The
default encoding mode is diskless checkpointing with floating-point arithmetic but an option is to perform
Galois Field encoding (although this rules out ABFT).

The same functionality have been implemented for dense matrices. Dense matrices are spread on the
processor in the 2D-block cyclic format, and checksums can be performed by row, by columns or both (see
Figure 3).

Regarding matrix and vector operations, available functionality are matrix-vector products and several
implementations of matrix-matrix multiplications. One of the main features of the ABFT BLAS library is
that the user is able to stack fault-tolerant parallel routines the ones on top of the others. The code looks like
a sequential code but the resulting application is parallel and fault-tolerant.
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4.2 Experimental setup

All runs where done on the jacquard.nersc.gov cluster, from the National Energy Research Scientific
Computing Center (NERSC). This cluster is a 512-CPU Opteron cluster running a Linux operating system.
Each processor runs at a clock speed of 2.2GHz and has a theoretical peak performance of 4.4 GFLOPS/sec.
Measured peak (on a 3000–by–3000–by–3000 DGEMM run) is 4.03 GFLOPS/sec. The nodes are intercon-
nected with a high-speed InfiniBand network. The latency is 4.5 µsec, while the bandwidth is 620 MB/sec.

Below are more details on the experimental set-up:

• we have systematically use square processor grids.

• the blocksize for the algorithm is always 64.

• process failure were performed manually. We introduced an EXIT statement in the application for
one arbitrary non-checksum process. Although our application support failures at any point in the
execution (see Section 4.3), we find that having a constant failure point was the most practical and
reproduceable approach for performance measurements.

• when we present results of ABFT PDGEMM on a p–by–p grid, this means that the total number of
processors used is p2. Therefore (p−1)2 processors are used to process the data while (2p−1) are
used to checkpoint the data.

• The performance model parameters are

flops rate: 3.75 GFLOPS/sec bandwidth: 52.5 MBytes/sec.

These two machine-dependent parameters and our models (see Section 3) are enough to predict the
running time for PBLAS PDGEMM and ABFT BLAS PDGEMM (0 failure). To model ABFT BLAS
PDGEMM (1 failure), we also need the time for a checkpoint (MPI Reduce) and the time for the
FT-MPI library to recover from a failure (see Section 3.3).

4.3 Stress test

In order to assess the robustness of our library, we have designed the following stress test. We set up an
infinite loop where, at each loop, we initialize the data (A and B), checkpoint the data, perform a matrix-
matrix multiplication C← AB, and check the result with residual checking.

Residual checking consists in taking a random vector x and checking that ‖Cx−A(Bx)‖/(nε‖C‖‖x‖) is
reasonably small. If this test passes, then we have high confidence of the correctness of our matrix-matrix
multiplication routine.

During the execution, a process killer is activated. This process killer kills randomly in time and in the
location any process in the application.

Our application have successfully returned from tens of such failures. This testing not only stresses the
matrix-matrix multiplication subroutine but it also stresses the whole ABFT BLAS library since failure can
occurs at any time.

4.3 Performance results

In Figure 4, we present a weak scalability experiment. While the number of processors increases from 64
(8–by–8) to 424 (22–by–22), we keep the local matrix size constant (nloc = 1000, . . . ,4000) and observe
the performance for PBLAS PDGEMM and ABFT BLAS PDGEMM with no failure.
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Figure 4: Performance (GFLOPS/sec/proc) of PBLAS PDGEMM (left) and ABFT BLAS PDGEMM with
0 failure (right). The solid lines represent model while the circles represent experimental points.

The first observation is that our model performs very well. With only two parameters (α and γ), we are
able to predict the 48 experimental values within a few percents.

We observe that PBLAS PDGEMM is weakly scalable. That is the performance is constant when we
increase the number of processors. We also observe that as the processor count increases, the performance
of ABFT PDGEMM increases.

In Figure 5, Table 1, Figure 6, and Table 2, we present the weak scalability of our application when
nloc is kept constant with nloc = 3000. We present performance results for PBLAS PDGEMM, ABFT
BLAS PDGEMM with 0 failure and ABFT BLAS PDGEMM with 1 failure. We see that as the number of
processors increases the cost of the fault tolerance converges to 0.

The fact that matrix-matrix multiplication performs n3 operations enables us to hide a lot of n2 operations
(for example checkpointing) in the background. This renders weak scalability easily feasible.

In Figure 7, we present a strong scalability experiment. The right graph assesses our claim. We see that
for a fixed problem size, when we increase the number of processors, the overhead of the fault tolerance
decreases to 0. We also observe that the problem size is not relevant in term of overhead, the overhead
is only governed by the number of processors. We do not know of any other fault tolerant scheme that
possesses these two qualities.
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ABFT BLAS PDGEMM (1 failure). The solid lines represent model while the circles represent experimental
points. This is a weak scalability experiment with nloc = 3000. (See also Table 1.)

performance per processor (GFLOPS/sec/proc)
64 81 100 121 256 484

PBLAS PDGEMM 3.14 (3.09) 3.16 (3.09) 3.14 (3.10) 3.10 (3.10) 3.12 (3.12) 3.13 (3.13)
ABFTBLAS PDGEMM (0 failure) 2.43 (2.49) 2.51 (2.55) 2.56 (2.60) 2.62 (2.65) 2.74 (2.79) 2.86 (2.88)
ABFTBLAS PDGEMM (1 failure) 2.33 (2.40) 2.40 (2.46) 2.47 (2.52) 2.52 (2.53) 2.58 (2.63) 2.73 (2.74)

cumul performance (GFLOPS/sec)
64 81 100 121 256 484

PBLAS PDGEMM 201 (198) 256 (251) 314 (310) 375 (376) 799 (798) 1515 (1513)
ABFTBLAS PDGEMM (0 failure) 156 (159) 203 (207) 256 (260) 317 (320) 701 (714) 1384 (1395)
ABFTBLAS PDGEMM (1 failure) 149 (154) 194 (200) 247 (252) 305 (306) 660 (672) 1321 (1327)

Table 1: Performance (GFLOPS/sec/proc) of PBLAS PDGEMM, ABFT BLAS PDGEMM (0 failure), and
ABFT BLAS PDGEMM (1 failure). The number without parenthesis is the experimental result, while the
number in between parenthesis corresponds to the model value. This is a weak scalability experiment with
nloc = 3000. (See also Figure 5.)

64 81 100 121 256 484
PBLAS PDGEMM 100.0 100.0 100.0 100.0 100.0 100.0
ABFTBLAS PDGEMM (0 failure) 129.2 125.9 122.7 118.3 113.9 109.4
ABFTBLAS PDGEMM (1 failure) 134.8 131.7 127.1 123.0 120.9 114.7

Table 2: Overhead of the fault tolerance with respect to the non-failure-resilient application PBLAS
PDGEMM. This is a weak scalability experiment with nloc = 3000. (See also Figure 6.)
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