
On the performance of greedy algorithms for energy minimization

Anne Benoit, Paul Renaud-Goud, Yves Robert

LIP, Ecole Normale Supérieure de Lyon, France
{Anne.Benoit,Paul.Renaud-Goud,Yves.Robert}@ens-lyon.fr

Abstract

We revisit the well-known greedy algorithm for scheduling independent jobs on parallel processors, with
the objective of energy minimization. We assess the performance of the online version, as well as the
performance of the offline version, which sorts the jobs by non-increasing size before execution. We derive
new approximation factors, as well as examples that show that these factors cannot be improved, thereby
completely characterizing the performance of the algorithms.

Keywords: Greedy algorithm, Independent jobs, Parallel processors, Energy minimization.

1. Introduction

This short communication aims at characterizing the performance of the well known greedy algorithm for
scheduling independent jobs on parallel processors, when the objective is to minimize the energy consumption
instead of the execution time, or makespan.

For convenience, here is a quick background on the greedy algorithm for makespan minimization. Consider
a set J of n independent jobs J1, . . . , Jn to be scheduled on a set P of p parallel processors P1, . . . ,Pp. Let ai
be the size of job Ji, that is the time it requires for execution. The algorithm comes in two versions, online
and offline, or without/with sorting jobs. In the online version of the problem, jobs arrive on the fly. The
OnLine-Greedy algorithm assigns the last incoming job to the currently least loaded processor. In the
offline version of the problem (see [1]), all job sizes are known in advance, and the OffLine-Greedy starts
by sorting the jobs (largest sizes first). Then it assigns jobs to processors exactly as in the online version.
The performance of both versions is characterized by the following propositions (see Figures 1 and 2 for an
illustration of the worst-case scenarios):

Theorem 1. For makespan minimization, OnLine-Greedy is a 2− 1
p approximation, and this approxima-

tion factor is met on the following instance: n = p(p− 1) + 1, ai = 1 for 1 ≤ i ≤ p(p− 1) and an = p.

Theorem 2. For makespan minimization, OffLine-Greedy is a 4
3 −

1
3p approximation, and this approx-

imation factor is met on the following instance: n = 2p + 1, a2i−1 = a2i = 2p − i for 1 ≤ i ≤ p and
an = p.

Minimizing the total energy consumed by the processors to execute the job has recently become a very
important objective, both for economic and environmental reasons [2]. Assume that we can vary processor
speeds, for instance through dynamic voltage scaling. In that case we can always use the smallest available
speed for each processor, at the price of a dramatic decrease in performance. The problem is in fact
a bi-criteria problem: given a bound M on the makespan, what is the schedule that minimizes energy
while enforcing the execution time bound? For simplicity, we can assume that processors have continuous
speeds [3, 4, 5, 6], and scale the problem instance so that M = 1. This amounts to set each processor
speed equal to its workload, and to minimize the total energy dissipated during an execution of length one
time-unit. In other words, this amounts to minimize the total dissipated power, which is proportional to the
sum of the cubes of the processor speeds (a model commonly used, e.g. in [6, 7, 8, 9]).

Preprint submitted to Parallel Computing February 17, 2011

P1 1 1 1 1 5

P2 1 1 1 1

P3 1 1 1 1

P4 1 1 1 1

P5 1 1 1 1

P1 5

P2 1 1 1 1 1

P3 1 1 1 1 1

P4 1 1 1 1 1

P5 1 1 1 1 1

OnLine-Greedy Optimal solution

Figure 1: Tight instance for OnLine-Greedy (with p = 5).

P1 9 5 5

P2 9 5

P3 8 6

P4 8 6

P5 7 7

P1 5 5 5

P2 9 6

P3 9 6

P4 8 7

P5 8 7

OffLine-Greedy Optimal solution

Figure 2: Tight instance for OffLine-Greedy (with p = 5).

Formally, let alloc : J → P denote the allocation function, and let load(q) = {i | alloc(Ji) = Pq} be the
index set of jobs assigned to processor Pq for 1 ≤ q ≤ p. The power dissipated by Pq is

∑
i∈load(q) a

3
i , hence

the objective is to minimize

(1)

p∑
q=1

∑
i∈load(q)

a3
i .

This is to be contrasted with the makespan minimization objective, which writes

(2) max
1≤q≤p

∑
i∈load(q)

ai .

However, because of the convexity of the cubic power function, the “natural” greedy algorithm is the
same for both objectives: assigning the next job to the currently least loaded processor minimizes, among all
possible assignments for that job, both the current makespan and dissipated power. We observe that when
p = 2, the optimal solution is the same for both objectives. However, this is not true for larger values of p.
For example, consider the instance with n = 6, p = 3, a1 = 8.1, a2 = a3 = 5, a4 = a5 = 4 and a6 = 2. The
optimal solution for the makespan is the partition {J1}, {J2, J3}, {J4, J5, J6}, with makespan 10 and power
2531.41. The optimal solution for the power is the partition {J1, J6}, {J2, J4}, {J3, J5}, with makespan 10.1
and power 2488.301.

Just as the original makespan minimization problem, the (decision version of the) power minimization
problem is NP-complete, and a FPTAS (fully polynomial-time approximation scheme) can be derived. How-
ever, the greedy algorithm plays a key role in all situations where jobs arrive on the fly, or when the scheduling
cost itself is critical. This was already true for the makespan problem, but may be even more important
for the power problem, due to the environmental (or “green”) computing perspective that applies to all
application fields and computing platforms.

The main results of the paper are summarized in Theorems 3 and 4 below:

2

Theorem 3. For power minimization, OnLine-Greedy is a f
(on)
p (β

(on)
p) approximation, where

f (on)
p (β) =

1
p3

(
(1 + (p− 1)β)

3
+ (p− 1) (1− β)

3
)

β3 + ((1−β)3

(p−1)2

,

and where β
(on)
p is the unique root in the interval [1

p , 1] of the polynomial

g(on)
p (β) = β4(−p3 + 4p2 − 5p+ 2) + β3(−2p2 + 6p− 4) + β2(−4p+ 5) + β(2p− 4) + 1.

This approximation factor cannot be improved.

Theorem 4. For power minimization, OffLine-Greedy is a f
(off)
p (β

(off)
p) approximation, where

f (off)
p (β) =

1
p3

((
1 + (p−1)β

3

)3

+ (p− 1)
(

1− β
3

)3
)

β3 + (1−β)3

(p−1)2

,

and where β
(off)
p is the unique root in the interval [1

p , 1] of the polynomial

g(off)
p (β) = β4(−9p3 + 30p2 − 27p+ 6) + β3(−6p2 + 18p− 12) + β2(−78p2 + 126p+ 33) + β(18p− 180) + 81.

This approximation factor cannot be improved.

Section 2 is devoted to a detailed proof of both theorems, and also provides numerical values of the
approximation factors for small values of p. We give some final remarks in Section 3.

2. Main results

2.1. Proof of the main theorems

The proof of Theorems 3 and 4 is organized as follows:

• Proposition 1 provides a technical bound that is valid for both the online and offline versions;

• This technical is bound is used in Proposition 2 to show that OnLine-Greedy is a f
(on)
p (β

(on)
p)

approximation, and in Proposition 3 to show that OffLine-Greedy is a f
(off)
p (β

(off)
p) approximation;

• Then instances showing that the above factors are tight are given in Proposition 4 for OnLine-Greedy,
and in Proposition 5 for OffLine-Greedy.

Proposition 1. For any given instance, the performance ratio
Pgreedy

Popt
of the greedy algorithm (OnLine-

Greedy or OffLine-Greedy) is such that

(3)
Pgreedy

Popt
≤

(
S+(p−1)aj

p

)3

+ (p− 1)
(
S−aj
p

)3

O3 + (p− 1)
(
S−O
p−1

)3 ,

where
• Pgreedy is the power dissipated by the greedy algorithm;
• Popt is the power dissipated in the optimal solution;
• S =

∑n
i=1 ai;

• O is the largest processor load in the optimal solution;
• j is the index of the last job assigned to the processor that has the largest load in the greedy algorithm.

3

Proof 1. For the optimal solution, we immediately have

Popt ≥ O3 + (p− 1)

(
S −O
p− 1

)3

.

This is because of the definition of O, and of the convexity of the power function.

There remains to show that for the greedy algorithm,

Pgreedy ≤
(
S + (p− 1)aj

p

)3

+ (p− 1)

(
S − aj
p

)3

.

Without loss of generality, let P1 be the maximum loaded processor in the solution returned by the greedy
algorithm. For all q ∈ {1, . . . , p}, let Mq be the load of processor Pq before the assignment of the job Jj, and
let uq ≥ 0 be the sum of the sizes of all jobs assigned to Pq after Jj−1. By definition of j, we have u1 = aj.
The power returned by the greedy algorithm is thus:

Pgreedy =

p∑
q=1

(Mq + uq)
3 = (M1 + aj)

3 +

p∑
q=2

(Mq + uq)
3 .

For q ∈ {2, . . . , p}, let vq = Mq −uq − S−M1−aj
p−1 , so that Pgreedy = (M1 + aj)

3 +
∑p
q=2(

S−M1−aj
p−1 + vq)

3 =

f(M1). Note that the vq can be either positive or negative. Given the vq, we have for p ≥ 2:

f ′(M1) ≥ 3

p− 1
×

p∑
q=2

(
(M1 + aj)

2 −
(
S −M1 − aj

p− 1
+ vq

)2
)

≥ 3

p− 1
×

p∑
q=2

(
M1 + aj −

S −M1 − aj
p− 1

− vq
)
×
(
M1 + aj +

S −M1 − aj
p− 1

+ vq

)
.

By construction, M1+aj ≥ (S−M1−aj)/(p−1)+vq, therefore f is an increasing function. Moreover, P1 is

the least loaded processor before the assignment of Jj, thus a fortiori, for q ∈ {2, . . . , p}, M1 ≤ S−M1−aj
p−1 +vq,

hence (p− 1)M1 +M1 ≤ (S−M1− aj) +
∑p
q=2 vq +M1. We derive that M1 ≤ (S− aj +

∑p
q=2 vq)/p = M+

1 .

But since (M1 + aj) +
∑p
q=2

(
S−M1−aj

p−1 + vq

)
= S, we obtain

∑p
q=2 vq = 0. Hence M+

1 does not depend on

the vq, and M+
1 = (S − aj)/p. Finally Pgreedy = f(M1) ≤ f(M+

1).

We had for q ∈ {2, . . . , p}, M1 ≤ S−M1−aj
p−1 + vq, hence if M1 = M+

1 , vq ≤ M+
1 − (S − aj)/p = 0. We

deduce that for M1 = M+
1 and q ∈ {2, . . . , p}, vq = 0. We have shown that

Pgreedy ≤
(
S + (p− 1)aj

p

)3

+ (p− 1)

(
S − aj
p

)3

,

which leads to the desired result.

Proposition 2. For power minimization, OnLine-Greedy is a f
(on)
p (β

(on)
p) approximation.

Proof 2. We use the notations of Proposition 1. We first observe that ai ≤ O, for all i ∈ {1, . . . , n}, by
definition of O. In particular, aj ≤ O. We introduce β = O

S . Clearly, β ∈ [1/p, 1], and we can rewrite
Equation (3) as:

Ponline

Popt
≤ f (on)

p (β) =

1
p3

(
(1 + (p− 1)β)

3
+ (p− 1) (1− β)

3
)

β3 + ((1−β)3

(p−1)2

.

4

We now show that, for all p, f
(on)
p has a single maximum in [1/p, 1]. After differentiating and eliminating

some positive multiplicative factor, we obtain that the sign of
(
f

(on)
p

)′
is that of g

(on)
p , where:

g(on)
p (β) = β4(−9p3 + 30p2 − 27p+ 6) + β3(−6p2 + 18p− 12) + β2(−78p2 + 126p+ 33) + β(18p− 180) + 81.

Differentiating again two times, we obtain:(
g(on)
p

)′
(β) = 4β3(−9p3 + 30p2 − 27p+ 6) + 3β2(−6p2 + 18p− 12) + 2β(−78p2 + 126p+ 33) + 18p− 180 ;(

g(on)
p

)′′
(β) = 24β2 − 24β + 10− 8p+ p(−12βp+ 36β − 60β2)− p2(12β3 + 48β2) .

If p ≥ 5,
(
g

(on)
p

)′′
(β) ≤ 34−40+p(−60+36)+p2(−60+48)β2 ≤ 0. We check that

(
g

(on)
2

)′′
(β) = −6 ≤ 0,(

g
(on)
3

)′′
(β) = −24β−14−48β2 ≤ 0 and

(
g

(on)
4

)′′
(β) = −72β−22−216β2 ≤ 0, hence

(
g

(on)
p

)′
is a decreasing

function for all p ≥ 2 in the interval [1/p, 1].

Next, we show that
(
g

(on)
p

)′
(1) = −4p3 + 10p2 − 8p + 2 ≤ 0. Indeed if p ≥ 3, then

(
g

(on)
p

)′
(1) ≤

p2(−12+10)−24+2 ≤ 0, and
(
g

(on)
2

)′
(2) = −6 ≤ 0. Hence, either g

(on)
p is increasing and then decreasing in

the interval [1/p, 1], or g
(on)
p is decreasing in the whole interval. But we have that g

(on)
p (1) = −p+2p2−p3 ≤ 0

for p ≥ 2. Also, g
(on)
p (1/p) = 3− 11/p+ 15/p2− 9/p3 + 2/p4 ≥ 0, since g

(on)
2 (1/2) = 1/4, g

(on)
3 (1/3) = 56/81

and for p ≥ 4, g
(on)
p (1/p) ≥ 1/p(12 − 11). In both cases (g

(on)
p increasing then decreasing, or g

(on)
p only

decreasing), we conclude that g
(on)
p has a single zero β

(on)
p in [1/p, 1], for which f

(on)
p attains its maximum.

Finally OnLine-Greedy is a f
(on)
p (β

(on)
p) approximation.

Proposition 3. For power minimization, OffLine-Greedy is a f
(off)
p (β

(off)
p) approximation.

Proof 3. We follow the same line of reasoning as in Proposition 2, with O = βS, but we now further
assume that aj ≤ O/3. Indeed, if aj > O/3, there are at most two jobs assigned to each processor in the
optimal solution. But then n ≤ 2p, and for all such instances OffLine-Greedy is optimal (this is the same
argument as for the makespan minimization problem, due to the convexity of the power function). With
aj ≤ O/3 = βS/3, we rewrite Equation (3) as:

Ponline

Popt
≤ f (off)

p (β) =

1
p3

((
1 + (p−1)β

3

)3

+ (p− 1)
(

1− β
3

)3
)

β3 + (1−β)3

(p−1)2

.

The sign of
(
f

(off)
p

)′
is the sign of g

(off)
p , where:

g(off)
p (β) = β4(−9p3 + 30p2 − 27p+ 6) + β3(−6p2 + 18p− 12) + β2(−78p2 + 126p+ 33) + β(18p− 180) + 81.

Differentiating again two times, we obtain:(
g(off)
p

)′
(β) = 4β3(−9p3 + 30p2 − 27P + 6) + 3β2(−6p2 + 18p− 12) + 2β(−78p2 + 126p+ 33) + 18p− 180 ;(
g(off)
p

)′′
(β) = 12β2(−9p3 + 30p2 − 27p+ 6) + 6β(−6p2 + 18p− 12)− 156p2 + 252p+ 66.

If p ≥ 4,(
g(off)
p

)′′
(β) ≤ 12β2((−36 + 30)p2 − 108 + 6) + 6β((−24 + 18)p− 12) + (−588 + 252)p+ (−80 + 66) ≤ 0.

5

Now
(
g

(off)
2

)′′
(β) = −54 and

(
g

(off)
3

)′′
(β) = −576β2 − 72β − 582 ≤ 0, thus for all p > 1 and 1/p ≤ β ≤ 1,(

g
(off)
p

)′′
(β) ≤ 0. Therefore g

(off)
p is concave.

We have g
(off)
p (1) = −9p3−54p2 + 135p−72, thus for p ≥ 3, g

(off)
p (1) ≤ p(−27−162 + 135)−72 ≤ 0, and

g
(off)
2 (1) = −72− 216 + 270− 72 ≤ 0. g

(off)
p (1/p) ≥ 21− 35 + 15 ≥ 0. We conclude that for all p > 1, f

(off)
p

has a single maximum in [1/p, 1], reached for β = β
(off)
p , where g

(off)
p (β

(off)
p) = 0. Finally OffLine-Greedy

is a f
(off)
p (β

(off)
p) approximation.

Proposition 4. The approximation factor f
(on)
p (β

(on)
p) for OnLine-Greedy cannot be improved.

Proof 4. Consider an instance with p processors and n = p(p− 1) + 1 jobs, where for all i ∈ {1, . . . , n− 1},
ai = 1, and an = B =

β(on)
p p(p−1)

1−β(on)
p

.

OnLine-Greedy assigns p − 1 unit-size jobs to each processor, and then the big job is assigned to any
processor, leading to a power dissipation of:

Ponline =

(
S + (p− 1)aj

p

)3

+ (p− 1)

(
S − aj
p

)3

,

where j = n.

From β
(on)
p ≥ 1/p, we deduce that B ≥ p. Therefore the optimal solution assigns Jn to the first processor,

and p unit-size jobs to each other processor. We have aj = O = B and for q ∈ {2, . . . , p},
∑
i∈load(q) ai =

p = (S −O)/(p− 1), hence

Popt = O3 + (p− 1)

(
S −O
p− 1

)3

.

Moreover we have O = β
(on)
p S:

O − β(on)
p S = B − β(on)

p (B + p(p− 1)) = B − p(p− 1)β(on)
p (β(on)

p /(1− β(on)
p) + 1) = 0 .

We conclude that, for this instance,
Ponline

Popt
= f (on)

p (β(on)
p) .

Proposition 5. The approximation factor f
(off)
p (β

(off)
p) for the ratio of the OffLine-Greedy cannot be

improved.

Proof 5. Consider an instance with p processors and n = 2p+ 1 jobs, where for all i ∈ {1, . . . , p}, a2i−1 =

a2i = 2p− i+vi, and a2p+1 = p+vp, and where a2p+1 = p+vp. We define A =
3p(1−β(off)

p p)

β
(off)
p (p+1)−3

, and vi = i−1
p−1A

for all i ∈ {1, . . . , p}.
We first show that the jobs are sorted in non-increasing order:
• For all i ∈ {1, . . . , p}, a2i−1 = a2i

• an = an−1

• For all i ∈ {1, . . . , p − 1}, a2i+1 − a2i = −1 + vi+1 − vi = −1 + A
p−1 . Consider the function ĥp(β) 7→

3p(βp−1)
3−β(p+1) . Its derivative is nonnegative, hence ĥp is increasing. We show now that β

(off)
p ≤ 3/(2p+ 1),

which will ensure that A = ĥp(β
(off)
p) ≤ ĥp(3/(2p + 1)) = p − 1. In turn, this will ensure that

vi ≤ 1 for all i, hence the desired inequality a2i+1 ≤ a2i. To show that β
(off)
p ≤ 3/(2p + 1), we

prove g
(off)
p (3/(2p+1)) ≤ 0. Indeed we have g

(off)
p (3/(2p+1)) = −135p(8p3 +3p2−30p+19)/(2p+1)4,

and 8p3 + 3p2− 30p+ 19 ≥ p(32− 30) + 19 ≥ 0. Finally, since g
(off)
p (1/p) is positive, g

(off)
p (3/(2p+ 1))

negative, we have β
(off)
p ≥ 3

2p+1 = 6p−3
4p2−1 , hence the result.

6

Before the assignment of the last job, all processor loads are perfectly balanced. OffLine-Greedy first
assigns J1, J2, . . . , Jp to P1,P2, . . . ,Pp respectively. Then it assigns Jp+1, Jp+2, . . . , J2p to Pp,Pp−1, . . . ,P1

respectively. After these assignments, for all i ∈ {1, . . . , dp/2e}, the load of processor P2i−1 is a2i−1 +
a2(p−(i−1)) = 3p + vi + vp−(i−1) = 3p + i−1

p−1A + p−i
p−1A = 3p + A. And for all i ∈ {1, . . . , bp/2c}, the load

of processor P2i is a2i + a2(p−(i−1))−1 = a2i−1 + a2(p−(i−1)) = 3p + A. The last job Jn is assigned to any
processor, and the power dissipated by OffLine-Greedy is:

Poffline =

(
S + (p− 1)aj

p

)3

+ (p− 1)

(
S − aj
p

)3

,

where j = n.
The optimal solution assigns J1, J2, . . . , Jp−1 to P2,P3, . . . ,Pp respectively. It assigns Jp, Jp+1, . . . , J2p−2

to Pp,Pp−1, . . . ,P1 respectively. The last three jobs J2p−1, J2p and J2p+1 are assigned to P1, which is the
most loaded processor.

The loads of processors P2,P3, . . . ,Pp are perfectly balanced in the optimal assignment. For all i ∈
{1, . . . , bp/2c}, the load of processor P2i is a2i−1 + a2(p−i) = 3p + vi + vp−i) = 3p + i−1

p−1A + p−i+1
p−1 A =

3p+pA/(p−1). For all i ∈ {1, . . . , dp/2e−1}, the load of processor P2i+1 is a2i+a2(p−i)−1 = a2i−1+a2(p−i) =
3p + pA/(p − 1). Then, the load of processor P1 is O = 3an = 3p + 3A ≥

∑
i∈load(q) ai for q ∈ {2, . . . , p}.

This implies that

Popt = O3 + (p− 1)

(
S −O
p− 1

)3

.

There remains to show that we have O = β
(off)
p S. But

S = 3p2 + vp + 2

p∑
i=1

vi = 3p2 +A+
2A

p− 1

p−1∑
i=0

i = 3p2 + (p+ 1)A ,

hence

β(off)
p S −O = 3p(β(off)

p p− 1) + (β(off)
p (p+ 1)− 3)A = 3p(β(off)

p p− 1) + 3p(β(off)
p p− 1) = 0.

Finally, since aj = an = O/3, the ratio of this instance is

Poffline

Popt
= f (off)

p (β(off)
p) .

2.2. The approximation factor as a function of p

We provide a few observations on the values of the approximation factor of OnLine-Greedy and
OffLine-Greedy for large values of p. Using Taylor expansions, we derive the following asymptotic values
for large p:

• For large p, β
(on)
p =

(
2
p2

)1/3

+O(1/p). Note that 3
√

2 ≈ 1.260.

• For large p, β
(off)
p = 3(1+

√
79)

26p +O(1/p2). Note that 3(1+
√

79)
26 ≈ 1.141.

It is worth pointing out that both OnLine-Greedy and OffLine-Greedy are asymptotically optimal when
p is large, while in the case of makespan minimization, the asymptotic approximation factor of OnLine-
Greedy was equal to 2 and that of OffLine-Greedy equal to 4/3.

For p = 2 we have exact values: β
(on)
2 =

√
3

3 and f
(on)
2 (β

(on)
2) = 1 +

√
3

2 ≈ 1.866, while β
(off)
2 =

√
91−8
3 and

f
(off)
2 (β

(off)
2) = 1 +

√
91+10
18 ≈ 1.086. We report representative numerical values in Table 1. We observe that

OnLine-Greedy is at most 50% more costly than the optimal for p ≥ 64, while OffLine-Greedy always
remains within 10% of the optimal, and gets within 5% for p ≥ 7.

7

OnLine-Greedy OffLine-Greedy

p β
(on)
p f

(on)
p (β

(on)
p) β

(off)
p f

(off)
p (β

(off)
p)

2 0.577 1.866 0.513 1.086

3 0.444 2.008 0.350 1.081

4 0.372 2.021 0.267 1.070

5 0.325 2.001 0.216 1.061

6 0.292 1.973 0.181 1.054

7 0.266 1.943 0.156 1.048

8 0.246 1.915 0.137 1.043

64 0.0696 1.461 0.0177 1.006

512 0.0186 1.217 0.00223 1.00083

2048 0.00479 1.104 0.000278 1.00010

224 0.0000192 1.006 0.0000000680 1.000000025

Table 1: Numerical values for the approximation factors of OnLine-Greedy and OffLine-Greedy

3. Conclusion

In this short communication, we have fully characterized the performance of the greedy algorithm for the
power minimization problem. On the practical side, further work could be devoted to conducting experiments
with a more complicated power model, that would include static power in addition to dynamic power. With
such a model, the “natural” greedy algorithm would assign the next job to the processor that minimizes the
increment in total power. There would then be two choices, either the currently least loaded processor, or a
currently unused processor (at the price of more static energy to be paid).

Acknowledgments. The authors are with Université de Lyon, France. A. Benoit and Y. Robert are with
the Institut Universitaire de France. This work was supported in part by the ANR StochaGrid project.

[1] R. L. Graham, Bounds on multiprocessing timing anomalies, SIAM Journal on Applied Mathematics 17
(1969) 416–429.

[2] M. P. Mills, The internet begins with coal, Environment and Climate News (1999) .

[3] T. Ishihara, H. Yasuura, Voltage scheduling problem for dynamically variable voltage processors, in:
Proceedings of International Symposium on Low Power Electronics and Design (ISLPED), ACM Press,
New York, NY, USA, 1998, pp. 197–202.

[4] P. Langen, B. Juurlink, Leakage-aware multiprocessor scheduling, Journal of Signal Processing Systems
57 (1) (2009) 73–88.

[5] R. Mishra, N. Rastogi, D. Zhu, D. Mossé, R. Melhem, Energy aware scheduling for distributed real-time
systems, in: Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS),
2003, pp. 21–29.

[6] K. Pruhs, R. van Stee, P. Uthaisombut, Speed scaling of tasks with precedence constraints, Theory of
Computing Systems 43 (2008) 67–80.

[7] A. P. Chandrakasan, A. Sinha, Jouletrack: A web based tool for software energy profiling, in: Design
Automation Conference, IEEE Computer Society Press, Los Alamitos, CA, USA, 2001, pp. 220–225.

8

[8] H. Aydin, Q. Yang, Energy-aware partitioning for multiprocessor real-time systems, in: Proceedings of
the International Parallel and Distributed Processing Symposium (IPDPS), IEEE CS Press, 2003, pp.
113–121.

[9] J.-J. Chen, T.-W. Kuo, Multiprocessor energy-efficient scheduling for real-time tasks, in: Proceedings of
International Conference on Parallel Processing (ICPP), IEEE CS Press, 2005, pp. 13–20.

9

