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Abstract. We show in this paper how to evaluate the performance of
skeleton-based high level parallel programs. Since many applications fol-
low some commonly used algorithmic skeletons, we identify such skele-
tons and model them with process algebra in order to get relevant in-
formation about the performance of the application, and be able to take
some “good” scheduling decisions. This concept is illustrated through
the case study of the Pipeline skeleton, and a tool which generates auto-
matically a set of models and solves them is presented. Some numerical
results are provided, proving the efficiency of this approach.

1 Introduction

One of the most promising technical innovations in present-day computing is the
invention of Grid technologies which harness the computational power of widely
distributed collections of computers [6]. Designing an application for the Grid
raises difficult issues of resource allocation and scheduling (roughly speaking,
how to decide which computer does what, and when, and how they interact).
These issues are made all the more complex by the inherent unpredictability of
resource availability and performance. For example, a supercomputer may be
required for a more important task, or the Internet connections required by the
application may be particularly busy.

In this context of Grid programming, skeleton based programming [3|[1115]
recognizes that many real applications draw from a range of well known solution
paradigms and seeks to make it easy for an application developer to tailor such a
paradigm to a specific problem. In this high-level approach to parallel program-
ming, powerful structuring concepts are presented to the application program-
mer as a library of pre-defined ‘skeletons’. As with other high-level programming
models the emphasis is on providing generic polymorphic routines which struc-
ture programs in clearly-delineated ways. Skeletal parallel programming supports
reasoning about parallel programs in order to remove programming errors. It en-
hances modularity and configurability in order to aid modification, porting and
maintenance activities. In the present work we focus on the Edinburgh Skeleton
Library (eSkel) [4]. eSkel is an MPI-based library which has been designed for
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SMP and cluster computing and is now being considered for Grid applications
using Grid-enabled versions of MPI such as MPICH-G2 [10].

The use of a particular skeleton carries with it considerable information about
implied scheduling dependencies. By modelling these with stochastic process al-
gebras such as PEPA [9], and thereby being able to include aspects of uncertainty
which are inherent to Grid computing, we believe that we will be able to under-
pin systems which can make better scheduling decisions than less sophisticated
approaches. Most significantly, since this modelling process can be automated,
and since Grid technology provides facilities for dynamic monitoring of resource
performance, our approach will support adaptive rescheduling of applications.

Some related projects obtain performance information from the Grid with
benchmarking and monitoring techniques [2/T2]. In the ICENI project [7], per-
formance models are used to improve the scheduling decisions, but these are just
graphs which approximate data obtained experimentally. Moreover, there is no
upper-level layer based on skeletons in any of these approaches.

Other recent work considers the use of skeleton programs within grid nodes
to improve the quality of cost information [1]. Each server provides a simple func-
tion capturing the cost of its implementation of each skeleton. In an application,
each skeleton therefore runs only on one server, and the goal of scheduling is to se-
lect the most appropriate such servers within the wider context of the application
and supporting grid. In contrast, our approach considers single skeletons which
span the grid. Moreover, we use modelling techniques to estimate performance.

Our main contribution is based on the idea of using performance models to
enhance the performance of grid applications. We propose to model skeletons in
a generic way to obtain significant performance results which may be used to
reschedule the application dynamically. To the best of our knowledge, this kind
of work has never been done before. We show in this paper how we can obtain
significant results on a first case study based on the pipeline skeleton.

In the next section, we present the pipeline and a model of the skeleton. Then
we explain how to solve the model with the PEPA workbench in order to get rel-
evant information (Section B)). In section[4 we present a tool which automatically
determines the best mapping to use for the application, by first generating a set
of models, then solving them and comparing the results. Some numerical results
on the pipeline application are provided. Finally we give some conclusions.

2 The Pipeline Skeleton

Many parallel algorithms can be characterized and classified by their adherence
to one or more of a number of generic algorithmic skeletons [LI|3I5]. We focus
in this paper on the concept of pipeline parallelism, which is of well-proven
usefulness in several applications.

We recall briefly the principle of the pipeline skeleton, and then we explain
how we can model it with a process algebra.
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nputs outputs
Stage 1 > Stage 2 ——» """ —>»Stage N;

Fig. 1. The pipeline application

2.1 Principle of Pipeline

In the simplest form of pipeline parallelism [4], a sequence of N; stages process a
sequence of inputs to produce a sequence of outputs (Fig. ). Each input passes
through each stage in the same order, and the different inputs are processed one
after another (a stage cannot process several inputs at the same time). Note
that the internal activity of a stage may be parallel, but this is transparent to
our model. In the remainder of the paper we use the term “processor” to denote
the hardware responsible for executing such activity, irrespective of its internal
design (sequential or parallel).

We consider this application in the context of computational Grids, and so
we want to map this application onto our computing resources, which consist of
a set of potentially heterogeneous processors interconnected by an heterogeneous
network.

Considering the pipeline application in the eSkel library [4], we focus here on
the function Pipelineifor1, which considers that each stage produces exactly
one output for each input.

2.2 Pipeline Model

To model this algorithmic skeleton Grid application, we decompose the prob-
lem into the stages, the processors and the network. The model is expressed in
Performance Evaluation Process Algebra (PEPA) [9].

The Stages
The first part of the model is the application model, which is independent of
the resources on which the application will be computed. We define one PEPA
component per stage. For ¢ = 1.. Ny, the component Stage; works sequentially.
At first, it gets data (activity move;), then processes it (activity process;), and
finally moves the data to the next stage (activity move;1).

Stage; 2 (move;, T).(process;, T).(move; 11, T).Stage;

All the rates are unspecified, denoted by the distinguished symbol T, since
the processing and move times depend on the resources where the application is
running. These rates will be defined later, in another part of the model.

The pipeline application is then defined as a cooperation of the different
stages over the move; activities, for ¢ = 2..N,.

The activities move; and moven, 41 represent, respectively, the arrival of an
input in the application and the transfer of the final output out of the pipeline.
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They do not represent any data transfer between stages, so they are not syn-
chronizing the pipeline application. Finally, we have:

Pipeline < Stage, < }Stageg Stagen,
2

{move {moveg} e {moveNs}

The Processors

We consider that the application must be mapped on a set of N, processors.
Each stage is processed by a given (unique) processor, but a processor may
process several stages (in the case where N, < Nj). In order to keep a simple
model, we decide to put information about the processor (such as the load of
the processor or the number of stages being processed) directly in the rate p;
of the activities process;, i = 1..N, (these activities have been defined for the
components Stage;).

Each processor is then represented by a PEPA component which has a cyclic
behaviour, consisting of processing sequentially inputs for a stage. Some exam-
ples follow.

- In the case when N, = N, we map one stage per processor:

def
Processor; = (process;, y;).Processor;

- If several stages are processed by a same processor, we use a choice composition.
In the following example (N, = 2 and N, = 3), the first processor processes the
two first stages, and the second processor processes the third stage.

def
Processory = (processy, ji1).Processory + (processa, pia). Processory

def
Processory = (processs, ji3).Processors

Since all processors are independent, the set of processors is defined as a
parallel composition of the processor components:

Processors = Processory||Processors|| . . . ||Processory,

The Network
The last part of the model is the network. We do not need to model directly the
architecture and the topology of the network for what we aim to do, but we want
to get some information about the efficiency of the link connection between pairs
of processors. This information is given by affecting the rates \; of the move;
activities (i = 1..N, + 1).

- A1 represents the connection between the user (providing inputs to the
pipeline) and the processor hosting the first stage.

- For i = 2..Ng, \; represents the connection between the processor hosting
stage 7 — 1 and the processor hosting stage i.

- AN,+1 represents the connection between the processor hosting the last
stage and the user (the site where we want the output to be delivered).
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When the data is “transferred” on the same computer, the rate is really high,
meaning that the connection is fast (compared to a transfer between different
sites).

The network is then modelled by the following component:

Network = (movey, \).Network + ... + (moven, 41, An.+1).Network

The Pipeline Model
Once we have defined the different components of our model, we just have to
map the stages onto the processors and the network by using the cooperation
combinator. For this, we define the following sets of action types:

- L, = {process; }i=1..n, to synchronize the Pipeline and the Processors

- L, = {move; };=1..n.+1 to synchronize the Pipeline and the Network

Mapping “ Network ?ﬂ Pipeline E‘ﬁ Processors
m p

3 Solving the Models

Numerical results can been computed from such models with the Java Version
of the PEPA Workbench [§].

The performance result that is pertinent for us is the throughput of the
process; activities (i = 1..Ny). Since data passes sequentially through each stage,
the throughput is identical for all ¢, and we need to compute only the throughput
of processy to obtain significant results. This is done by adding the steady-state
probabilities of each state in which process; can happen, and multiplying this
by p1. This result can be computed by using the command line interface of the
PEPA workbench, by invoking the following command:

java pepa.workbench.Main -run lr ./pipeline.pepa

The -run 1r (or -run lnbcg+results) option means that we use the linear
biconjugate gradient method to compute the steady state solution of the model
described in the file ./pipeline.pepa, and then we compute the performance
results specified in this file, in our case the throughput of the pipeline.

4 AMoGeT: The Automatic Model Generation Tool

We investigate in this paper how to enhance the performance of Grid applications
with the use of algorithmic skeletons and process algebras. To do this, we have
created a tool which automatically generates performance models for the pipeline
case study, and then solves the models and provides to the application significant
results to improve its performance.

We describe the tool succinctly and then provide some numerical results for
the pipeline application.
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AMoGeT

3 Generate PEPA Solve Compare|
! | models > | models models results results 3

performance

description
file

information

Fig. 2. Principle of AMoGeT

4.1 AMoGeT Description

Fig. [ illustrates the principle of the tool. In its current form, the tool is a
standalone prototype. Its ultimate role will be as an integrated component of a
run-time scheduler and re-scheduler, adapting the mapping from application to
resources in response to changes in resource availability and performance. The
tool allows everything to be done in a single step through a simple Perl script:
it generates and solves the models, and then compares the results. This allows
us to have feedback on the application when the performance of the available
resources is modified.

Information is provided to the tool via a description file. This information
can be gathered from the Grid resources and from the application definition.
In the following experiments, it is provided by the user, but we can also get it
automatically from Grid services, for example from the Network Weather Service
[12]. We also define a set of candidate mappings of stages to processors. Each
mapping specifies where the initial data is located, where the output data must
be left and (as a tuple) the processor where each stage is processed. For example,
the tuple (1,1,2) means that the two first stages are on processor 1, with the
third stage on processor 2.

One model is then generated from each mapping, as described in Section [2:2]
To compute the rates for a given model, we take into account the number of
stages hosted on each processor, and we assume that the work sharing between
the stages is equitable. We use also all the other information provided by the
description file about the available resources and the characteristics of the ap-
plication. The models can then be solved with the PEPA workbench, and the
throughput of the pipeline is automatically computed (Section B).

During the resolution, all the results are saved in a single file, and the last step
of results comparison finds out which mapping produces the best throughput.
This mapping is the one we should use to run the application.

4.2 Numerical Results

We have made some experiments and we give here a few numerical results on
an example with 3 pipeline stages (and up to 3 processors). The models that
we need to solve are really small (in this case, the model has 27 states and 51
transitions). The time taken to compute these results was very small, being less
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than one second on this and similar examples involving up to eight pipeline
stages. Clearly this is an important property, since we must avoid taking longer
to compute a rescheduling than we save in application time by implementing it.

We define 1i-j to be the latency of the communication between processors ¢
and j, in seconds. We suppose that 1i-i=0.0001 for ¢ = 1..3, and that there is
no need to transfer the input or the output data. We suppose that all stages are
equivalent in term of amount of work required, and so we define also the time
required to complete a stage on each processor ti (i = 1..3), if the stage can use
all the available processing power (this time is longer when several stages are on
the same processor).

We compare the mappings (1,1,1), (1,1,2), (1,2,2), (1,2,1), (1,1,3), (1,3,3),
(1,3,1) and (1,2,3) (the first stage is always on processorl), and we only put the
optimal mapping in the relevant line of the results table.

Set of results Parameters Mapping &
11-2[12-3 | 11-3 || t1[t2| t3 | Throughput

1 0.0001{0.0001|0.0001{{0.1/0.1] 0.1 || (1,2,3): 5.63467

0.00010.0001|0.0001({0.2{0.2| 0.2 || (1,2,3): 2.81892

2 0.00010.0001|0.0001||0.1{0.1| 1 || (1,2,1): 3.36671

0.1 0.1 0.1 {[0.1{0.1] 1 || (1,2,2): 2.59914

1 1 1 0.1{0.1] 1 || (1,1,1): 1.87963

3 0.1 1 1 0.10.1{0.1| (1,2,2): 2.59914

0.1 1 1 1| 110.01f (1,3,3): 0.49988

In the first set of results, all the processors are identical and the network
links are really fast. In these cases, the best mapping always consists of putting
one stage on each processor. If we double the time required to complete a stage
on each processor (busy processors), the resulting throughput is divided by 2,
since only the processing power has an impact on the throughput.

The second set of results illustrates the case when one processor is becoming
really busy, in this case processor3. We should not use it any more, but depending
on the network links, the optimal mapping may change. If the links are not
efficient, we should indeed avoid data transfer and try to put consecutive stages
on the same processor.

Finally, the third set of results shows what happens if the network link to
processor3 is really slow. In this case again, the use of the processor should be
avoided, except if it is a really fast processor compared to the other ones (last
line). In this case, we process stage2 and stage3 on the third processor.

5 Conclusions

In the context of Grid applications, the availability and performance of the re-
sources changes dynamically. We have shown through this study that the use
of skeletons and performance models of these can produce some relevant infor-
mation to improve the performance of the application. This has been illustrated
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on the pipeline skeleton, which is a commonly used algorithmic skeleton. In this
case, the models help us to choose the mapping, of the stages onto the proces-
sors, which will produce the best throughput. A tool automates all the steps to
obtain the result easily.

We are currently working at getting the performance information needed
by the tool from the Grid and from the application, to make it more realistic.
Moreover, some detailed results on the timing of the tool will be provided. This
approach will also be developed on some other skeletons so it may be useful for a
larger class of applications. However this first case study has already shown that
we can obtain relevant information and that we have the potential to enhance the
performance of Grid applications with the use of skeletons and process algebras.
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