Toward Understanding Heterogeneity in Computing

Arnold L. Rosenberg Ron C. Chiang

Department of Electrical and Computer Engineering Colorado State University Fort Collins, CO, USA {rsnbrg, ron.chiang@colostate.edu}

Motivation

- Goal
 - to increase our understanding of heterogeneity in computing platforms

Motivation

- Goal
 - to increase our understanding of heterogeneity in computing platforms
- Heterogeneous computing platforms
 - different computing speeds

Motivation

- Goal
 - to increase our understanding of heterogeneity in computing platforms
- Heterogeneous computing platforms
 - different computing speeds
 - architecturally balanced

"Understanding" Heterogeneity

Suppose we have

- *n*+1 computers:
 - the server C_0
 - a "cluster" **C** comprising *n* computers, C_1, \ldots, C_n
- Heterogeneity profile of **C**
 - $-C_i$ can complete one unit of work in time ρ_i

$$- < \rho_1, ..., \rho_n >$$

 $-\rho_1 \ge \rho_2 \ge \ldots \ge \rho_n$

The Cluster-Exploitation Problem (CEP)

 C₀ must complete as many units of work as possible on cluster C within a given lifespan of L time units

The Cluster-Exploitation Problem (CEP)

 C₀ must complete as many units of work as possible on cluster C within a given lifespan of L time units

- A worksharing protocol
 - a schedule that solves the CEP

Architectural Parameters

Fixed communication cost

- setup time σ
- latency λ

negligible over a long lifespan

Architectural Parameters and Sample Values

Common parameters:

- transmission rate τ (e.g. 1 μ sec. / work unit)
- output-to-input length ratio δ (= 1)

For computer *i*,

- packaging rate π_i (e.g. 10 μ sec. / work unit)
- unpackaging rate $\overline{\pi}_i$ (e.g. 10 μ sec. / work unit)
- workload W_i (work units)

The FIFO Protocol

<i>C</i> ₀	sends work to C ₁	sends work to C_2	sends work to C_3				
	$(\pi_0+\tau)W_1$	$(\pi_0 + \tau)W_2$	$(\pi_0+\tau)W_3$				
C_1	waits	processes			results		
		$(1+\overline{\pi}) ho_1W_1$			$(\pi\rho_1 + \tau)\delta W_1$		
<i>C</i> ₂	wai	waits proce		ess	ses	results	
	(1+ <i>ī</i>		$\bar{z})\rho_2$	₂ <i>W</i> ₂	$(\pi\rho_2+\tau)\delta W_2$		
C_3	waits			processes		results	
					$(1+\overline{\pi})\mu$	<i>W</i> ₃ <i>W</i> ₃	$(\pi\rho_3+\tau)\delta W_3$

(NOT TO SCALE)

The FIFO Protocol is Optimal

• Theorem [Adler-Gong-Rosenberg]

Over any sufficiently long lifespan L, for any heterogeneous cluster C — no matter what its heterogeneity profile:

- FIFO worksharing protocols provide optimal solutions to the cluster-exploitation problem
- C is equally productive under every FIFO protocol, i.e., under all startup orderings

The Work-Production of FIFO

Let

$$X = \sum_{i=1}^{n} \frac{1}{(\pi_0 + \tau) + (1 + \overline{\pi} + \pi\delta)\rho_i} \prod_{j=1}^{i-1} \left(1 - \frac{\pi_0 + \tau - \tau\delta}{(\pi_0 + \tau) + (1 + \overline{\pi} + \pi\delta)\rho_j} \right)$$

The Work-Production of FIFO

Let

$$X = \sum_{i=1}^{n} \frac{1}{(\pi_0 + \tau) + (1 + \overline{\pi} + \pi\delta)\rho_i} \prod_{j=1}^{i-1} \left(1 - \frac{\pi_0 + \tau - \tau\delta}{(\pi_0 + \tau) + (1 + \overline{\pi} + \pi\delta)\rho_j} \right)$$

Then,

$$W = \frac{1}{\tau \delta + \frac{1}{X}} \cdot L$$

The Work-Production of FIFO

Let

$$X = \sum_{i=1}^{n} \frac{1}{(\pi_0 + \tau) + (1 + \overline{\pi} + \pi\delta)\rho_i} \prod_{j=1}^{i-1} \left(1 - \frac{\pi_0 + \tau - \tau\delta}{(\pi_0 + \tau) + (1 + \overline{\pi} + \pi\delta)\rho_j} \right)$$

 \approx

To simplify, let $A = \pi_0 + \tau$ and $B = 1 + \overline{\pi} + \pi \delta$, $X = \sum_{i=1}^n \frac{1}{A + B\rho_i} \prod_{j=1}^{i-1} \left(\frac{B\rho_j + \tau \delta}{A + B\rho_i} \right)$

18

On Comparing Heterogeneity Profiles

• For any cluster **C** with heterogeneity profile

 $P = \langle \rho_1, \ldots, \rho_n \rangle$

On Comparing Heterogeneity Profiles

• For any cluster C with heterogeneity profile

 $oldsymbol{P}=ig\langle
ho_1$, ... , $oldsymbol{
ho}_nig
angle$

• **C**'s homogeneous-equivalent computing rate (HECR) is

$$\rho_{c} = \max_{\rho} \left\{ X(P^{(\rho)}) \ge X(P) \right\}$$

where $P^{(\rho)} = \langle \rho, ..., \rho \rangle$

Heterogeneity Profiles

Profile 1:
$$\rho_i = \frac{n-i+1}{n}$$
, which spreads evenly in a range when $n = 8$, $\left\langle \frac{8}{8}, \frac{7}{8}, \frac{6}{8}, \dots, \frac{1}{8} \right\rangle$

	Number of Computers			
	8	16	32	
HECR	0.362	0.297	0.251	

Recall: faster cluster has smaller HECR value

Heterogeneity Profiles

Profile 2:
$$\rho_i = \frac{1}{i}$$

when $n = 8, \langle \frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{8} \rangle$

	Number of Computers			
	8	16	32	
HECR	0.216	0.116	0.061	

Randomly generate 100 profiles for each combination

8 computers' HECR		Std-Dev			
		0.2	0.1	0.05	
	0.75	0.681	0.735	0.759	
Avg. Speed	0.5	0.411	0.482	0.501	
	0.25	0.113	0.208	0.239	

The probability that these two groups have the same mean is 2×10^{-10}

8 computers' HECR		Std-Dev			
		0.2	0.1	0.05	
	0.75	0.681	0.735	0.759	
Avg. Speed	0.5	0.411	0.482	0.501	
	0.25	0.113	0.208	0.239	

Trials with 16, 32 computers show similar pattern

Speeding Up Clusters Optimally under FIFO Protocols

• Which one computer should you speed up, if you can speed up only one?

Speeding Up Clusters Optimally under FIFO Protocols

- Which one computer should you speed up, if you can speed up only one?
- We study two variants of this question

Speeding Up Clusters Optimally under FIFO Protocols

For convenience,

- let cluster **C** have heterogeneity profile $P = < \rho_1, ..., \rho_n >$, where $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$
- let *i* and j > i be two computer indices

Fixed and Proportional Speed-up

- Fixed-speedup scenario
- by a fixed amount $\varphi < \rho_n$

$$P^{(i)} = \left\langle \rho_{1}, \dots, \rho_{i-1}, \rho_{i} - \varphi, \rho_{i+1}, \dots, \rho_{j-1}, \rho_{j}, \rho_{j+1}, \dots, \rho_{n} \right\rangle$$
$$P^{(j)} = \left\langle \rho_{1}, \dots, \rho_{i-1}, \rho_{i}, \rho_{i+1}, \dots, \rho_{j-1}, \rho_{j} - \varphi, \rho_{j+1}, \dots, \rho_{n} \right\rangle$$

Fixed and Proportional Speed-up

• *Fixed-speedup* scenario (by a fixed amount $\varphi < \rho_n$)

$$P^{(i)} = \left\langle \rho_{1}, \dots, \rho_{i-1}, \rho_{i} - \varphi, \rho_{i+1}, \dots, \rho_{j-1}, \rho_{j}, \rho_{j+1}, \dots, \rho_{n} \right\rangle$$
$$P^{(j)} = \left\langle \rho_{1}, \dots, \rho_{i-1}, \rho_{i}, \rho_{i+1}, \dots, \rho_{j-1}, \rho_{j} - \varphi, \rho_{j+1}, \dots, \rho_{n} \right\rangle$$

- Proportional-speedup scenario
- by a relative amount $\psi < 1$

$$P^{[i]} = \left\langle \rho_{1}, \dots, \rho_{i-1}, \psi \rho_{i}, \rho_{i+1}, \dots, \rho_{j-1}, \rho_{j}, \rho_{j+1}, \dots, \rho_{n} \right\rangle$$
$$P^{[j]} = \left\langle \rho_{1}, \dots, \rho_{i-1}, \rho_{i}, \rho_{i+1}, \dots, \rho_{j-1}, \psi \rho_{j}, \rho_{j+1}, \dots, \rho_{n} \right\rangle$$

Proposition for Fixed-Speedup

 Under the fixed-speedup scenario, the most advantageous single computer to speed up is C's fastest computer

Terms for following figures

• Recall: work production $W = \frac{1}{\tau \delta + 1/\gamma} \cdot L$

- Work ratio
 - the ratio of work production after speedup to work production before speedup
- Speedup computer
 - the single computer that is sped up

Fixed-Speedup Scenario

Proposition for Proportional-Speedup

(Recall : A = $\pi_0 + \tau$, B = 1 + $\pi + \pi \delta$, and $\rho_i > \rho_j$)

- If $\psi \rho_i \rho_j > A\tau \delta / B^2$ - speeding up C_j (faster) is better
- If $\psi \rho_i \rho_j < A\tau \delta / B^2$ - speeding up C_i (slower) is better

Proposition for Proportional-Speedup

(Recall : $A = \pi_0 + \tau$, $B = 1 + \overline{\pi} + \pi \delta$, and $\rho_i > \rho_j$)

- If $\psi \rho_i \rho_i > A \tau \delta / B^2 = 1.0 \times 10^{-5}$
 - speeding up C_i (faster) is better
- If $\psi \rho_i \rho_j < A \tau \delta / B^2 = 1.0 \times 10^{-5}$
 - speeding up C_i (slower) is better

Parameter	Rate
A	11 μ second / work unit
B with coarse	1.000011 second / work unit
(1 sec / task) tasks	

Proposition for Proportional-Speedup

(Recall : $A = \pi_0 + \tau$, $B = 1 + \overline{\pi} + \pi \delta$, and $\rho_i > \rho_j$)

• If $\psi \rho_i \rho_j > A \tau \delta / B^2 = 1.0 \times 10^{-5}$

- speeding up C_i (faster) is better

- If $\psi \rho_i \rho_i < A\tau \delta / B^2 = 1.0 \times 10^{-5}$
 - speeding up C_i (slower) is better

That is, it is more advantageous to speed up the faster one unless either both computers are already "very fast" or the speedup factor is "very large."

- When all computers are very fast
 - It is more advantageous to speed up the slower one

Summary

- Two ways to measure computing power
 - the X function
 - the HECR value

Summary

- Two ways to measure computing power
 - the X function
 - the HECR value
- Standard deviation influences work production

Summary

- Two ways to measure computing power
 - the X function
 - the HECR value
- Standard deviation influences work production
- Speeding up a fast computer in a cluster is almost always more advantageous than speeding up a slower one

Thank you

Questions?

HECR values

	Number of Computers			
	8	16	32	
Profile 1	0.362	0.297	0.251	
Profile 2	0.216	0.116	0.061	

Profile 1:
$$\rho_i = \frac{n-i+1}{n}$$
 Profile 2: $\rho_i = \frac{1}{i}$

Recall: faster cluster has smaller HECR value

16 computers' HECR		Std-Dev			
		0.2	0.1	0.05	
	0.75	0.671	0.723	0.768	
Avg. Speed	0.5	0.385	0.475	0.502	
	0.25	0.110	0.194	0.239	

32 computers' HECR		Std-Dev			
		0.2	0.1	0.05	
	0.75	0.669	0.742	0.782	
Avg. Speed	0.5	0.380	0.478	0.502	
	0.25	0.115	0.197	0.239	