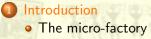
Throughput optimization for micro-factories subject to failures

DOBRILA Alexandru

Phd Student, Besançon, Université de Franche-Comté


Scheduling Workshop in Knoxville - May 13 2009

Framework Heuristics Simulation results Future works

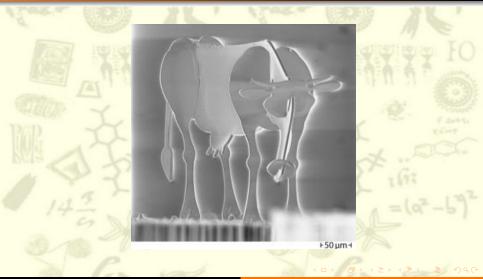
The micro-factory

Summary

- 2 Framework
 - Heuristics
- ④ Simulation results
 - Future works

Framework Heuristics Simulation results Future works

The micro-factory


Introduction

- Mapping several tasks onto a set of machines
- Failure attached to tasks not to machines
- A study case of the micro-factory

Framework Heuristics Simulation results Future works

The micro-factory

The micro-factory

Framework Heuristics Simulation results Future works

The micro-factory

The micro-factory

- Pieces composed of micro-metric elements
- Use of dynamic modules of production
- Still in laboratories (mechanical aspects, elementary actuators as piezo-electric beams ...)
- Nothing on scheduling
- Particular DAG (in-tree)

Application Framework Platform Failure model Optimization problem

Summary

Framework

- Application Framework
- Platform
- Failure model
- Optimization problem

3 Heuristics

Application Framework Platform Failure model Optimization problem

Application

- a set \mathcal{N} of n tasks: $\mathcal{N} = \{T_1, T_2, \dots, T_n\}$
- a set \mathcal{T} of p task types with $n \ge p$ and a function $t : [1..n] \rightarrow \mathcal{T}$
- in-tree

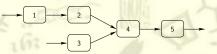


Figure: Example of application.

Application Framework Platform Failure model Optimization problem

Platform

- a set \mathcal{M} of m machines: $\mathcal{M} = \{M_1, M_2, \dots, M_m\}$
- fully connected graph
- machine M_u can perform the task T_i in a time $w_{i,u}$

Application Framework Platform **Failure model** Optimization problem

Failure model

- Failure attached to the task
 F_i = ^{a_i}/_{b_i}
- $r_i = b_i a_i$ is the number of successful products
- b_i is called the period of the task
- two tasks of the same type fails with the same rate $\forall i, i' \in [1, n]$ $t(i) = t(i') \Rightarrow f_i = f_{i'}$

Application Framework Platform **Failure model** Optimization problem

Example

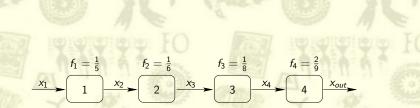


Figure: Example of a linear chain application with failures.

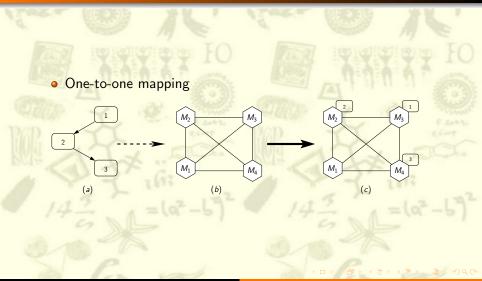
$$x_i = x_{i+1} + a_i \times \left\lceil \frac{x_{i+1}}{r_i} \right\rceil$$

Application Framework Platform Failure model **Optimization problem**

Objective functions

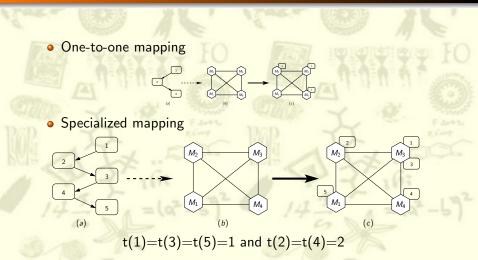
• find an allocation function $a: [1..n] \rightarrow [1..m]$ o possible objectives : reliability, throughput ...

Application Framework Platform Failure model **Optimization problem**


Objective functions

- find an allocation function $a: [1..n] \rightarrow [1..m]$
- possible objectives : reliability, throughput ...
- Period : time between the output of two products
- Average number of products : $\overline{x_i} = \frac{b_i}{r_i} \times \overline{x_{i+1}}$

$$period(M_u) = \sum_{a(i)=u} \overline{x_i} w_{i,u}$$


Framework Heuristics Simulation results Future works Application Framework Platform Failure model Optimization problem

Rules of the game

Application Framework Platform Failure model Optimization problem

Rules of the game

H1 and H2 H3, H4 and H5

Summary

- Introduction
- 2 Framework
 - Heuristics

 H1 and H2
 H3, H4 and H5
- 4 Simulation results

H1 and H2 H3, H4 and H5

Heuristics H1 and H2

H1 - Random assignment

• One constraint : respect the specialized mapping

H2 - Task group heuristic

- Uses all possible machines
- Create *p* groups of tasks, putting all tasks of the same type in the same group
- while m > p, split the biggest group in two and distribute the load to another machine

H1 and H2 H3, H4 and H5

H3, H4 and H5 - Binary search heuristics

H3 - Potential optimization

- Assign to the machine a set of tasks that it is efficient for.
- Make the best use of each machine

H4 - Fastest machine

• For a given task, we choose the fastest machine available

H5 - Heterogeneity level

- Sort the machines by their heterogeneity level
- Assign first the more heterogeneous ones

Configuration *m* and *p* fixed *m* and *n* fixed

Summary

- Introduction
- 2 Framework
 - Heuristics
 - Simulation results
 Configuration *m* and *p* fixed *m* and *n* fixed

Configuration *m* and *p* fixed *m* and *n* fixed

Configuration

- *m* is the number of machines
- *p* the number of types
- *n* the number of tasks
- average value of 50 simulations where the $w_{0,u}$ randomly chosen between 100 and 1000 ms,
- tailure rates f_i $(1 \le i \le n)$ randomly chosen between 0.5 and 2 % (i.e., 1/200 and 1/50)

Configuration *m* and *p* fixed *m* and *n* fixed

Configuration

- *m* is the number of machines
- *p* the number of types
- *n* the number of tasks
- average value of 50 simulations where the w_{i,u} randomly chosen between 100 and 1000 ms,
- failure rates f_i $(1 \le i \le n)$ randomly chosen between 0.5 and 2 % (i.e., 1/200 and 1/50)

Configuration *m* and *p* fixed *m* and *n* fixed

m and p fixed - Behavior of H1

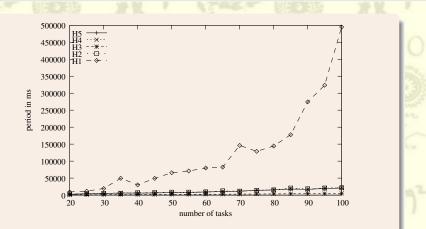


Figure: m = 10, p = 5.

Dobrila Alexandru

Throughput optimization for micro-factories

Configuration *m* and *p* fixed *m* and *n* fixed

m and *p* fixed - Platform heterogeneity

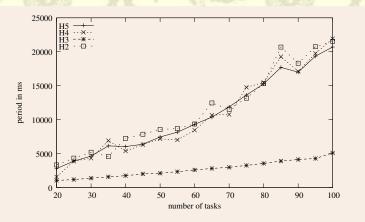


Figure: m = 10, p = 5. $100 < w_{i,u} < 1000$.

Configuration *m* and *p* fixed *m* and *n* fixed

m and *p* fixed - Platform heterogeneity

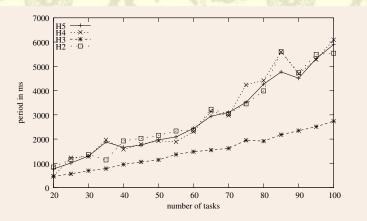


Figure: m = 10, p = 5. $100 < w_{i,u} < 200$.

Configuration *m* and *p* fixed *m* and *n* fixed

m and *p* fixed - Platform heterogeneity

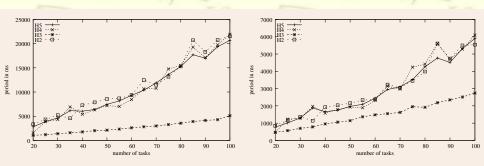


Figure: m = 10, p = 5. $100 < w_{i,u} < 1000$ Figure: m = 10, p = 5. $100 < w_{i,u} < 200$

Configuration *m* and *p* fixed *m* and *n* fixed

m and *p* fixed - Size of groups

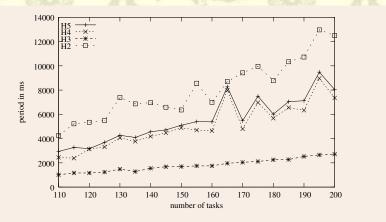


Figure: m = 100, p = 90.

Dobrila Alexandru

Throughput optimization for micro-factorie

9/23

Configuration *m* and *p* fixed *m* and *n* fixed

m and *p* fixed - Size of groups

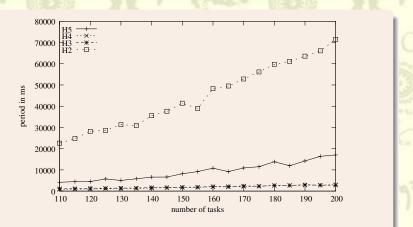


Figure: m = 100, p = 5.

Dobrila Alexandru

Throughput optimization for micro-factorie

Configuration *m* and *p* fixed *m* and *n* fixed

m and n fixed

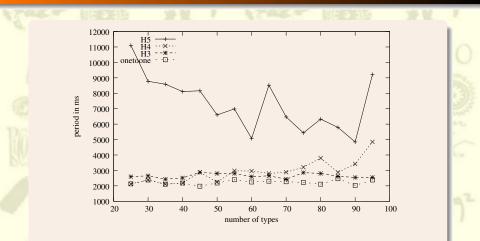


Figure: m = n = 100, with $w_{i,u} = w_{i,u'}$.

Summary

Future works

• $f_i \rightarrow f_{i,u}$

- A task could be executed by different machines
- Consider the general mapping, with reconfiguration cost

Questions ..