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The main techniques...

Some of the main PTAS design techniques [SW00]:
structuring the input
structuring the output (“extending partial small size solutions”)
structuring the execution of an algorithm (“trimmed
algorithm”)
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Structuring the input

Given in instance I , the main (“polynomial”) steps are:
simplify: turn I into a more primitive instance I ′ . This
simplification depends on the desired precision ε
solve: determine an optimal solution Opt ′ for I ′ (in
polynomial time)
translate back: translate the solution Opt ′ for I ′ into an
approximate solution S for I

I

Figure from [SW00]
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Structuring the output

Given in instance I , the main (“polynomial”) steps are:
partition: partition the feasible solution space F into a
(polynomial) number of districts F (1), .., F (d). This partition
depends on the desired precision ε.
find representative: For each district F (l), determine a good
representative S (l) “close” to Opt(l)

take the best: select the best of all representatives as the
final solution S

representative

globally optimal solution
F

figure from [SW00]
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Structuring the execution of an algorithm

Given in instance I , perform a polynomial number of “meta” steps.
At each step:

extend: extend every partial solution of the current set
collapse: according to a previously defined “grid” ’, collapse all
the partial solutions which are in the same “box”

take the best: After the last step, we get solutions for the original
problem. Select the best of all these solutions.

step $j$ step $j+1$

collapsing subset

previous set of partial solutions

current set of partial solutions
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Oracle based approach

This formalism is directly inspired from complexity theory. Given in
instance I , the main (“polynomial”) steps are:

choose the question: choose an “interesting” property P
ask a question Q(I ) to the (reliable) oracle
the oracle provides an answer r∗ ∈ R (s t. P(Q(I ), r∗) is true)
find a solution using the answer: A provides S(r∗) ≤ ρOpt
without the oracle: try all the possible answers and select
the best of all the S(r), r ∈ R

I
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Oracle based approach

Thus, the obtained algorithm (without oracle):
is a ρ approximation
has a computational complexity in O(tA ∗ 2|r

∗|)

Generally, we can choose the size |r∗| (leading to different ρ),
leading to approximation schemes.

The answer size is crucial !
Beside efficient (compact) representation, we will look into lossy
compression.
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Oracle approach Vs structuring the output

When asking a particular type of “questions”, the oracle formalism
can be equivalent to the output structuring technique. An example
for P||Cmax :

question : where do you schedule the biggest task (in an
optimal solution)?
provide a solution for all the possible oracle answer r ⇐⇒
provide a solution for every district
the oracle answer r∗ indicates a district containing an optimal
solution

However, these are very special cases.
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finite benchmark of instances: allows comparisons between
algorithms
set of algorithms
goal: minimize the time needed to solve all the instances from
the benchmark
more than selection: combination of algorithms

SAT Algorithms

12 / 32



PTAS design techniques
The DRSSP problem
Oracle approximation

Introduction

finite benchmark of instances: allows comparisons between
algorithms
set of algorithms
goal: minimize the time needed to solve all the instances from
the benchmark
more than selection: combination of algorithms

SAT Algorithms

12 / 32



PTAS design techniques
The DRSSP problem
Oracle approximation

Introduction

finite benchmark of instances: allows comparisons between
algorithms
set of algorithms
goal: minimize the time needed to solve all the instances from
the benchmark
more than selection: combination of algorithms

SAT Algorithms

12 / 32



PTAS design techniques
The DRSSP problem
Oracle approximation

Introduction

finite benchmark of instances: allows comparisons between
algorithms
set of algorithms
goal: minimize the time needed to solve all the instances from
the benchmark
more than selection: combination of algorithms

SAT Algorithms

12 / 32



PTAS design techniques
The DRSSP problem
Oracle approximation

Introduction

What me mean by combination:
one instance may be treated by several algorithms in parallel
when a solution of an instance is found, everyone is aware
but, the solution for an instance cannot be merged from
partial solutions provided by different algorithms

Algorithm are parallel.
Parallel task model : moldable.
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Outline :
a finite set of instances, a finite set of algorithm, a limited
number of ressources m
the goal is to minimize the total time to solve all the instances
of the benchmark
for instance Ij , algorithm hi and p resources, the time cost is
C (hi , Ij , p)
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Introduction

Context :
hybridation, algorithm portfolios
two of the existing techniques : time sharing Vs space sharing

Space sharing assumptions (for a fixed problem P):
a portfolio of algorithm for P is given
there exists a finite set I of representative input of P
the time needed by every algorithm to solve every instance of I
is known a priori !
the goal is to minimize the mean execution time for an
instance of I
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Definition of the dRSSP

Input of the discrete Resource Sharing Scheduling Problem:
a finite set of instances I = {I1, . . . , In}
a finite set of heuristics H = {h1, . . . , hk}
m identical resources
a cost C (hi , Ij , p) ∈ R+ for each Ij ∈ I , hi ∈ H and
p ∈ {1, . . . ,m}

Continuous version (p ∈ R+) in [SFM06].
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Definition of the dRSSP

Output : an allocation S = (S1, . . . , Sk) such that:
Si ∈ {0, . . . ,m}
0 <

∑k
i=1 Si ≤ m

S minimizes
∑n

j=1 min
1≤i≤k

{C (hi , Ij , Si )|Si > 0}
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A restricted version

We study a restricted version in which :
the cost function is linear in the number of resources
C (hi , Ij , Si ) =

C(hi ,Ij )
Si

each heuristic must use at least one processor (Si ≥ 1), (well
chosen portfolio)

Remark : with only the first constraint, the problem is
inaproximable within a constant factor (if m < k).
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A simple greedy algorithm

We consider the mean-allocation (MA) algorithm which simply
allocates bmk c resources to each heuristic.

Proposition
MA is a k approximation.

Notations (given a solution S):

let σ(j) = i0/
C(hi0 ,Ij )

Si0
= min

1≤i≤k

C(hi ,Ij )
Si

be the index of the used

heuristic for instance j ∈ {1, .., n} in S

let T (Ij) =
C(hσ(j),Ij )

Sσ(j)
be the processing time of instance j in S
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A simple greedy algorithm

Proof: Let (a, b) ∈ N2 such that m = ak + b, b < k , a ≥ 1.
∀j ∈ {1, .., n}:

T (Ij) ≤
C (hσ∗(j), Ij)

Sσ∗(j)
=

S∗σ∗(j)

Sσ∗(j)
T ∗(Ij)

≤ m − (k − 1)

Sσ∗(j)
T ∗(Ij)

=
ak + b − (k − 1)

a
T ∗(Ij) ≤ kT ∗(Ij)
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Guessing the correct oracle answer
Second guess : convenient subset
Guess approximation

Guess 1

As a first step, we ask the correct allotment for g heuristics.

Definition
Let G1 = (S∗1 , . . . , S

∗
g ), for a fixed subset of g heuristics and a fixed

optimal solution S∗.

Notice that |G1| = glog(m).
We need some notations :

let k ′ = k − g be the number of remaining heuristics
let s = Σg

i=1S
∗
i the number of processors used in the guess

let m′ = m − s the number of remaining processors
let (a′, b′) ∈ N2 such that m′ = a′k ′ + b′, b′ < k ′
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Guessing the correct oracle answer
Second guess : convenient subset
Guess approximation

Algorithm MAG

We consider the following MAG algorithm (given any guess
G = (X1, . . . ,Xg ),Xi ≥ 1):

allocate Xi processors to heuristic hi , i ∈ {1, . . . , g}
applies MA on the k ′ others heuristics with the m′ remaining
processors

We will use this algorithm with G = G1.
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Guessing the correct oracle answer
Second guess : convenient subset
Guess approximation

Analysis of MAG1

Proposition

MAG1 is a k − g approximation.

Proof:
MAG1 produces a valid solution because a′ ≥ 1
for any instance j treated by a guessed heuristic in the optimal
solution considered MAG1 is even better than the optimal
for the others, the analysis is the same as for the algorithm
MA, and leads to the desired ratio
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Guessing the correct oracle answer
Second guess : convenient subset
Guess approximation

Algorithm MAG
R

The ratio for instances treated by the guessed heuristics is
unnecessarily good.
Thus, we consider mean-allocation-reassign (MAG

R ) algorithm
(given any guess G = (X1, . . . ,Xg ),Xi ≥ 1):

allocates Xi − bXi
α c processors to heuristic hi , i ∈ {1, . . . , g}

applies MA on the k ′ others heuristics with the m′ + Σg
i=1b

Xi
α c

remaining processors

Remark

MAG
R doesn’t respect G

maybe we asked the wrong question ?
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Another analysis of MA

For any heuristic hi , i ∈ {1, .., k}, let T ∗(hi ) = Σj/σ∗(j)=iT ∗(Ij) be
the “useful” computation time of heuristic i in the solution S∗.

TMA =
k∑

i=1

∑
j/σ∗(j)=i

T (Ij)

≤
k∑

i=1

S∗i
Si

∑
j/σ∗(j)=i

T ∗(Ij)

=
k∑

i=1

S∗i
Si

T ∗(hi )

≤ Maxi (T ∗(hi ))
m
bmk c

≤ Maxi (T ∗(hi ))(2k − 1)
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Guess 2

Definition
Let G2 = (S∗1 , . . . , S

∗
g ), such that

T ∗(h1) ≥ .. ≥ T ∗(hg ) ≥ T ∗(hi ), ∀i ∈ {g + 1, .., k} in a fixed
optimal solution S∗.

Notice that |G2| = glog(k) + glog(m).
We will use the algorithm MAG with G = G2.

27 / 32



PTAS design techniques
The DRSSP problem
Oracle approximation

Guessing the correct oracle answer
Second guess : convenient subset
Guess approximation

Analysis of MAG2

Proposition

MAG2 is a k−1
g approximation.

Proof: We proceed as in the new analysis of MA:

Talgo =

g∑
i=1

∑
j/σ∗(j)=i

T (Ij) +
k∑

i=g+1

∑
j/σ∗(j)=i

T (Ij)

≤
g∑

i=1

T ∗(hi ) +
k∑

i=g+1

S∗i
Si

T ∗(hi )

=
k∑

i=1

T ∗(hi ) +
k∑

i=g+1

(
S∗i
Si
− 1)T ∗(hi )

= Opt + T ∗(hg )︸ ︷︷ ︸
≤Opt

g

(
m′

a′
− k ′)
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Introduction

Goal: we want Ḡ smaller than G , without degrading too much the
solution.
To solve these problems, we want:

S̄i ≤ S∗i
S̄i = S∗i for the “small” values of S∗i

Thus, given a guess G = (S∗1 , .., S
∗
g ):

we choose a size j1 bits for the significant,
j1 ∈ {1, .., dlog(m)e}
we write S∗i = ti2xi + ri , with ti encoded on j1 bits, and
0 ≤ xi ≤ dlog(m)e − j1, et ri ≤ 2xi − 1
we define S̄i = ti2xi

We consider that the oracle gives Ḡ2. Notice that
|Ḡ2| = Σg

i=1(|ti |+ |xi |) ≤ g(j1 + log(log(m)).
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Analysis of MAḠ2

Proposition

MAḠ2 is a β + k−g−1
g approximation, with 1 + 1

2j1−1 = β.

Proof:
if S∗i ≤ 2j1 − 1, then S̄i = S∗i
else, S∗i

S̄i
= ti2xi +ri

ti2xi ≤ 1 + 1
ti
≤ 1 + 1

2j1−1 = β

Then, using the same analysis as MAG2 :

Talgo ≤
g∑

i=1

βT ∗(hi ) +
k∑

i=g+1

S∗i
Si

T ∗(hi )

= βOpt + T ∗(hg )︸ ︷︷ ︸
≤Opt

g

(
m′

a′
− k ′)
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Summary

Outline of the derived approximation schemes:

algorithm approximation ratio complexity
MAG1 (k − g) O(mg ∗ kn)

MAG2 k−1
g O((km)g ∗ kn)

MAḠ2 β + k−g−1
g O(k(2j1 log(m))g ∗ kn)

In [SFM06], k is fixed.
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Conclusion

Spatial heuristics combination
Complexity vs. Approximation trade-off
Partial oracle (To err is human !)

What’s next ?
real application experiments (SAT solvers)
extend the method to other problems
explore connections with PCP theory
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