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PTAS design techniques Some classical techniques

The oracle formalism

The main techniques...

Some of the main PTAS design techniques [SWO0O0]:
@ structuring the input
@ structuring the output (“extending partial small size solutions”)

@ structuring the execution of an algorithm (“trimmed
algorithm”)
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Structuring the input

Given in instance /, the main (“polynomial”) steps are:

Figure from [SWO00]
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Structuring the input

Given in instance /, the main (“polynomial”) steps are:
o simplify: turn / into a more primitive instance /’ . This
simplification depends on the desired precision €
e solve: determine an optimal solution Opt’ for I’ (in
polynomial time)
e translate back: translate the solution Opt’ for I’ into an
approximate solution S for /

Translate back

Figure from [SWO00]
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Structuring the output

Given in instance /, the main (“polynomial”) steps are:

@ partition: partition the feasible solution space F into a
(polynomial) number of districts F(1) .., F(9)_ This partition
depends on the desired precision e.

o find representative: For each district F(), determine a good
representative S() “close” to Opt(!)

o take the best: select the best of all representatives as the
final solution S

figure from [SWo00]
F X  representative
A globally optimal solution
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Structuring the execution of an algorithm

Given in instance /, perform a polynomial number of “meta” steps.
At each step:

@ current set of partial solutions
X previous set of partial solutions

o O collapsing subset
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Structuring the execution of an algorithm

Given in instance /, perform a polynomial number of “meta” steps.
At each step:
o extend: extend every partial solution of the current set
@ collapse: according to a previously defined “grid”’, collapse all
the partial solutions which are in the same “box”
take the best: After the last step, we get solutions for the original
problem. Select the best of all these solutions.

@ current set of partial solutions
X' previous set of partial solutions

O collapsing subset
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Oracle based approach

This formalism is directly inspired from complexity theory. Given in
instance /, the main (“polynomial”) steps are:

@ choose the question: choose an “interesting” property P
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Oracle based approach

This formalism is directly inspired from complexity theory. Given in
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@ choose the question: choose an “interesting” property P

@ ask a question Q(/) to the (reliable) oracle
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Oracle based approach

This formalism is directly inspired from complexity theory. Given in
instance /, the main (“polynomial”) steps are:
@ choose the question: choose an “interesting” property P
@ ask a question Q(/) to the (reliable) oracle
@ the oracle provides an answer r* € R (s t. P(Q(/), r") is true)
o find a solution using the answer: A provides S(r*) < pOpt

1
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The oracle formalism

Oracle based approach

This formalism is directly inspired from complexity theory. Given in
instance /, the main (“polynomial”) steps are:
@ choose the question: choose an “interesting” property P
@ ask a question Q(/) to the (reliable) oracle
@ the oracle provides an answer r* € R (s t. P(Q(/), r") is true)
o find a solution using the answer: A provides S(r*) < pOpt

@ without the oracle: try all the possible answers and select
the best of all the S(r),r € R

A 5(r)
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The oracle formalism

Oracle based approach

Thus, the obtained algorithm (without oracle):
@ is a p approximation
e has a computational complexity in O(t4 * 2/""1)

Generally, we can choose the size |r*| (leading to different p),
leading to approximation schemes.
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The oracle formalism

Oracle based approach

Thus, the obtained algorithm (without oracle):
@ is a p approximation
e has a computational complexity in O(t4 * 2/""1)

Generally, we can choose the size |r*| (leading to different p),
leading to approximation schemes.

The answer size is crucial |

Beside efficient (compact) representation, we will look into lossy
compression.
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PTAS design techniques Some classical techniques

The oracle formalism

Oracle approach Vs structuring the output

When asking a particular type of “questions”, the oracle formalism
can be equivalent to the output structuring technique. An example
for P||Cmax:

@ question : where do you schedule the biggest task (in an
optimal solution)?

@ provide a solution for all the possible oracle answer r <=
provide a solution for every district

@ the oracle answer r* indicates a district containing an optimal
solution

However, these are very special cases.
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© The DRSSP problem
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The DRSSP problem

Introduction

o finite benchmark of instances: allows comparisons between
algorithms

@ set of algorithms

@ goal: minimize the time needed to solve all the instances from
the benchmark

SAT Algorithms

X
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The DRSSP problem

Introduction

o finite benchmark of instances: allows comparisons between
algorithms

@ set of algorithms

@ goal: minimize the time needed to solve all the instances from
the benchmark

@ more than selection: combination of algorithms

SAT Algorithms
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The DRSSP problem

Introduction

What me mean by combination:
@ one instance may be treated by several algorithms in parallel
@ when a solution of an instance is found, everyone is aware

@ but, the solution for an instance cannot be merged from
partial solutions provided by different algorithms

Algorithm are parallel.
Parallel task model : moldable.
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The DRSSP problem

Introduction

Outline :
@ a finite set of instances, a finite set of algorithm, a limited
number of ressources m
@ the goal is to minimize the total time to solve all the instances
of the benchmark
e for instance /;, algorithm h; and p resources, the time cost is

C(hiu I_[ap)
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The DRSSP problem

Introduction

Context :

@ hybridation, algorithm portfolios

@ two of the existing techniques : time sharing Vs space sharing
Space sharing assumptions (for a fixed problem P):

@ a portfolio of algorithm for P is given

@ there exists a finite set / of representative input of P

@ the time needed by every algorithm to solve every instance of /
is known a priori |

@ the goal is to minimize the mean execution time for an
instance of /
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The DRSSP problem

Definition of the dRSSP

Input of the discrete Resource Sharing Scheduling Problem:
@ a finite set of instances | = {h,..., I}
@ a finite set of heuristics H = {hy, ..., hi}
@ m identical resources
e a cost C(hj,l;,p) € RT foreach I € I, hj € H and
pe{l,...,m}
Continuous version (p € R™) in [SFMO06].
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The DRSSP problem

Definition of the dRSSP

Output : an allocation S = (51, ..., Sk) such that:
@ S5 € {0,.. .,rn}
0 0< Zf-(zl Si<m
. . . n . ) ) 3 .
© S minimizes 3 7, 12]21({(:(/7,, lj, Si)|Si > 0}

Heurlsuc‘s I i s
hy
X Vv
hy
X X
hs
v X

Time
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The DRSSP problem

A restricted version

We study a restricted version in which :
@ the cost functioCrEhisl I)inear in the number of resources
C(hivljusi): 5".71
@ each heuristic must use at least one processor (S; > 1), (well
chosen portfolio)

Remark : with only the first constraint, the problem is
inaproximable within a constant factor (if m < k).
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The DRSSP problem

A simple greedy algorithm

We consider the mean-allocation (MA) algorithm which simply
allocates | 7| resources to each heuristic.

Proposition

MA is a k approximation.

Notations (given a solution S):

N . Clhil; . " .
e let o(j) = /0/% = 1@2[(%’,”) be the index of the used

heuristic for instance j € {1,..,n} in S

ho (i), 1l . . . ..
o let T(lj) = C(S"i((’l))’) be the processing time of instance j in S
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The DRSSP problem

A simple greedy algorithm

Proof: Let (a, b) € N? such that m = ak + b, b < k,a > 1.

Vje{1,.,n}:
Clhoe(): 1) So+()
T(h) < ’ = (1)
! So+() Soi)
m— (k —1)
< (1)
S+ () !
ak+b—(k—1)
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Oracle approximation Guess approximation

© Oracle approximation
@ Guessing the correct oracle answer
@ Second guess : convenient subset
@ Guess approximation
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Guessing the correct oracle answer
Second guess : convenient subset
Oracle approximation Guess approximation

Guess 1

As a first step, we ask the correct allotment for g heuristics.

Definition

Let G1 = (S7,...,S;), for a fixed subset of g heuristics and a fixed
optimal solution S*.

Notice that |G1| = glog(m).
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Guess 1

As a first step, we ask the correct allotment for g heuristics.

Definition

Let G1 = (S7,...,S;), for a fixed subset of g heuristics and a fixed
optimal solution S*.

Notice that |G1| = glog(m).
We need some notations :

o let K = k — g be the number of remaining heuristics
let s = X% S the number of processors used in the guess

let m" = m — s the number of remaining processors
let (a/, b') € N? such that m’ = 2’k + b/, b < K
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Guessing the correct oracle answer
Second guess : convenient subset
Oracle approximation Guess approximation

Algorithm MAC

We consider the following MA® algorithm (given any guess
G=(X1,...,Xg), Xi > 1):
@ allocate X; processors to heuristic h;,i € {1,...,g}

@ applies MA on the k’ others heuristics with the m’ remaining
processors

We will use this algorithm with G = G3.
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Guessing the correct oracle answer
Second guess : convenient subset
Oracle approximation Guess approximation

Analysis of MA®

Proposition

MAC! is a k — g approximation.

Proof:
e MAC! produces a valid solution because &’ > 1

e for any instance j treated by a guessed heuristic in the optimal
solution considered MAC! is even better than the optimal

o for the others, the analysis is the same as for the algorithm
MA, and leads to the desired ratio
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Guessing the correct oracle answer
Second guess : convenient subset
Oracle approximation Guess approximation

Algorithm MAS

The ratio for instances treated by the guessed heuristics is
unnecessarily good.
Thus, we consider mean-allocation-reassign (MAS) algorithm
(given any guess G = (Xq,...,Xg), Xi > 1):

o allocates X; — L%j processors to heuristic h;,i € {1,...,g}

o applies MA on the k’ others heuristics with the m" + £%_; L%J
remaining processors

° I\/IA,C{; doesn't respect G

@ maybe we asked the wrong question ?
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Guessing the correct oracle answer
Second guess : convenient subset
Oracle approximation Guess approximation

Another analysis of MA

For any heuristic h;,i € {1,.., k}, let T*(h;) = Xj/g=(jy=i T*(I;) be
the “useful” computation time of heuristic i in the solution S*.

Tma = Z > T

INA
]~
<2
|
.

k cx
= S ATy

i=1 7'
< I\/Iax;(T*(hi))erZJ
< Max;(T*(hi))(2k — 1)
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Guessing the correct oracle answer
Second guess : convenient subset
Oracle approximation Guess approximation

Guess 2

Definition

Let Go = (57, ..., S;), such that

T*(h)>..> T*(hg) > T*(h;),Vi € {g +1,...,k} in a fixed
optimal solution S*.

Notice that |G| = glog(k) + glog(m).
We will use the algorithm MAS with G = Go.
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Guessing the correct oracle answer
Second guess : convenient subset
Oracle approximation Guess approximation

Analysis of MA®

Proposition

MA® is a % approximation.

Proof: We proceed as in the new analysis of MA:

Tafgo=ZZ > Z

i=1j/o*(j i=g+1lj/o*(j
k 5*

< ZT*(h;H . ZET(h)

i=1 i—g+1 7!

k k S
= Z T*(hi) + Z (?'_ —1)T*(h)

i=1 i=g+1 !

/
= Opt+ T*(hg)(= — K
< Opt

28 /32



Guessing the correct oracle answer
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Oracle approximation Guess approximation

Introduction

Goal: we want G smaller than G, without degrading too much the
solution.
To solve these problems, we want:

J S; < f;?
o S; =S¢ for the “small” values of S*
Thus, given a guess G = (57, .., 57):
@ we choose a size ji bits for the significant,
J1€A{1,.., [log(m)]}
e we write S* = ;2% 4 r;, with t; encoded on j; bits, and
0<x < [log(m)] —ji,etr <24 —1
o we define §; = ;2%
We consider that the oracle gives G,. Notice that
Go| = T8, (|ti| + [xi]) < g(jr + log(log(m)).

29/32



Guessing the correct oracle answer
Second guess : convenient subset
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Analysis of MAG:

Proposition

G : k—g—1 _
MA®2 is a B + g approximation, with 1 + 211 = = 0.
Proof:

° ifS,f“§2fl—1 then 5-—5*
Sl* — t12 ’+ i —
oelse,sfl__ '<1+ <1+2111—ﬁ
Then, using the same analysis as MA®2:

g k 5*
7;&;0 < :E:: ﬁ37—* _% :E::
i=1 i= g+1
= BO0pt+ T"(h )(7 —K)

<O
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Guessing the correct oracle answer
Second guess : convenient subset
Oracle approximation Guess approximation

Summary

Outline of the derived approximation schemes:

algorithm  approximation ratio complexity

MAC: (k—g) O(m# « kn)

MAGC2 % O((km)& x kn)

MAC2 B+ Aet O(k(2 log(m))& * kn)

In [SFMO6], k is fixed.

31/32



Guessing the correct oracle answer
Second guess : convenient subset
Oracle approximation Guess approximation

Conclusion

@ Spatial heuristics combination
o Complexity vs. Approximation trade-off

@ Partial oracle (To err is human !)
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Conclusion

@ Spatial heuristics combination
o Complexity vs. Approximation trade-off
@ Partial oracle (To err is human !)

real application experiments (SAT solvers)

extend the method to other problems

explore connections with PCP theory

32/32



Guessing the correct oracle answer
Second guess : convenient subset

Oracle approximation Guess approximation

[SFMO06] Tzur Sayag, Shai Fine, and Yishay Mansour.

[SWO0]

Combining multiple heuristics.
2006.

Petra Schuurman and Gerhard J. Woeginger.
Approximation schemes - a tutorial.
In Lectures on Scheduling, 2000.
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