Oracle-based approximation algorithms for the discrete resource sharing scheduling problem

Marin Bougeret, Pierre-François Dutot, Denis Trystram

Laboratoire LIG

13 May, University of Tennessee

PTAS design techniques

- Some classical techniques
- The oracle formalism

2 The DRSSP problem

Oracle approximation

- Guessing the correct oracle answer
- Second guess : convenient subset
- Guess approximation

Some classical techniques The oracle formalism

PTAS design techniques

- Some classical techniques
- The oracle formalism

2 The DRSSP problem

Oracle approximation

- Guessing the correct oracle answer
- Second guess : convenient subset
- Guess approximation

Some classical techniques The oracle formalism

The main techniques...

Some of the main *PTAS* design techniques [SW00]:

- structuring the input
- structuring the output ("extending partial small size solutions")
- structuring the execution of an algorithm ("trimmed algorithm")

Some classical techniques The oracle formalism

Structuring the input

Given in instance *I*, the main ("polynomial") steps are:

- simplify: turn I into a more primitive instance I'. This simplification depends on the desired precision ϵ
- **solve**: determine an optimal solution *Opt'* for *I'* (in polynomial time)
- translate back: translate the solution *Opt'* for *I'* into an approximate solution *S* for *I*

Figure from [SW00]

Structuring the input

Given in instance *I*, the main ("polynomial") steps are:

- simplify: turn I into a more primitive instance I' . This simplification depends on the desired precision ϵ
- **solve**: determine an optimal solution *Opt'* for *l'* (in polynomial time)
- **translate back**: translate the solution *Opt'* for *I'* into an approximate solution *S* for *I*

Figure from [SW00]

Structuring the input

Given in instance *I*, the main ("polynomial") steps are:

- simplify: turn I into a more primitive instance I' . This simplification depends on the desired precision ϵ
- **solve**: determine an optimal solution *Opt'* for *I'* (in polynomial time)
- **translate back**: translate the solution *Opt'* for *I'* into an approximate solution *S* for *I*

Figure from [SW00]

Structuring the input

- simplify: turn I into a more primitive instance I' . This simplification depends on the desired precision ϵ
- **solve**: determine an optimal solution *Opt'* for *I'* (in polynomial time)
- translate back: translate the solution *Opt'* for *I'* into an approximate solution *S* for *I*

Some classical techniques The oracle formalism

Structuring the output

- partition: partition the feasible solution space F into a (polynomial) number of districts $F^{(1)}$, ..., $F^{(d)}$. This partition depends on the desired precision ϵ .
- find representative: For each district $F^{(l)}$, determine a good representative $S^{(l)}$ "close" to $Opt^{(l)}$
- take the best: select the best of all representatives as the final solution *S*

Some classical techniques The oracle formalism

Structuring the output

- partition: partition the feasible solution space F into a (polynomial) number of districts F⁽¹⁾, ..., F^(d). This partition depends on the desired precision ε.
- find representative: For each district $F^{(I)}$, determine a good representative $S^{(I)}$ "close" to $Opt^{(I)}$
- take the best: select the best of all representatives as the final solution *S*

Structuring the output

- partition: partition the feasible solution space F into a (polynomial) number of districts F⁽¹⁾, ..., F^(d). This partition depends on the desired precision ε.
- find representative: For each district $F^{(l)}$, determine a good representative $S^{(l)}$ "close" to $Opt^{(l)}$
- take the best: select the best of all representatives as the final solution *S*

Structuring the output

- partition: partition the feasible solution space F into a (polynomial) number of districts F⁽¹⁾, ..., F^(d). This partition depends on the desired precision ε.
- find representative: For each district $F^{(l)}$, determine a good representative $S^{(l)}$ "close" to $Opt^{(l)}$
- take the best: select the best of all representatives as the final solution *S*

Structuring the execution of an algorithm

Given in instance *I*, perform a polynomial number of "meta" steps. At each step:

- extend: extend every partial solution of the current set
- **collapse**: according to a previously defined "grid"', collapse all the partial solutions which are in the same "box"

take the best: After the last step, we get solutions for the original problem. Select the best of all these solutions.

current set of partial solutions

× previous set of partial solutions

collapsing subset

Structuring the execution of an algorithm

Given in instance *I*, perform a polynomial number of "meta" steps. At each step:

- extend: extend every partial solution of the current set
- collapse: according to a previously defined "grid"', collapse all the partial solutions which are in the same "box"
 take the best: After the last step, we get solutions for the original problem. Select the best of all these solutions.

- current set of partial solutions
- \times previous set of partial solutions
-) collapsing subset

Structuring the execution of an algorithm

Given in instance *I*, perform a polynomial number of "meta" steps. At each step:

- extend: extend every partial solution of the current set
- **collapse**: according to a previously defined "grid"', collapse all the partial solutions which are in the same "box"

take the best: After the last step, we get solutions for the original problem. Select the best of all these solutions.

current set of partial solutions
 previous set of partial solutions
 collapsing subset

Structuring the execution of an algorithm

Given in instance *I*, perform a polynomial number of "meta" steps. At each step:

- extend: extend every partial solution of the current set
- **collapse**: according to a previously defined "grid"', collapse all the partial solutions which are in the same "box"

take the best: After the last step, we get solutions for the original problem. Select the best of all these solutions.

- choose the question: choose an "interesting" property P
- ask a question Q(I) to the (reliable) oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the answer: A provides $S(r^*) \le \rho Opt$
- without the oracle: try all the possible answers and select the best of all the S(r), r ∈ R

- choose the question: choose an "interesting" property P
- ask a question Q(I) to the (reliable) oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the answer: A provides $S(r^*) \le \rho Opt$
- without the oracle: try all the possible answers and select the best of all the S(r), r ∈ R

- choose the question: choose an "interesting" property P
- ask a question Q(I) to the (reliable) oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the answer: A provides $S(r^*) \leq \rho Opt$
- without the oracle: try all the possible answers and select the best of all the S(r), r ∈ R

- choose the question: choose an "interesting" property P
- ask a question Q(I) to the (reliable) oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the answer: A provides $S(r^*) \leq \rho Opt$
- without the oracle: try all the possible answers and select the best of all the S(r), r ∈ R

- choose the question: choose an "interesting" property P
- ask a question Q(I) to the (reliable) oracle
- the oracle provides an answer $r^* \in R$ (s t. $P(Q(I), r^*)$ is true)
- find a solution using the answer: A provides $S(r^*) \leq \rho Opt$
- without the oracle: try all the possible answers and select the best of all the S(r), r ∈ R

Thus, the obtained algorithm (without oracle):

- is a ρ approximation
- has a computational complexity in $O(t_A * 2^{|r^*|})$

Generally, we can choose the size $|r^*|$ (leading to different ρ), leading to approximation schemes.

The answer size is crucial !

Beside efficient (compact) representation, we will look into lossy compression.

Thus, the obtained algorithm (without oracle):

- is a ρ approximation
- has a computational complexity in $O(t_A * 2^{|r^*|})$

Generally, we can choose the size $|r^*|$ (leading to different ρ), leading to approximation schemes.

The answer size is crucial !

Beside efficient (compact) representation, we will look into lossy compression.

Oracle approach Vs structuring the output

When asking a particular type of "questions", the oracle formalism can be equivalent to the output structuring technique. An example for $P||C_{max}$:

- question : where do you schedule the biggest task (in an optimal solution)?
- provide a solution for all the possible oracle answer r \leftarrow provide a solution for every district
- the oracle answer r^* indicates a district containing an optimal solution

However, these are very special cases.

1 PTAS design techniques

- Some classical techniques
- The oracle formalism

2 The DRSSP problem

Oracle approximation

- Guessing the correct oracle answer
- Second guess : convenient subset
- Guess approximation

- finite benchmark of instances: allows comparisons between algorithms
- set of algorithms
- goal: minimize the time needed to solve all the instances from the benchmark
- more than selection: combination of algorithms

- finite benchmark of instances: allows comparisons between algorithms
- set of algorithms
- goal: minimize the time needed to solve all the instances from the benchmark
- more than selection: combination of algorithms

- finite benchmark of instances: allows comparisons between algorithms
- set of algorithms
- goal: minimize the time needed to solve all the instances from the benchmark
- more than selection: combination of algorithms

- finite benchmark of instances: allows comparisons between algorithms
- set of algorithms
- goal: minimize the time needed to solve all the instances from the benchmark
- more than selection: combination of algorithms

What me mean by combination:

- one instance may be treated by several algorithms in parallel
- when a solution of an instance is found, everyone is aware
- but, the solution for an instance cannot be merged from partial solutions provided by different algorithms

Algorithm are parallel.

Parallel task model : moldable.

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for instance l_j , algorithm h_i and p resources, the time cost is $C(h_i, l_j, p)$

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for instance l_j , algorithm h_i and p resources, the time cost is $C(h_i, l_j, p)$

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for instance l_j , algorithm h_i and p resources, the time cost is $C(h_i, l_j, p)$

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for instance l_j , algorithm h_i and p resources, the time cost is $C(h_i, l_j, p)$

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for instance l_j , algorithm h_i and p resources, the time cost is $C(h_i, l_j, p)$

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for instance l_j , algorithm h_i and p resources, the time cost is $C(h_i, l_j, p)$

- a finite set of instances, a finite set of algorithm, a limited number of ressources m
- the goal is to minimize the total time to solve all the instances of the benchmark
- for instance l_j , algorithm h_i and p resources, the time cost is $C(h_i, l_j, p)$

- a finite set of instances, a finite set of algorithm, a limited number of ressources m
- the goal is to minimize the total time to solve all the instances of the benchmark
- for instance l_j , algorithm h_i and p resources, the time cost is $C(h_i, l_j, p)$

- a finite set of instances, a finite set of algorithm, a limited number of ressources m
- the goal is to minimize the total time to solve all the instances of the benchmark
- for instance l_j , algorithm h_i and p resources, the time cost is $C(h_i, l_j, p)$

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for instance l_j , algorithm h_i and p resources, the time cost is $C(h_i, l_j, p)$

- a finite set of instances, a finite set of algorithm, a limited number of ressources *m*
- the goal is to minimize the total time to solve all the instances of the benchmark
- for instance l_j , algorithm h_i and p resources, the time cost is $C(h_i, l_j, p)$

Context :

- hybridation, algorithm portfolios
- two of the existing techniques : time sharing Vs space sharing Space sharing assumptions (for a fixed problem *P*):
 - a portfolio of algorithm for P is given
 - there exists a finite set I of representative input of P
 - the time needed by every algorithm to solve every instance of *I* is known a priori !
 - the goal is to minimize the mean execution time for an instance of *I*

Definition of the dRSSP

Input of the discrete Resource Sharing Scheduling Problem:

- a finite set of instances $I = \{I_1, \ldots, I_n\}$
- a finite set of heuristics $H = \{h_1, \ldots, h_k\}$
- *m* identical resources
- a cost $C(h_i, I_j, p) \in R^+$ for each $I_j \in I$, $h_i \in H$ and $p \in \{1, \ldots, m\}$

Continuous version ($p \in R^+$) in [SFM06].

Definition of the dRSSP

Output : an allocation $S = (S_1, \ldots, S_k)$ such that:

•
$$S_i \in \{0, ..., m\}$$

• $0 < \sum_{i=1}^k S_i \le m$
• S minimizes $\sum_{j=1}^n \min_{1 \le i \le k} \{C(h_i, I_j, S_i) | S_i > 0\}$

A restricted version

We study a restricted version in which :

- the cost function is linear in the number of resources $C(h_i, I_j, S_i) = \frac{C(h_i, I_j)}{S_i}$
- each heuristic must use at least one processor ($S_i \ge 1$), (well chosen portfolio)

Remark : with only the first constraint, the problem is inaproximable within a constant factor (if m < k).

A simple greedy algorithm

We consider the mean-allocation (*MA*) algorithm which simply allocates $\lfloor \frac{m}{k} \rfloor$ resources to each heuristic.

Proposition

MA is a k approximation.

Notations (given a solution S):

- let $\sigma(j) = i_0 / \frac{C(h_{i_0}, l_j)}{S_{i_0}} = \min_{1 \le i \le k} \frac{C(h_i, l_j)}{S_i}$ be the index of the used heuristic for instance $j \in \{1, ..., n\}$ in S
- let $T(I_j) = \frac{C(h_{\sigma(j)}, I_j)}{S_{\sigma(j)}}$ be the processing time of instance j in S

A simple greedy algorithm

Proof: Let $(a, b) \in \mathbb{N}^2$ such that $m = ak + b, b < k, a \ge 1$. $\forall j \in \{1, .., n\}$:

$$egin{aligned} T(l_j) &\leq rac{C(h_{\sigma*(j)}, l_j)}{S_{\sigma^*(j)}} &= &rac{S^*_{\sigma^*(j)}}{S_{\sigma^*(j)}}T^*(l_j) \ &\leq &rac{m-(k-1)}{S_{\sigma^*(j)}}T^*(l_j) \ &= &rac{ak+b-(k-1)}{a}T^*(l_j) \leq kT^*(l_j) \end{aligned}$$

PTAS design techniques	Guessing the correct oracle answer	
The DRSSP problem	Second guess : convenient subset	
Oracle approximation	Guess approximation	

1 PTAS design techniques

- Some classical techniques
- The oracle formalism

2 The DRSSP problem

Oracle approximation

- Guessing the correct oracle answer
- Second guess : convenient subset
- Guess approximation

 PTAS design techniques The DRSSP problem
 Guessing the correct oracle answer Second guess : convenient subset Guess approximation

As a first step, we ask the correct allotment for g heuristics.

Definition

Guess 1

Let $G_1 = (S_1^*, \ldots, S_g^*)$, for a fixed subset of g heuristics and a fixed optimal solution S^* .

Notice that $|G_1| = glog(m)$.

• let k' = k - g be the number of remaining heuristics

- let $s = \sum_{i=1}^{g} S_i^*$ the number of processors used in the guess
- let m' = m s the number of remaining processors
- let $(a',b') \in \mathbb{N}^2$ such that m' = a'k' + b', b' < k'

 PTAS design techniques The DRSSP problem
 Guessing the correct oracle answer Second guess : convenient subset Guess approximation

Guess 1

As a first step, we ask the correct allotment for g heuristics.

Definition

Let $G_1 = (S_1^*, \ldots, S_g^*)$, for a fixed subset of g heuristics and a fixed optimal solution S^* .

Notice that $|G_1| = glog(m)$. We need some notations :

- let k' = k g be the number of remaining heuristics
- let $s = \sum_{i=1}^{g} S_i^*$ the number of processors used in the guess
- let m' = m s the number of remaining processors
- let $(a',b') \in \mathbb{N}^2$ such that m' = a'k' + b', b' < k'

Guessing the correct oracle answer Second guess : convenient subset Guess approximation

Algorithm MA^G

We consider the following MA^G algorithm (given any guess $G = (X_1, \ldots, X_g), X_i \ge 1$):

- allocate X_i processors to heuristic $h_i, i \in \{1, \dots, g\}$
- applies *MA* on the *k*' others heuristics with the *m*' remaining processors

We will use this algorithm with $G = G_1$.

Guessing the correct oracle answer Second guess : convenient subset Guess approximation

Analysis of MA^{G1}

Proposition

 MA^{G_1} is a k - g approximation.

Proof:

- $M\!A^{G_1}$ produces a valid solution because $a' \geq 1$
- for any instance j treated by a guessed heuristic in the optimal solution considered MA^{G_1} is even better than the optimal
- for the others, the analysis is the same as for the algorithm *MA*, and leads to the desired ratio

Algorithm MA_R^G

The ratio for instances treated by the guessed heuristics is unnecessarily good.

Thus, we consider mean-allocation-reassign (MA_R^G) algorithm (given any guess $G = (X_1, \ldots, X_g), X_i \ge 1$):

- allocates $X_i \lfloor rac{X_i}{lpha}
 floor$ processors to heuristic $h_i, i \in \{1, \dots, g\}$
- applies *MA* on the k' others heuristics with the $m' + \sum_{i=1}^{g} \lfloor \frac{X_i}{\alpha} \rfloor$ remaining processors

Remark

- MA_R^G doesn't respect G
- maybe we asked the wrong question ?

Guessing the correct oracle answer Second guess : convenient subset Guess approximation

Another analysis of MA

Τ

For any heuristic $h_i, i \in \{1, ..., k\}$, let $T^*(h_i) = \sum_{j/\sigma^*(j)=i} T^*(I_j)$ be the "useful" computation time of heuristic *i* in the solution S^* .

$$\begin{aligned} \overline{T}_{MA} &= \sum_{i=1}^{k} \sum_{j/\sigma^{*}(j)=i} T(l_{j}) \\ &\leq \sum_{i=1}^{k} \frac{S_{i}^{*}}{S_{i}} \sum_{j/\sigma^{*}(j)=i} T^{*}(l_{j}) \\ &= \sum_{i=1}^{k} \frac{S_{i}^{*}}{S_{i}} T^{*}(h_{i}) \\ &\leq Max_{i}(T^{*}(h_{i})) \frac{m}{\lfloor \frac{m}{k} \rfloor} \\ &\leq Max_{i}(T^{*}(h_{i}))(2k-1) \end{aligned}$$

 PTAS design techniques
 Guessing the correct oracle answe

 The DRSSP problem
 Second guess : convenient subset

 Oracle approximation
 Guess approximation

Guess 2

Definition

Let
$$G_2 = (S_1^*, \ldots, S_g^*)$$
, such that $T^*(h_1) \ge \ldots \ge T^*(h_g) \ge T^*(h_i), \forall i \in \{g + 1, \ldots, k\}$ in a fixed optimal solution S^* .

Notice that $|G_2| = glog(k) + glog(m)$. We will use the algorithm MA^G with $G = G_2$.
 PTAS design techniques
 Guessing the correct oracle answer

 The DRSSP problem
 Second guess : convenient subset

 Oracle approximation
 Guess approximation

Analysis of MA^{G_2}

Proposition

 MA^{G_2} is a $\frac{k-1}{g}$ approximation.

Proof: We proceed as in the new analysis of MA:

$$T_{algo} = \sum_{i=1}^{g} \sum_{j/\sigma^{*}(j)=i} T(I_{j}) + \sum_{i=g+1}^{k} \sum_{j/\sigma^{*}(j)=i} T(I_{j})$$

$$\leq \sum_{i=1}^{g} T^{*}(h_{i}) + \sum_{i=g+1}^{k} \frac{S_{i}^{*}}{S_{i}} T^{*}(h_{i})$$

$$= \sum_{i=1}^{k} T^{*}(h_{i}) + \sum_{i=g+1}^{k} (\frac{S_{i}^{*}}{S_{i}} - 1) T^{*}(h_{i})$$

$$= Opt + \underbrace{T^{*}(h_{g})}_{\leq \frac{Opt}{g}} (\frac{m'}{a'} - k')$$

 PTAS design techniques
 Guessing the correct oracle answer

 The DRSSP problem
 Second guess : convenient subset

 Oracle approximation
 Guess approximation

Introduction

Goal: we want \overline{G} smaller than G, without degrading too much the solution.

To solve these problems, we want:

•
$$\bar{S}_i \leq S_i^*$$

• $\bar{S}_i = S_i^*$ for the "small" values of S_i^*

Thus, given a guess $G = (S_1^*, .., S_g^*)$:

• we choose a size
$$j_1$$
 bits for the significant, $j_1 \in \{1, .., \lceil \log(m) \rceil\}$

- we write $S_i^* = t_i 2^{x_i} + r_i$, with t_i encoded on j_1 bits, and $0 \le x_i \le \lceil \log(m) \rceil j_1$, et $r_i \le 2^{x_i} 1$
- we define $\bar{S}_i = t_i 2^{x_i}$

We consider that the oracle gives \overline{G}_2 . Notice that $|\overline{G}_2| = \sum_{i=1}^{g} (|t_i| + |x_i|) \le g(j_1 + \log(\log(m)).$

 PTAS design techniques
 Guessing the correct oracle answe

 The DRSSP problem
 Second guess : convenient subset

 Oracle approximation
 Guess approximation

Analysis of $MA^{\overline{G}_2}$

Proposition

$$MA^{\bar{G}_2}$$
 is a $\beta + \frac{k-g-1}{g}$ approximation, with $1 + \frac{1}{2^{j_1-1}} = \beta$.

Proof:

• if
$$S_i^* \leq 2^{j_1} - 1$$
, then $\bar{S}_i = S_i^*$
• else, $\frac{S_i^*}{\bar{S}_i} = \frac{t_i 2^{x_i} + r_i}{t_i 2^{x_i}} \leq 1 + \frac{1}{t_i} \leq 1 + \frac{1}{2^{j_1 - 1}} = \beta$

Then, using the same analysis as MA^{G_2} :

$$T_{algo} \leq \sum_{i=1}^{g} \beta T^{*}(h_{i}) + \sum_{i=g+1}^{k} \frac{S_{i}^{*}}{S_{i}} T^{*}(h_{i})$$
$$= \beta Opt + \underbrace{T^{*}(h_{g})}_{\leq \frac{Opt}{g}} (\frac{m'}{a'} - k')$$

 PTAS design techniques The DRSSP problem
 Guessing the correct oracle answer Second guess : convenient subset

 Oracle approximation
 Guess approximation

Summary

Outline of the derived approximation schemes:

algorithm	approximation ratio	complexity
MA^{G_1}	(k-g)	O(m ^g * kn)
MA^{G_2}	$\frac{k-1}{g}$	$O((km)^g * kn)$
$MA^{\bar{G_2}}$	$\tilde{\beta + \frac{k-g-1}{g}}$	$O(k(2^{j_1}log(m))^g * kn)$

In [SFM06], k is fixed.

 PTAS design techniques The DRSSP problem
 Guessing the correct oracle answer Second guess : convenient subset

 Oracle approximation
 Guess approximation

Conclusion

- Spatial heuristics combination
- Complexity vs. Approximation trade-off
- Partial oracle (To err is human !)

What's next ?

- real application experiments (SAT solvers)
- extend the method to other problems
- explore connections with PCP theory

 PTAS design techniques The DRSSP problem
 Guessing the correct oracle answer Second guess : convenient subset

 Oracle approximation
 Guess approximation

Conclusion

- Spatial heuristics combination
- Complexity vs. Approximation trade-off
- Partial oracle (To err is human !)

What's next ?

- real application experiments (SAT solvers)
- extend the method to other problems
- explore connections with PCP theory

 PTAS design techniques The DRSSP problem
 Guessing the correct oracle answer Second guess : convenient subset

 Oracle approximation
 Guess approximation

[SFM06] Tzur Sayag, Shai Fine, and Yishay Mansour. Combining multiple heuristics. 2006.

[SW00] Petra Schuurman and Gerhard J. Woeginger. Approximation schemes - a tutorial.

In Lectures on Scheduling, 2000.