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Introduction

Mean field has been introduced by physicists to study systems of
interacting objects. For example, the movement of particles in the air:

First solution: the microscopic description

The system is represented by the states of each particle.

Many equations for each possible collision: impossible to
solve exactly.

Second solution (better!): macroscopic equations

We are interested by the average behavior of the system:

The system is described by its temperature.

Deterministic equation.

The transition from microscopic description to macroscopic equations
is called the mean field approximation.
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Mean Field in Computer Science

More recently, Mean field has been used to analyze performance of
communication systems. The objects are the users in the system. For
example:

Performance of TCP [Baccelli, McDonald, Reynier [02]]

Reputation Systems [Le Boudec et al. [07]]

802.11 [Bordenave, McDonald, Proutière [05]]

. . .

In many example, it can be shown that when the number of users grows,
the average behavior of the system becomes deterministic.

Aim of this talk

Show that mean field can also be used for optimization problem.

Study a general framwork for wich we can prove the results.
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Example of mean field model

Example – Consider the following brokering problem:

...

S on/off
sources

tasks

a1
t

ad
t

Broker

...

µ1

µ1

P1 processorsE1

...

µd

µd

Pd processorsEd

...

Stochastic system

Objects are sources+Processors:
There are S + P1 + · · ·+ Pd objects

The state of an object is active or
inactive (random)

Evolution of state is markovian

Mean field limit

We scale S and Pi by N.
We are interested in:

(number of tasks sent)/N.

(available processors in
cluster i)/N.
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Main result

Stochastic system N
objects.

Optimal system

Compute optimal
policy (hard)

Remark: the purpose of this talk is not to solve the previous example but
to study a general framework for optimization in stochastic systems.

Our results

The optimal stochastic system also converges.
More precisely, when N grows:

1 The optimal reward converges.

2 The optimal policy also converges.

3 The speed of convergence is O(
√

N) (CLT theorem).
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N →∞
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1 Theoretical Results

2 A (simple) example

3 Conclusion
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An optimization problem

N objects evolving in a finite state space.
Environment E (t) at time t (E (t) ∈ Rd)

 X1(0)

...
XN(0)
E(0)

  X1(1)

...
XN(1)
E(1)

  X1(T )

...
XN(T )
E(T )


ra

n
d

om
(

0
)

ra
n

d
om

(
1
)

ra
n

d
om

(
T
−

1
)

The controller can change the dynamics of the system.

Goal

Find a policy to maximize:

finite-time expected cost or

expected discounted cost

Technical assumption:

Mean field evolution

Action set compact

Continuous parameters
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The controller can change the dynamics of the system.

Goal

Find a policy to maximize:

finite-time expected cost or

expected discounted cost

Technical assumption:

Mean field evolution

Action set compact

Continuous parameters

N. Gast (LIG) Mean Field Optimization Knoxville 2009 7 / 20



An optimization problem

Controller, chooses an action a ∈ A

a0 a1 aT−1 X1(0)

...
XN(0)
E(0)

  X1(1)

...
XN(1)
E(1)

  X1(T )

...
XN(T )
E(T )


ra

n
d

om
(a

0
)

ra
n

d
om

(a
1
)

ra
n

d
om

(a
T
−

1
)

The controller can change the dynamics of the system.

Goal

Find a policy to maximize:

finite-time expected cost or

expected discounted cost

Technical assumption:

Mean field evolution

Action set compact

Continuous parameters

N. Gast (LIG) Mean Field Optimization Knoxville 2009 7 / 20



An optimization problem

Controller, chooses an action a ∈ A

a0 a1 aT−1 X1(0)

...
XN(0)
E(0)

  X1(1)

...
XN(1)
E(1)

  X1(T )

...
XN(T )
E(T )


ra

n
d

om
(a

0
)

ra
n

d
om

(a
1
)

ra
n

d
om

(a
T
−

1
)

Cost(X,E) Cost(X,E)+ . . . +

The controller can change the dynamics of the system.

Goal

Find a policy to maximize:

finite-time expected cost or

expected discounted cost

Technical assumption:

Mean field evolution

Action set compact

Continuous parameters

N. Gast (LIG) Mean Field Optimization Knoxville 2009 7 / 20



Optimal cost convergence

V ∗N – optimal cost for the system of size N.

v∗ – optimal cost for the deterministic limit.

a∗0a∗1a∗2 . . . – optimal actions for the deterministic limit.

Theorem (Convergence of the optimal cost)

Under technical assumptions, for both discounted and finite-time cost:

limN→∞ V ∗N = v∗

limN→∞ V ∗N = V N
a∗0a∗1a∗2 ...

(a.s.)

In particular, this shows that:

Optimal cost converges

Static policy a∗ is asymptotically optimal
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A central limit-like theorem

The convergence speed is in O(1/
√

N):

Theorem (CLT for the evolution of objects)

Under technical assumptions, if the actions taken by the controller are
fixed, then there exists a Gaussian variable Gt s.t:

√
N
(
MN

t −mt

) Law−−→ Gt

The covariance of Gt can be effectively computed.

Theorem (CLT for cost)

Under technical assumptions, when N goes to infinity:

√
N
∣∣V ∗NT − V N

a∗
∣∣ ≤st β + γ‖G0‖∞√

N
∣∣V ∗NT − v∗T

∣∣ ≤st β′ + γ′‖G0‖∞
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A simple resource allocation problem

Aim of the example

Illustrate the framework by a concrete example

When does N(= S + P1 + · · ·+ Pd) becomes large enough for the
approximation to apply?

...

S on/off
sources

tasks

a1
t

ad
t

Broker

...

µ1

µ1

P1 processorsE1

...

µd

µd

Pd processorsEd

...

Stochastic
arrivals

Stochastic availability:
failure,. . .

Optimize the total completion time =
∑T

t=0

∑d
i=1 Ei (t).
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Optimal policy: stochastic and limit case

The stochastic system is hard to solve

1 This problem is a multidimensional restless bandit problem
I Known to be hard
I Existence of heuristics (Index policies)

2 In practice in such systems [EGEE]
I Use of heuristics (JSQ)

Using our framework: compute optimal mean field

The problem becomes:

Find an allocation to minimize the idle time of processors.

All variable are in Rd .

The optimal policy can be computed by a greedy algorithm.
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Computing the optimal policy π∗

Time t 0 1 2 3 4 5 6

Arrival of packets 9 1 0 1 7 6 6

Queue 1

I
I

Queue 2

Queue 3
I
I

Optimal allocation

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.

N. Gast (LIG) Mean Field Optimization Knoxville 2009 13 / 20



Computing the optimal policy π∗

Time t 0 1 2 3 4 5 6

Arrival of packets 9 1 0 1 7 6 6

Queue 1

I P0 P0
I P0 P0

P0

Queue 2
P0

Queue 3
I P0
I P0

P0

Optimal allocation
5
1
3

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.

N. Gast (LIG) Mean Field Optimization Knoxville 2009 13 / 20



Computing the optimal policy π∗

Time t 0 1 2 3 4 5 6

Arrival of packets 9 1 0 1 7 6 6

Queue 1

I P0 P0
I P0 P0

P0

Queue 2
P0

Queue 3
I P0 P1
I P0

P0

Optimal allocation
5 .
1 .
3 1

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.

N. Gast (LIG) Mean Field Optimization Knoxville 2009 13 / 20



Computing the optimal policy π∗

Time t 0 1 2 3 4 5 6

Arrival of packets 9 1 0 1 7 6 6

Queue 1

I P0 P0 P3
I P0 P0

P0

Queue 2
P0

Queue 3
I P0 P1
I P0

P0

Optimal allocation
5 . . 1
1 . . .
3 1 . .

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.

N. Gast (LIG) Mean Field Optimization Knoxville 2009 13 / 20



Computing the optimal policy π∗

Time t 0 1 2 3 4 5 6

Arrival of packets 9 1 0 1 7 6 6

Queue 1

I P0 P0 P3 P4 P4
I P0 P0 P4

P0 P4
P4

Queue 2
P0

Queue 3
I P0 P1 P4
I P0 P4

P0

Optimal allocation
5 . . 1 5
1 . . . .
3 1 . . 2

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.

N. Gast (LIG) Mean Field Optimization Knoxville 2009 13 / 20



Computing the optimal policy π∗

Time t 0 1 2 3 4 5 6

Arrival of packets 9 1 0 1 7 6 6

Queue 1

I P0 P0 P3 P4 P4
I P0 P0 P4 P5

P0 P4
P4

Queue 2
P0 P5

P5

Queue 3
I P0 P1 P4 P5
I P0 P4 P5

P0 P5

Optimal allocation
5 . . 1 5 1
1 . . . . 2
3 1 . . 2 3

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.

N. Gast (LIG) Mean Field Optimization Knoxville 2009 13 / 20



Computing the optimal policy π∗

Time t 0 1 2 3 4 5 6

Arrival of packets 9 1 0 1 7 6 6

Queue 1

I P0 P0 P3 P4 P4 P6
I P0 P0 P4 P5

P0 P4
P4

Queue 2
P0 P5 P6

P5

Queue 3
I P0 P1 P4 P5 P6
I P0 P4 P5 P6

P0 P5

Optimal allocation
5 . . 1 5 1 1
1 . . . . 2 1
3 1 . . 2 3 2

Grey = “off” processors.

I : initial packets.
P0: packets arrived at time 0.

N. Gast (LIG) Mean Field Optimization Knoxville 2009 13 / 20



Computing the optimal policy π∗

Time t 0 1 2 3 4 5 6

Arrival of packets 9 1 0 1 7 6 6

Queue 1

I P0 P0 P3 P4 P4 P6
I P0 P0 P4 P5

P0 P4
P4

Queue 2
P0 P5 P6

P5

Queue 3
I P0 P1 P4 P5 P6
I P0 P4 P5 P6

P0 P5

Optimal allocation
5 . . 1 5 1 1+2
1 . . . . 2 1
3 1 . . 2 3 2

Grey = “off” processors.

I : initial packets.

P0: packets arrived at time 0.

2 packets remains at the end.
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Numerical example

This provides two policies for the initial stochastic system.

π∗ : at t, we apply π∗t (MN
t ,E

N
t ) – adaptive policy.

a∗ : we apply a∗t
def
= π∗t (mt , et) – static policy.

We want to compare

V ∗N – optimal cost for the system of size N

V N
a∗ – cost when applying a∗

V N
π∗ – cost when applying π∗

V N
JSQ – cost of Join Shortest Queue.

v∗ – cost of the deterministic limit.
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Speed of convergence – central limit theorem

Plot of √
N(V N

π∗ − v∗) and
√

N(V N
a∗ − v∗)
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Conclusion

Optimal policy of the deterministic limit is asymptotically optimal.

Works for low values of N (≈ 100 in the example).

To apply this in practice, there are three cases (from best to worse):
1 We can solve the deterministic limit:

I apply a∗ or π∗.

2 Design an approximation algorithm for the deterministic system:
I also an approximation (asymptotically) for stochastic problem.

3 Use brute force computation:
I v∗t...T (m, e) = C (m, e) + supa v∗t+1...T (φa(m, e))
I Compared to the random case, there is no expectation to compute.

In general, the stochastic case is impossible to solve and this problem
is usually addressed using restricted classes of policies:

I With limited information, Static/Adaptative, ...

We showed that this distinction asymptotically collapses.
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Thanks

Thank you for your attention.
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