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Introduction

Mean field has been introduced by physicists to study systems of
interacting objects. For example, the movement of particles in the air:
First solution: the microscopic description

The system is represented by the states of each particle.

@ Many equations for each possible collision: impossible to
solve exactly.

Second solution (better!): macroscopic equations
We are interested by the average behavior of the system:
@ The system is described by its temperature.

@ Deterministic equation.

@ The transition from microscopic description to macroscopic equations
is called the mean field approximation.
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Mean Field in Computer Science

More recently, Mean field has been used to analyze performance of
communication systems. The objects are the users in the system. For
example:

@ Performance of TCP [Baccelli, McDonald, Reynier [02]]
@ Reputation Systems [Le Boudec et al. [07]]
@ 802.11 [Bordenave, McDonald, Proutiere [05]]

o ...

In many example, it can be shown that when the number of users grows,
the average behavior of the system becomes deterministic.
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Mean Field in Computer Science

More recently, Mean field has been used to analyze performance of
communication systems. The objects are the users in the system. For
example:

@ Performance of TCP [Baccelli, McDonald, Reynier [02]]
@ Reputation Systems [Le Boudec et al. [07]]

@ 802.11 [Bordenave, McDonald, Proutiere [05]]

° ...

In many example, it can be shown that when the number of users grows,
the average behavior of the system becomes deterministic.

Aim of this talk
@ Show that mean field can also be used for optimization problem.

@ Study a general framwork for wich we can prove the results.
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Example of mean field model

Example — Consider the following brokering problem:

O a/} Eq

P71 processors

®© &G

— | Broker| ZIZI1_ :
tasks - :
S on/off a\‘t’ Eg | =7 P4 processors
sources

®

Stochastic system

@ Objects are sources+Processors:
There are S+ P; + - - - + P4 objects

@ The state of an object is active or
inactive (random)

@ Evolution of state is markovian
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Example of mean field model

Example — Consider the following brokering problem:

@

= P; processors

? Ee BG
———— |Broker| zzzz1I7 7 ;
tasks K :
S on/off a\‘t’* Eg | = P4 processors
sources
Stochastic system Mean field limit
@ Objects are sources+Processors: We scale S and P; by N.
There are S+ P; + - - - + P4 objects | We are interested in:
@ The state of an object is active or @ (number of tasks sent)/N.
inactive (random) @ (available processors in
e Evolution of state is markovian cluster i)/ N.
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Main result

Stochastic system N
objects.

|

Compute optimal
policy (hard)

!

Optimal system

Remark: the purpose of this talk is not to solve the previous example but
to study a general framework for optimization in stochastic systems.
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Main result

Stochasti tem N
oc ajbﬁ;is em % N — 0o = Mean Field Limit |

Compute optimal
policy (hard)

!

Optimal system

© Compute the mean field limit (constructive definition).
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Main result

Stochastic system N . —
objects. Jf N — oo == Mean FTId Limit |

‘ Deterministic

Compute optimal optimization
policy (hard) (Easier)
Optimal system ’Optimal mean field ‘
© Compute the mean field limit (constructive definition).
@ Solve the deterministic problem.
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Main result

)

Stochastic system N . —
objects. Jf N — oo == Mean FTId Limit
‘ _ Deterministic
Compute optimal optimization
policy (hard) (Easier)

!

Optimal system 4= iz 22 éxc.hange i —ﬁ Optimal mean field ‘
limits

Our results

The optimal stochastic system also converges.
More precisely, when N grows:

© The optimal reward converges.
© The optimal policy also converges.
© The speed of convergence is O(v/N) (CLT theorem).
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@ Theoretical Results

© A (simple) example

© Conclusion
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An optimization problem

@ NN objects evolving in a finite state space.
@ Environment E(t) at time t (E(t) € RY)

X1(0) B X:1(1) = ! X:(T)
@ | S x| S g Xu(T)
E(0) < E(1) < T E(T)
- - m
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An optimization problem

@ NN objects evolving in a finite state space.
@ Environment E(t) at time t (E(t) € RY)

X1(0) B X:1(1) = ! X:(T)
@ | S @ | 8 g Xu(T)
E(0) S E(1) S T E(T)

[¢]

Mean field assumption
We define the Population mix M(t) — The i*" component (M(t)); is the
proportion of objects in state i at time t.
© E(t+ 1) only depends on the population mix M(t).
@ The evolution of an object depends on E(t) but is independent of the
other objects.
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An optimization problem

Controller, chooses an action a € A

a0 ai ar-1
~
X (T)

Xn(T)
E(T)

|
random(az) «

|

|
randoml(a-r_l)

The controller can change the dynamics of the system.
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An optimization problem

Controller, chooses an action a € A

a0
el
X1(0) S X1(1)
L —E |
Xn(0) 3 Xn(1)
E(0) = E(1)
Cost(X,E)

ai ar—1

¥ ~ -
& o Xi(T)
~ (3]
__E — > —
S § | xu(m
o 2 E(T)
£ 4
+ +  Cost(X,E)

The controller can change the dynamics of the system.

Goal
Find a policy to maximize:

@ finite-time expected cost or

@ expected discounted cost

Technical assumption:
@ Mean field evolution
@ Action set compact

@ Continuous parameters
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Optimal cost convergence

o V*N — optimal cost for the system of size N.

@ v* — optimal cost for the deterministic limit.

k %k 4%

@ ajaja, ... — optimal actions for the deterministic limit.

Theorem (Convergence of the optimal cost)

Under technical assumptions, for both discounted and finite-time cost:

My VN = v
a *N N
IImN—’OO 4 _ Vag‘ai‘a;“.

(a.s.)

In particular, this shows that:
@ Optimal cost converges

@ Static policy a* is asymptotically optimal
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A central limit-like theorem

The convergence speed is in O(1/v/N):

Theorem (CLT for the evolution of objects)

Under technical assumptions, if the actions taken by the controller are
fixed, then there exists a Gaussian variable G; s.t:

VN(MY — m) 225 G,

The covariance of G; can be effectively computed.
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A central limit-like theorem

The convergence speed is in O(1/v/N):

Theorem (CLT for the evolution of objects)

Under technical assumptions, if the actions taken by the controller are
fixed, then there exists a Gaussian variable G; s.t:

VN(MY — m) 225 G,

The covariance of G; can be effectively computed.

Theorem (CLT for cost)

Under technical assumptions, when N goes to infinity:

VNIV — VR <y B+7]Golles
\/N‘V;-N_V?} <st ﬁ/+7,||GO||oo
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© A (simple) example

N. Gast (LIG) Mean Field Optimization Knoxville 2009 10 / 20



A simple resource allocation problem

Aim of the example
@ lllustrate the framework by a concrete example

@ When does N(= S + P; + - - - + P4) becomes large enough for the
approximation to apply?
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A simple resource allocation problem

Aim of the example

@ lllustrate the framework by a concrete example
@ When does N(= S + P; + - - - + P4) becomes large enough for the

approximation to apply?

O

E——

tasks

Broker

S on/off
sources

Stochastic
arrivals

E; = Py processors

—@

E4 P4 processors
Stochastic availability:
failure,. . .

@ Optimize the total completion time = >/ 27:1 Ei(t).
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Optimal policy: stochastic and limit case

The stochastic system is hard to solve

© This problem is a multidimensional restless bandit problem

Known to be hard
Existence of heuristics (Index policies)

@ In practice in such systems [EGEE]
Use of heuristics (JSQ)
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Optimal policy: stochastic and limit case

The stochastic system is hard to solve
© This problem is a multidimensional restless bandit problem

Known to be hard
Existence of heuristics (Index policies)

@ In practice in such systems [EGEE]
Use of heuristics (JSQ)

Using our framework: compute optimal mean field

The problem becomes:
@ Find an allocation to minimize the idle time of processors.

@ All variable are in RY.
@ The optimal policy can be computed by a greedy algorithm.

Knoxville 2009
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Computing the optimal policy 7*

| Time t [

| 3 [ 4 |
| Arrival of packets [ 1 7

—| —|| Ol ©
[y
Ol N

Queue 1

Queue 2

Queue 3 |

Optimal allocation

@ Grey = "off” processors. . .
o @ PO: packets arrived at time 0.
@ I : initial packets.
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Computing the optimal policy 7*

Time t 0 1 [ 2] 3] 415 6
| Arrival of packets ‘ 9 [ 1 [ 0 [ 1 [ 7 6 6
I PO | PO
I PO | PO
Queue 1 PO
Queue 2 PO
I PO
Queue 3 | PO
PO
5
Optimal allocation 1

@ Grey = “off” processors.

@ I : initial packets.

@ PO: packets arrived at time 0.
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Computing the optimal policy 7*

| Time ¢ o[ 1 [ 2[]3]4]5]°FE6
| Arrival of packets [ 9 ‘ 1 ] 0 [ 1 [ 7 6 6
I PO | PO
Queue 1 ; PO | PO
Queue 2 PO
I PO | P1
Queue 3 | PO
PO
5
Optimal allocation 1 .
3 1

@ Grey = “off” processors.

@ I : initial packets.

@ PO: packets arrived at time 0.
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Computing the optimal policy 7*

| Time ¢ o[ 1 [ 2[]3]4]5]°FE6
| Arrival of packets [ 9 [ 1 [ 0 ‘ 1 ] 7 6 6
I PO | PO | P3
Queue 1 ; PO | PO
Queue 2 PO
I PO | P1
Queue 3 | PO
PO
5 1
Optimal allocation 1 .
3 1

@ Grey = “off” processors.

@ I : initial packets.

@ PO: packets arrived at time 0.
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Computing the optimal policy 7*

\ Time t 01 [ 23] 4]+ 6
| Arrival of packets [ 9 [ 1 [ 0 [ 1 ‘ 7 [ 6 6
I PO | PO| P3| P4 | P4
I PO | PO P4
Queue 1 5 P4
P4
Queue 2 PO
I PO | P1 P4
Queue 3 I PO P4
PO
5 1 5
Optimal allocation 1 . )
3 1 2

@ Grey = “off” processors.

@ I : initial packets.

@ PO: packets arrived at time 0.
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Computing the optimal policy 7*

\ Time ¢ o[ 1 ] 2[3]4][5]°FE6
| Arrival of packets [ 9 [ 1 [ 0 [ 1 [ 7 ‘ 6 [ 6
I PO | PO | P3| P4 | P4
I PO | PO P4 | P5
Queue 1 5 =7
P4
Queue 2 PO Eg
I PO | P1 P4 | P5
Queue 3 I PO P4 | P5
PO P5
5 1 5 1
Optimal allocation 1 . ) 2
3 1 2 3

@ Grey = “off” processors.

@ I : initial packets.

@ PO: packets arrived at time 0.
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Computing the optimal policy 7*

\ Time ¢ o[ 1 ] 2[3]4][5]°FE6
| Arrival of packets [ 9 [ 1 [ 0 [ 1 [ 7 [ 6 ‘ 6
I PO | PO| P3| P4 | P4 | P6
I PO | PO P4 | P5
Queue 1 3 =
P4
Queue 2 PO Eg P6
I PO | P1 P4 | P5 | P6
Queue 3 I PO P4 | P5 | P6
PO P5
5 1 5 1 1
Optimal allocation 1 . . 2 1
3 1 2 3 2

@ Grey = “off” processors.

@ I : initial packets.

@ PO: packets arrived at time 0.
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Computing the optimal policy 7*

\ Time t o J 1 [ 23] 4]5 ] 6]
| Arrival of packets [ 9 [ 1 [ 0 [ 1 [ 7 [ 6 [ 6 ‘
I PO | PO | P3| P4 | P4 P6
I PO | PO P4 | P5
Queue 1 3 =
P4
Queue 2 PO Eg P6
I PO | P1 P4 | P5 P6
Queue 3 I PO P4 | P5 P6
PO P5
5 1 5 1 142
Optimal allocation 1 . . 2 1
3 1 2 3 2

@ Grey = “off” processors.

@ I : initial packets.

@ PO: packets arrived at time 0.

@ 2 packets remains at the end.
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Numerical example

This provides two policies for the initial stochastic system.
e 7 : at t, we apply m} (MY, EN) - adaptive policy.

def c .
® a* : we apply a} = m}(my, e;) — static policy.

We want to compare

V*N — optimal cost for the system of size N
Va’¥ — cost when applying a*

VT’r\i — cost when applying 7*

VJ’\S’Q — cost of Join Shortest Queue.

® 6 6 o o

v* — cost of the deterministic limit.
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Cost convergence

500 -_H Deterministic cost 8
4 A* policy ----&---
Pi* policy -
} JSQ e
400 |4 weighted JSQ --+-- |

300

Cost

200

100

O 1 1
10 100 1000 10000
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Cost convergence

500 3 Deterministic cost 8
4 A* policy ----&---
Pi* policy -
: JSQ e
400 | % weighted JSQ --+-- ]

300 f
1%
o
|

200 |

100 F

Asymptotically optlmcl
O 1 1
10 100 1000 10000
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Cost convergence

500 % Deterministic cost g
3 A* policy ----g----
Pi* policy -
} JSQ e
400 + weighted JSQ --+-- |

300 . il
Pi* Beats JSQ for N>50
z
| 200 | Moo
“g A* Beats JSQ for N>200
'“‘*f:-‘;::.'..:.f,_,’_ﬂ---;ﬁ—ﬁ a—‘—+—‘—+ S T T
100 - g L SRS W ,_,;
Asymptotically optimg|
O L I
10 100 1000 10000
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Cost convergence

500 [ % ' Deterministic cost ]
4 A* policy ----&---
Pi* policy -
[ JSQ ......... ernnrnnes
400 | % weighted JSQ --+-- _
K
300 -" .
' Pi* Beats JSQ for N>50
i 1
S vk , h‘lx
L X4 N
200 | % M wf A* Beats )SQ for N>200
X ‘B.
e, e o
T : —-—_» — —+—~—<-0-—~—- ~—a-u--‘-_-—.»——
100 | e ¥ (0 T Eene - ﬁim. e )
Asymptotically op't I
O 1 1
10 100 1000 10000
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Speed of convergence — central limit theorem

Plotof \/N(VN — v*) and VN(VN — v¥)

1400 |
1200 |
~ 1000
*
> 7
! 800 [
<x
> 600
S
400 + _
200 | e ]
0 1 1
10 100 1000

Size of the svstem: N
Mean Field Optimization
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Speed of convergence — central limit theorem

Plotof \/N(VN — v*) and VN(VN — v¥)

A* policy —»—
1400 | Pi* policy -~ |
1200 | 1
~ 1000 | |
*
>
| gw - i
2>><
S owi Limit when N growsH
g o8 =TT
400 | . s X
G--8-—g__g o I‘ 1
200 gree . 1,0
$~~ —'4
0 1 1
10 100 1000 10000
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© Conclusion
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Conclusion

@ Optimal policy of the deterministic limit is asymptotically optimal.

@ Works for low values of N (= 100 in the example).

To apply this in practice, there are three cases (from best to worse):
© We can solve the deterministic limit:
apply a* or 7*.
© Design an approximation algorithm for the deterministic system:
also an approximation (asymptotically) for stochastic problem.
© Use brute force computation:

*

Vt...T(m7 e) = C(m7 e) + sup, V:+1...T(¢a(m7 e))
Compared to the random case, there is no expectation to compute.
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Conclusion

@ Optimal policy of the deterministic limit is asymptotically optimal.

@ Works for low values of N (= 100 in the example).

To apply this in practice, there are three cases (from best to worse):
© We can solve the deterministic limit:
apply a* or 7*.
© Design an approximation algorithm for the deterministic system:
also an approximation (asymptotically) for stochastic problem.
© Use brute force computation:

V:..T(m7 e) = C(m7 e) + sup, V:+1...T(¢a(m7 e))
Compared to the random case, there is no expectation to compute.

@ In general, the stochastic case is impossible to solve and this problem
is usually addressed using restricted classes of policies:
» With limited information, Static/Adaptative, ...

We showed that this distinction asymptotically collapses.
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Thanks

Thank you for your attention.
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