Memory-Aware Scheduling for Sparse Direct Methods

Emmanuel AGULLO, ICL - University of Tennessee <u>Abdou GUERMOUCHE</u>, LaBRI, Université de Bordeaux Jean-Yves L'EXCELLENT, LIP - INRIA

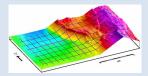
May 15, 2009

AGULLO - GUERMOUCHE - L'EXCELLENT

Memory-Aware Scheduling for Sparse Direct Methods

Context

Solving sparse linear systems



Ax = b $\Rightarrow \text{Direct methods: } A = LU$

Typical matrix: BRGM matrix

- \star 3.7 \times 10⁶ variables
- * 156×10^6 non zeros in A
- * 4.5×10^9 non zeros in LU
- * 26.5×10^{12} flops

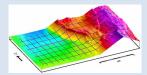
Hardware paradigm

- Many-core architecture.
- Large global amount of memory.
- Limited memory per core.

- → Need for algorithms whose memory usage scales with the number of processors.
- ★ Case study: MUMPS

Context

Solving sparse linear systems



Ax = b $\Rightarrow \text{Direct methods: } A = LU$

Typical matrix: BRGM matrix

- \star 3.7 \times 10⁶ variables
- $\star~156\times10^{6}$ non zeros in A
- * 4.5×10^9 non zeros in LU
- * 26.5×10^{12} flops

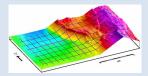
Hardware paradigm

- Many-core architecture.
- Large global amount of memory.
- Limited memory per core.

- → Need for algorithms whose memory usage scales with the number of processors.
- ★ Case study: MUMPS

Context

Solving sparse linear systems



$$Ax = b$$

$$\Rightarrow \text{Direct methods: } A = LU$$

Typical matrix: BRGM matrix

- * 3.7×10^6 variables
- $\star~156\times10^{6}$ non zeros in A
- * 4.5×10^9 non zeros in LU
- * 26.5×10^{12} flops

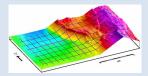
Hardware paradigm

- * Many-core architecture.
- Large global amount of memory.
- * Limited memory per core.

- Need for algorithms whose memory usage scales with the number of processors.
- ★ Case study: MUMPS

Context

Solving sparse linear systems



Ax = b $\Rightarrow \text{Direct methods: } A = LU$

Typical matrix: BRGM matrix

- \star 3.7 \times 10⁶ variables
- $\star~156\times10^{6}$ non zeros in A
- * 4.5×10^9 non zeros in LU
- * 26.5×10^{12} flops

Hardware paradigm

- * Many-core architecture.
- Large global amount of memory.
- * Limited memory per core.

- → Need for algorithms whose memory usage scales with the number of processors.
 - ★ Case study: MUMPS

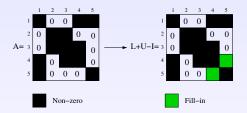
- 1. Multifrontal method
- 2. Limits to memory scalability
- 3. A new memory-aware algorithm
- 4. Preliminary results
- 5. Conclusion

Outline

1. Multifrontal method

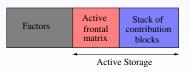
- 2. Limits to memory scalability
- 3. A new memory-aware algorithm
- 4. Preliminary results
- 5. Conclusion

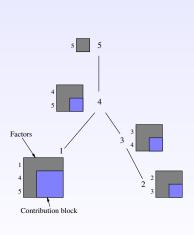
The multifrontal method (Duff, Reid'83)



Storage divided into two parts:

- Factors systematically written to disk;
- * Active Storage kept in memory.



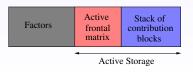


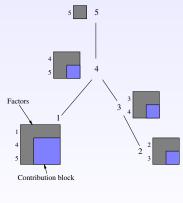
Elimination tree

The multifrontal method (Duff, Reid'83)

Storage divided into two parts:

- Factors systematically written to disk;
- * Active Storage kept in memory.



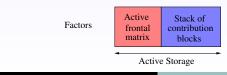


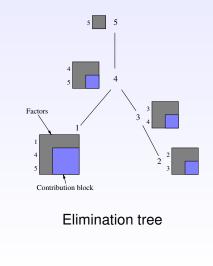
Elimination tree

The multifrontal method (Duff, Reid'83)

Storage divided into two parts:

- Factors systematically written to disk;
- ★ Active Storage kept in memory.





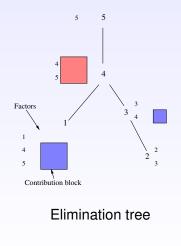
AGULLO - GUERMOUCHE - L'EXCELLENT

Memory-Aware Scheduling for Sparse Direct Methods

The multifrontal method (Duff, Reid'83)

Storage divided into two parts:

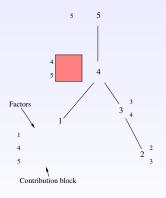
- Factors systematically written to disk;
- * Active Storage kept in memory.



The multifrontal method (Duff, Reid'83)

Storage divided into two parts:

- Factors systematically written to disk;
- * Active Storage kept in memory.

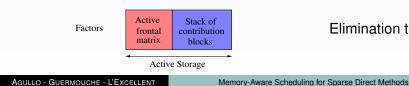


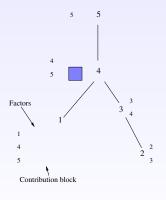
Elimination tree

The multifrontal method (Duff, Reid'83)

Storage divided into two parts:

- ★ Factors systematically written to disk:
- Active Storage kept in memory.



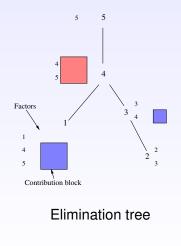


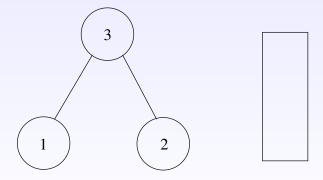
Elimination tree

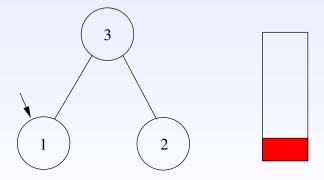
The multifrontal method (Duff, Reid'83)

Storage divided into two parts:

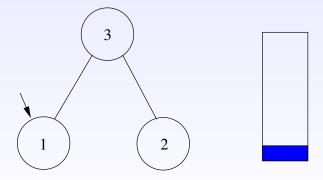
- Factors systematically written to disk;
- * Active Storage kept in memory.



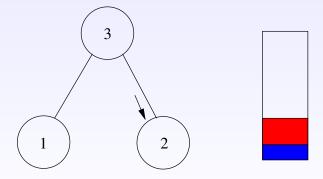


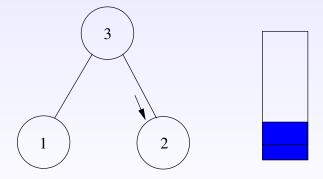


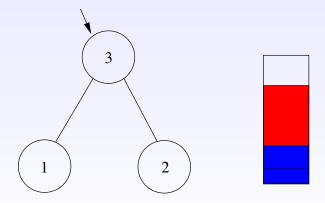
Memory behaviour (serial postorder traversal)

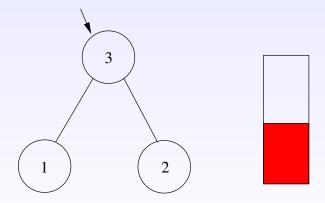


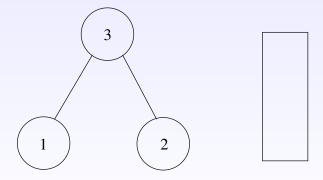
AGULLO - GUERMOUCHE - L'EXCELLENT











Sequential case results

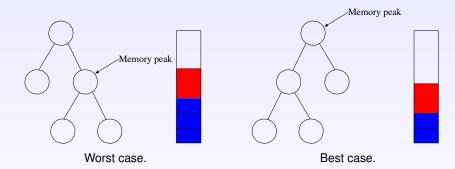


Figure: Impact of the tree traversal on the memory behavior.

ightarrow Algorithms to find the optimal tree traversal have been proposed

Sequential case results

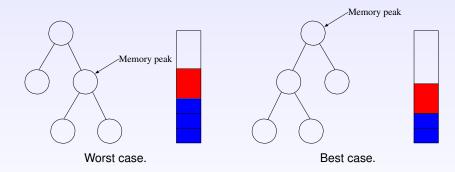


Figure: Impact of the tree traversal on the memory behavior.

 \rightarrow Algorithms to find the optimal tree traversal have been proposed

Memory efficiency

Definition: *Memory Efficiency* on *p* processors (or cores)

 $e(p) = rac{S_{seq}}{p imes S_{max}(p)}, \qquad S_{seq}$: serial storage, S_{max} : parallel storage

Results: Memory Efficiency of MUMPS (with factors on disk)

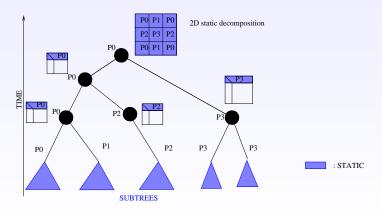
Number <i>p</i> of processors	16	32	64	128
AUDI_KW_1	0.16	0.12	0.13	0.10
CONESHL_MOD	0.28	0.28	0.22	0.19
CONV3D64	0.42	0.40	0.41	0.37
QIMONDA07	0.30	0.18	0.11	-
ULTRASOUND80	0.32	0.31	0.30	0.26

Outline

- 1. Multifrontal method
- 2. Limits to memory scalability
- 3. A new memory-aware algorithm
- 4. Preliminary results
- 5. Conclusion

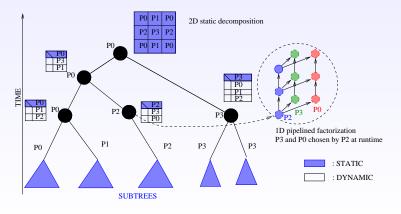
Parallel multifrontal scheme

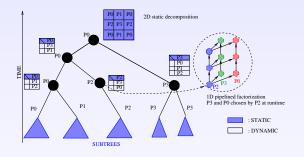
- * Type 1 : Nodes processed on a single processor
- * Type 2 : Nodes processed with a parallel 1D blocked factorization
- * Type 3 : Parallel 2D cyclic factorization (root node)



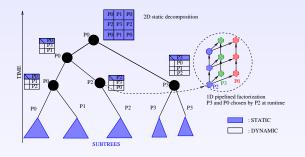
Parallel multifrontal scheme

- ★ Type 1 : Nodes processed on a single processor
- * Type 2 : Nodes processed with a parallel 1D blocked factorization
- * Type 3 : Parallel 2D cyclic factorization (root node)

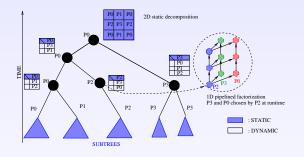




- ★ Many simultaneous active tasks;
- ★ Large master tasks;
- ★ Large subtrees;
- Proportional mapping.



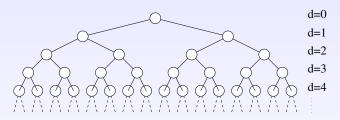
- * Many simultaneous active tasks;
- ★ Large master tasks;
- * Large subtrees;
- Proportional mapping.



- * Many simultaneous active tasks;
- ★ Large master tasks;
- ★ Large subtrees;
- * Proportional mapping.

Proportional mapping VS postorder traversal (1/2)

Elimination tree :



Mapping

- Initially: all processors on root node:
 - Recursively split the set of processors on child subtrees.

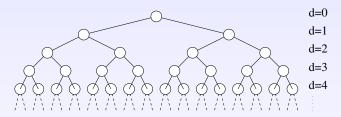
Advantages and drawbacks

AGULLO - GUERMOUCHE - L'EXCELLENT

Memory-Aware Scheduling for Sparse Direct Methods

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:



Mapping

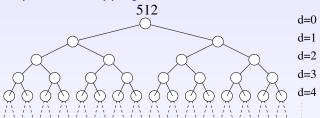
- Initially: all processors on root node;
- Recursively split the set of processors on child subtrees.

Advantages and drawbacks

AGULLO - GUERMOUCHE - L'EXCELLENT

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:



Mapping

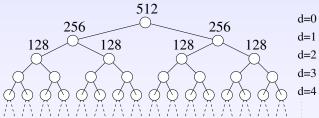
- * Initially: all processors on root node;
- Recursively split the set of processors on child subtrees.

Advantages and drawbacks

Tree-level + task-level parallelism;

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:



Mapping

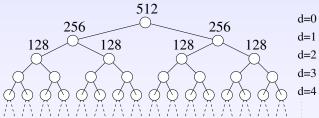
- * Initially: all processors on root node;
- * Recursively split the set of processors on child subtrees.

Advantages and drawbacks

Tree-level + task-level parallelism;

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:



Mapping

- * Initially: all processors on root node;
- * Recursively split the set of processors on child subtrees.

Advantages and drawbacks

③ Tree-level + task-level parallelism;

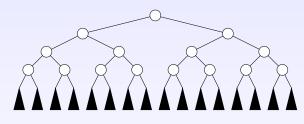
Bad memory efficiency.

AGULLO - GUERMOUCHE - L'EXCELLENT

Memory-Aware Scheduling for Sparse Direct Methods

Proportional mapping VS postorder traversal (1/2)

Proportional mapping:



Mapping

- * Initially: all processors on root node;
- * Recursively split the set of processors on child subtrees.

Advantages and drawbacks

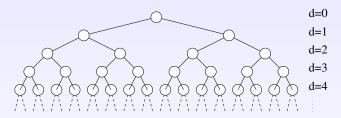
- © Tree-level + task-level parallelism;
- © Bad memory efficiency.

AGULLO - GUERMOUCHE - L'EXCELLENT

Memory-Aware Scheduling for Sparse Direct Methods

Proportional mapping VS postorder traversal (2/2)

Elimination tree :



Traversal

- Postorder traversal, node by node;
 - All processors on each node.

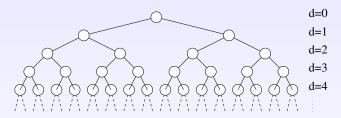
Advantages and drawbacks

AGULLO - GUERMOUCHE - L'EXCELLENT

Memory-Aware Scheduling for Sparse Direct Methods

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :



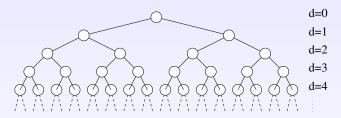
Traversal

- Postorder traversal, node by node;
- All processors on each node.

Advantages and drawbacks

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :



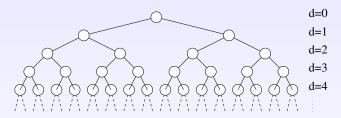
Traversal

- * Postorder traversal, node by node;
- All processors on each node.

Advantages and drawbacks

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :



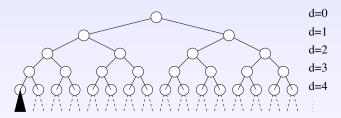
Traversal

- * Postorder traversal, node by node;
- * All processors on each node.

Advantages and drawbacks

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :



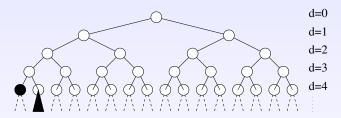
Traversal

- * Postorder traversal, node by node;
- * All processors on each node.

Advantages and drawbacks

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :



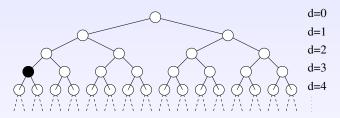
Traversal

- * Postorder traversal, node by node;
- * All processors on each node.

Advantages and drawbacks

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :



Traversal

- * Postorder traversal, node by node;
- * All processors on each node.

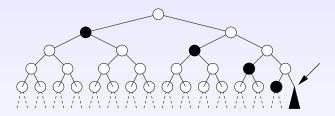
Advantages and drawbacks

AGULLO - GUERMOUCHE - L'EXCELLENT

Memory-Aware Scheduling for Sparse Direct Methods

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :



Traversal

- * Postorder traversal, node by node;
- * All processors on each node.

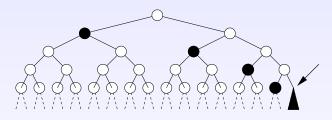
Advantages and drawbacks

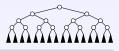
Only task-level parallelism;

Second states of the second second

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :





Traversal

- * Postorder traversal, node by node;
- * All processors on each node.

Advantages and drawbacks

Only task-level parallelism;

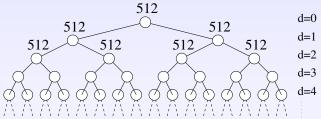
Second states of the second second

AGULLO - GUERMOUCHE - L'EXCELLENT

Memory-Aware Scheduling for Sparse Direct Methods

Proportional mapping VS postorder traversal (2/2)

Postorder traversal :



Traversal

- * Postorder traversal, node by node;
- * All processors on each node.

Advantages and drawbacks

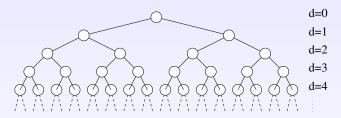
- © Only task-level parallelism;
- Second states of the second second

Outline

- 1. Multifrontal method
- 2. Limits to memory scalability
- 3. A new memory-aware algorithm
- 4. Preliminary results
- 5. Conclusion

Memory-aware mapping algorithm

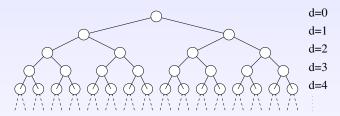
Elimination tree :



- Initially: all processors on root node:
- Recursively split the set of processors on child subtrees if memory allows for it.

Memory-aware mapping algorithm

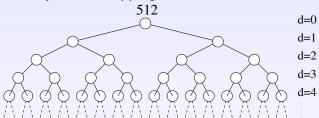
Memory-aware mapping:



- Initially: all processors on root node;
- Recursively split the set of processors on child subtrees if memory allows for it.

Memory-aware mapping algorithm

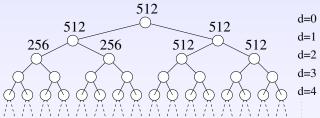
Memory-aware mapping:



- * Initially: all processors on root node;
- Recursively split the set of processors on child subtrees if memory allows for it.

Memory-aware mapping algorithm

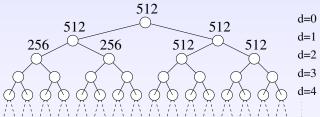
Memory-aware mapping:



- * Initially: all processors on root node;
- Recursively split the set of processors on child subtrees if memory allows for it.

Memory-aware mapping algorithm

Memory-aware mapping:



Advantages

- \odot Robust: guaranteed (if memory $M_0 < \frac{S_{seq}}{p}$).
- © Efficient: available memory provides tree-level parallelism.

Outline

- 1. Multifrontal method
- 2. Limits to memory scalability
- 3. A new memory-aware algorithm
- 4. Preliminary results
- 5. Conclusion

MUMPS: a MUltifrontal Massively Parallel sparse direct Solver

Solution of large sparse linear systems with:

- * Symmetric positive definite matrices;
- * General symmetric matrices;
- ★ General unsymmetric matrices.

Implementation

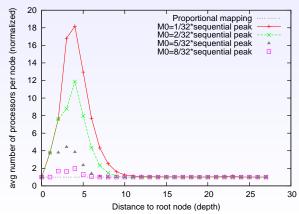
- ★ Distributed Multifrontal Solver (F90, MPI based);
- * Dynamic Distributed Scheduling;
- * Use of BLAS, BLACS, ScaLAPACK.

Interfaces

* Fortran, C, Matlab, Scilab, Visual Studio.

Preliminary results

- * Excellent memory scalability:
 - memory efficiency closed to 1.
- ★ Competitive (time) efficiency
 - closed to proportional mapping (if enough memory);
 - memory provides tree-level parallelism:



Outline

- 1. Multifrontal method
- 2. Limits to memory scalability
- 3. A new memory-aware algorithm
- 4. Preliminary results
- 5. Conclusion

Conclusion

Prototype of a memory-aware algorithm

- Maximizes the amount of tree-level parallelism with respect to the amount of memory available per processor/core.
- New static mapping implemented, with constraints on dynamic schedulers; experimented within the OOC version of MUMPS.
- * Very good memory scalability obtained.

On-going work

- * Further tuning and validation.
- * Generalization to the in-core case.
- * Reinject dynamic information to schedulers.