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Jean-Yves L’EXCELLENT, LIP - INRIA

May 15, 2009

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 1



Context

Context

Solving sparse linear systems

Ax = b
⇒ Direct methods: A = LU

Typical matrix: BRGM matrix
F 3.7× 106 variables
F 156× 106 non zeros in A
F 4.5× 109 non zeros in LU
F 26.5× 1012 flops

Hardware paradigm
F Many-core architecture.
F Large global amount of

memory.
F Limited memory per core.

Software challenge
→ Need for algorithms whose

memory usage scales with
the number of processors.

F Case study: MUMPS

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 2



Context

Context

Solving sparse linear systems

Ax = b
⇒ Direct methods: A = LU

Typical matrix: BRGM matrix
F 3.7× 106 variables
F 156× 106 non zeros in A
F 4.5× 109 non zeros in LU
F 26.5× 1012 flops

Hardware paradigm
F Many-core architecture.
F Large global amount of

memory.
F Limited memory per core.

Software challenge
→ Need for algorithms whose

memory usage scales with
the number of processors.

F Case study: MUMPS

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 2



Context

Context

Solving sparse linear systems

Ax = b
⇒ Direct methods: A = LU

Typical matrix: BRGM matrix
F 3.7× 106 variables
F 156× 106 non zeros in A
F 4.5× 109 non zeros in LU
F 26.5× 1012 flops

Hardware paradigm
F Many-core architecture.
F Large global amount of

memory.
F Limited memory per core.

Software challenge
→ Need for algorithms whose

memory usage scales with
the number of processors.

F Case study: MUMPS

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 2



Context

Context

Solving sparse linear systems

Ax = b
⇒ Direct methods: A = LU

Typical matrix: BRGM matrix
F 3.7× 106 variables
F 156× 106 non zeros in A
F 4.5× 109 non zeros in LU
F 26.5× 1012 flops

Hardware paradigm
F Many-core architecture.
F Large global amount of

memory.
F Limited memory per core.

Software challenge
→ Need for algorithms whose

memory usage scales with
the number of processors.

F Case study: MUMPS

AGULLO - GUERMOUCHE - L’EXCELLENT Memory-Aware Scheduling for Sparse Direct Methods 2



Context

Outline

1. Multifrontal method

2. Limits to memory scalability
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4. Preliminary results
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Multifrontal method

The multifrontal method (Duff, Reid’83)
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Storage divided into two parts:
F Factors systematically written to
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Multifrontal method

Memory behaviour (serial postorder traversal)
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Multifrontal method

Sequential case results

Memory peak

Worst case.

Memory peak

Best case.

Figure: Impact of the tree traversal on the memory behavior.

→ Algorithms to find the optimal tree traversal have been proposed
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Multifrontal method

Memory efficiency

Definition: Memory Efficiency on p processors (or cores)

e(p) = Sseq
p×Smax(p) , Sseq: serial storage, Smax: parallel storage

Results: Memory Efficiency of MUMPS (with factors on disk)

Number p of processors 16 32 64 128
AUDI KW 1 0.16 0.12 0.13 0.10

CONESHL MOD 0.28 0.28 0.22 0.19
CONV3D64 0.42 0.40 0.41 0.37
QIMONDA07 0.30 0.18 0.11 -

ULTRASOUND80 0.32 0.31 0.30 0.26
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Limits to memory scalability
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Limits to memory scalability

Parallel multifrontal scheme

F Type 1 : Nodes processed on a single processor
F Type 2 : Nodes processed with a parallel 1D blocked factorization
F Type 3 : Parallel 2D cyclic factorization (root node)
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F Many simultaneous active tasks;
F Large master tasks;
F Large subtrees;
F Proportional mapping.
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Limits to memory scalability

Proportional mapping VS postorder traversal (1/2)
Elimination tree :

d=0

d=1

d=2

d=3

d=4

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees.

Advantages and drawbacks
, Tree-level + task-level parallelism;
/ Bad memory efficiency.
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Limits to memory scalability

Proportional mapping VS postorder traversal (2/2)
Elimination tree :

d=0

d=1

d=2

d=3

d=4

Traversal
F Postorder traversal, node by node;
F All processors on each node.

Advantages and drawbacks
/ Only task-level parallelism;
, High memory efficiency.
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A new memory-aware algorithm

Memory-aware mapping algorithm
Elimination tree :

d=0

d=1

d=2

d=3

d=4

Mapping
F Initially: all processors on root node;
F Recursively split the set of processors on child subtrees if

memory allows for it.
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Advantages

, Robust: guaranteed (if memory M0 <
Sseq

p ).
, Efficient: available memory provides tree-level parallelism.
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Preliminary results

MUMPS: a MUltifrontal Massively Parallel sparse direct
Solver

Solution of large sparse linear systems with:
F Symmetric positive definite matrices;
F General symmetric matrices;
F General unsymmetric matrices.

Implementation
F Distributed Multifrontal Solver (F90, MPI based);
F Dynamic Distributed Scheduling;
F Use of BLAS, BLACS, ScaLAPACK.

Interfaces
F Fortran, C, Matlab, Scilab, Visual Studio.
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Preliminary results

Preliminary results
F Excellent memory scalability:

I memory efficiency closed to 1.
F Competitive (time) efficiency

I closed to proportional mapping (if enough memory);
I memory provides tree-level parallelism:
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Conclusion

Conclusion

Prototype of a memory-aware algorithm
F Maximizes the amount of tree-level parallelism with respect to

the amount of memory available per processor/core.
F New static mapping implemented, with constraints on dynamic

schedulers; experimented within the OOC version of MUMPS.
F Very good memory scalability obtained.

On-going work
F Further tuning and validation.
F Generalization to the in-core case.
F Reinject dynamic information to schedulers.
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