Bi-objective approximation scheme for makespan and reliability optimization on uniform parallel machines for independent tasks

Emmanuel Jeannot, Erik Saule, Denis Trystram

ICL & INRIA & LIG

Sheduling in Knoxville, May 13 2009

1 Introduction, related work and modeling

- 2 The problem
- Independent unitary tasks
- Independent tasks: a bi-approximation algorithm
- 5 Independent tasks: Pareto front approximation

6 Conclusion

Outline of the talk

1 Introduction, related work and modeling

- 2 The problem
- 3 Independent unitary tasks
- Independent tasks: a bi-approximation algorithm
- 5 Independent tasks: Pareto front approximation

Conclusion

Difficult to ensure that the resources are always available for a long period of time

- hardware failures
- software faults
- power breakdown
- resources removal

Problem studied:

- scheduling independent tasks
- heterogeneous systems (uniform model)
- hardware can fail

Bi-criteria objective:

- given a makespan objective
- optimize reliability

Even if the system have checkpoint restart mechanism, it is important to carefully allocate the tasks.

- A "new subject" :
 - Dogan & Ozgüner 2002: Model the problem, RDLS bi-criteria heuristic.
 - Dogan & Ozgüner 2004: enhancement of previous result (GA).
 - Qin & Jiang 2005: first optimize deadline, then maximize reliability.
 - Hakem & Butelle 2006: BSA, bi-criteria heuristic that outperforms RDLS.

Modeling

- An application: *T* a set of *n* independent tasks.
- Number of operations of tasks *i* : *p_i*
- A set Q of m uniform processors
- Processor *j* is associated with two values:
 - τ_j the time to perform one operation and
 - λ_j the failure rate.
- Taks *i* executed on processor *j* will last $p_i \times \tau_j = p_{ij}$.

Modeling

- An application: T a set of n independent tasks.
- Number of operations of tasks *i* : *p_i*
- A set Q of m uniform processors
- Processor *j* is associated with two values:
 - τ_j the time to perform one operation and
 - λ_j the failure rate.
- Taks *i* executed on processor *j* will last $p_i \times \tau_j = p_{ij}$.

Assumption:

- Processors are subject to crash fault only.
- During the execution of the DAG, the failure rate is constant.
- \Rightarrow failure model follows an exponential law.
- \Rightarrow probability that task *i* finishes (correctly) its execution:

$$e^{-p_i \times \tau_j \times \lambda_j}$$

Introduction, related work and modeling

2 The problem

- 3 Independent unitary tasks
- Independent tasks: a bi-approximation algorithm
- 5 Independent tasks: Pareto front approximation

Conclusion

• A schedule: $\pi : T \rightarrow Q$

- A schedule: $\pi : T \rightarrow Q$
- $T(j,\pi) = \{i \mid \pi(i) = j\}$: set of tasks mapped to processor j

- A schedule: $\pi: T \rightarrow Q$
- $T(j,\pi) = \{i \mid \pi(i) = j\}$: set of tasks mapped to processor j
- $C_j(\pi) = \sum_{i \in T(j,\pi)} p_i \tau_j$: completion time of a processor j

- A schedule: $\pi: T \rightarrow Q$
- $T(j,\pi) = \{i \mid \pi(i) = j\}$: set of tasks mapped to processor j
- $C_j(\pi) = \sum_{i \in T(j,\pi)} p_i \tau_j$: completion time of a processor j
- $C_{max}(\pi) = max_j C_j(\pi)$: makespan of a schedule

- A schedule: $\pi: T \rightarrow Q$
- $T(j,\pi) = \{i \mid \pi(i) = j\}$: set of tasks mapped to processor j
- $C_j(\pi) = \sum_{i \in T(j,\pi)} p_i \tau_j$: completion time of a processor j
- $C_{max}(\pi) = max_j C_j(\pi)$: makespan of a schedule
- $p_{succ}^{j}(\pi) = e^{-\lambda_{j}C_{j}(\pi)}$: probability that processor j executes all its tasks successfully

- A schedule: $\pi: T \rightarrow Q$
- $T(j,\pi) = \{i \mid \pi(i) = j\}$: set of tasks mapped to processor j
- $C_j(\pi) = \sum_{i \in T(j,\pi)} p_i \tau_j$: completion time of a processor j
- $C_{max}(\pi) = max_j C_j(\pi)$: makespan of a schedule
- $p_{succ}^{j}(\pi) = e^{-\lambda_{j}C_{j}(\pi)}$: probability that processor j executes all its tasks successfully
- Assumption: faults are independent.

$$p_{ ext{succ}} = \prod_{j} p^{j}_{ ext{succ}}(\pi) = e^{-\sum_{j} C_{j}(\pi) \lambda_{j}}$$

probability that schedule π finishes correctly.

Criteria

Two criteria to optimize:

• Makespan: minimize

$$M = C_{max}(\pi) = max_jC_j(\pi)$$

• Reliability: maximize

$$p_{
m succ} = \prod_{j} e^{-C_{j}(\pi)\lambda_{j}} = e^{-\sum_{j} C_{j}(\pi)\lambda_{j}}$$

or minimize

$$Rel = \sum_{j} C_{j}(\pi) \lambda_{j}$$

Theorem

The problem of minimizing the C_{max} and Rel is unapproximable within a constant factor.

Theorem

The problem of minimizing the C_{max} and Rel is unapproximable within a constant factor.

Proof Two machines such that $\tau_2 = \tau_1/k$ and $\lambda_2 = k^2 \lambda_1$ ($k \in \mathbb{R}^{+*}$).

Theorem

The problem of minimizing the C_{max} and Rel is unapproximable within a constant factor.

Proof Two machines such that $\tau_2 = \tau_1/k$ and $\lambda_2 = k^2 \lambda_1$ ($k \in \mathbb{R}^{+*}$). A single task t_1 where $p_1 = 1$.

Theorem

The problem of minimizing the C_{max} and Rel is unapproximable within a constant factor.

Proof Two machines such that $\tau_2 = \tau_1/k$ and $\lambda_2 = k^2 \lambda_1$ ($k \in \mathbb{R}^{+*}$). A single task t_1 where $p_1 = 1$. $C_{max}(\pi_1) = \tau_1$ and $C_{max}(\pi_2) = \tau_1/k$. This leads to $C_{max}(\pi_1)/C_{max}(\pi_2) = k$. π_1 is not an approximation on both criteria

Theorem

The problem of minimizing the C_{max} and Rel is unapproximable within a constant factor.

Proof Two machines such that $\tau_2 = \tau_1/k$ and $\lambda_2 = k^2 \lambda_1$ $(k \in \mathbb{R}^{+*})$. A single task t_1 where $p_1 = 1$. $C_{max}(\pi_1) = \tau_1$ and $C_{max}(\pi_2) = \tau_1/k$. This leads to $C_{max}(\pi_1)/C_{max}(\pi_2) = k$. π_1 is not an approximation on both criteria $Rel(\pi_1) = \tau_1 \lambda_1$ and $Rel(\pi_2) = \tau_1 \lambda_1 k$. This leads to $Rel(\pi_2)/Rel(\pi_1) = k$. π_2 is not an approximation on both criteria.

Theorem

The problem of minimizing the C_{max} and Rel is unapproximable within a constant factor.

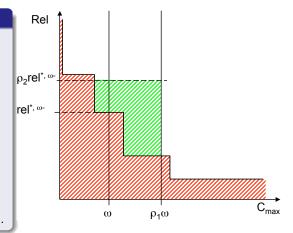
Proof Two machines such that $\tau_2 = \tau_1/k$ and $\lambda_2 = k^2 \lambda_1$ $(k \in \mathbb{R}^{+*})$. A single task t_1 where $p_1 = 1$. $C_{max}(\pi_1) = \tau_1$ and $C_{max}(\pi_2) = \tau_1/k$. This leads to $C_{max}(\pi_1)/C_{max}(\pi_2) = k$. π_1 is not an approximation on both criteria $Rel(\pi_1) = \tau_1 \lambda_1$ and $Rel(\pi_2) = \tau_1 \lambda_1 k$. This leads to $Rel(\pi_2)/Rel(\pi_1) = k$. π_2 is not an approximation on both criteria.

No solution of this instance approximates both criteria.

Minimizing Rel when subject to a makespan objective.

Definition

- ω: makespan threshold value
- $\langle \bar{\rho_1}, \rho_2 \rangle$ -approximation algorithm.
- $C_{max} \leq \rho_1 \omega$
- $rel \leq \rho_2 rel^{*,\omega-}$
- rel^{*,ω-} is the best possible value of rel in schedules whose makespan is less than ω.



Introduction, related work and modeling

2 The problem

Independent unitary tasks

- Independent tasks: a bi-approximation algorithm
- 5 Independent tasks: Pareto front approximation

Conclusion

Independent unitary tasks

$$o_i = 1$$
 and $E = \emptyset$, $n = |V|$.

 $n_k \leftarrow n_k + 1$

 $\begin{array}{l} \underline{o_i = 1 \text{ and } E = \emptyset, \ n = |V|.} \\ \hline \textbf{Algorithm 1 Makespan-optimal allocation for independent unitary tasks} \\ \hline \textbf{for i=1 to P} \\ n_i \leftarrow \left\lfloor \frac{1/\tau_i}{\sum 1/\tau_i} \right\rfloor \times n \\ \textbf{while } \sum n_i < n \\ k = \operatorname{argmin}(\tau_k(n_k + 1)) \end{array}$

 $o_i = 1$ and $E = \emptyset$, n = |V|.

Algorithm 1 Makespan-optimal allocation for independent unitary tasks

for i=1 to P $n_i \leftarrow \left\lfloor \frac{1/\tau_i}{\sum 1/\tau_i} \right\rfloor \times n$ while $\sum n_i < n$ $k = \operatorname{argmin}(\tau_k(n_k + 1))$ $n_k \leftarrow n_k + 1$

Above algorithm gives $M_{\rm opt}$ the best achievable makespan. For the reliability criteria the user gives the value of α that tells how far from the optimal makespan he/she can tolerate to be. Then we compute a schedule such that:

- $\omega \leq \alpha M_{opt}$
- it has the best reliability among all the schedules with makespan $\leq \omega$.

Algorithm 2 Optimal reliable allocation for independent unitary tasks

Input: $\alpha \in [1, +\infty)$ Compute $\omega = \alpha M_{opt}$ using previous algorithm Sort the processor by increasing $\lambda_i \tau_i$ $X \leftarrow 0$ for i=1 to P if X < N $n_i \leftarrow \min\left(N - X, \left|\frac{\omega}{\tau_i}\right|\right)$ else $n_i \leftarrow 0$ $X \leftarrow X + n$

We need to show that $\sum_{i \in [1,P]} n_i \lambda_i \tau_i$ is minimum.

 First let us remark that the algorithm fills the processor of task in the increasing order of λ_iτ_i.

- First let us remark that the algorithm fills the processor of task in the increasing order of $\lambda_i \tau_i$.
- ⇒ any other valid allocation $\{n'_1, \ldots, n'_N\}$ is such that $n'_i < n_i$ and $n'_j > n_j$ for any i < j.

- First let us remark that the algorithm fills the processor of task in the increasing order of $\lambda_i \tau_i$.
- ⇒ any other valid allocation $\{n'_1, \ldots, n'_N\}$ is such that $n'_i < n_i$ and $n'_j > n_j$ for any i < j.
 - w.l.o.g. let $n'_1 = n_1 k$, $n'_i = n_i + k$ and $n'_j = n_j$ for $k \in [1, n_i]$, $j \neq 1$ and $j \neq i$.

- First let us remark that the algorithm fills the processor of task in the increasing order of λ_iτ_i.
- ⇒ any other valid allocation $\{n'_1, \ldots, n'_N\}$ is such that $n'_i < n_i$ and $n'_j > n_j$ for any i < j.
 - w.l.o.g. let $n'_1 = n_1 k$, $n'_j = n_i + k$ and $n'_j = n_j$ for $k \in [1, n_i]$, $j \neq 1$ and $j \neq i$.
 - Then the difference between the two objective values is:

We need to show that $\sum_{i \in [1,P]} n_i \lambda_i \tau_i$ is minimum.

- First let us remark that the algorithm fills the processor of task in the increasing order of $\lambda_i \tau_i$.
- ⇒ any other valid allocation $\{n'_1, \ldots, n'_N\}$ is such that $n'_i < n_i$ and $n'_j > n_j$ for any i < j.
 - w.l.o.g. let $n'_1 = n_1 k$, $n'_i = n_i + k$ and $n'_j = n_j$ for $k \in [1, n_i]$, $j \neq 1$ and $j \neq i$.
 - Then the difference between the two objective values is:

$$X = n_1 \lambda_1 \tau_1 + \ldots + n_i \lambda_i \tau_i + \ldots + n_N \lambda_N \tau_N - n'_1 \lambda_1 \tau_1 - \ldots - n'_i \lambda_i \tau_i - \ldots + n'_N \lambda_N \tau_N$$

= $\lambda_1 \tau_1 (n_1 - n'_1) + \lambda_i \tau_i (n_i - n'_i)$

$$= k\lambda_1\tau_1 - k\lambda_i\tau_i$$

$$= k(\lambda_1 \tau_1 - \lambda_i \tau_i)$$

 \leq 0 because $\lambda_i \tau_i \geq \lambda_1 \tau_1$.

Hence, the first allocation has a smaller objective value.

Outline of the talk

Introduction, related work and modeling

- 2 The problem
- 3 Independent unitary tasks

Independent tasks: a bi-approximation algorithm

Independent tasks: Pareto front approximation

Conclusion

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
            i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
end
```

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
              i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
end
```

$$p = \{7, 5, 4, 2\}$$

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
             i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
end
```

$$p = \{7, 5, 4, 2\}$$

$$\lambda_1 = 3, \ \tau_1 = 1, \ p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \ \tau_2 = 2, \ p_{i2} = \{14, 10, 8, 4\}$$

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
            i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
end
```

$$p = \{7, 5, 4, 2\}$$

$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$

CMLT

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
     i = 1
     for i = 1 to n do
           while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
             i = i + 1
           if H.empty() then
                Return no solution
           schedule i on j' = H.min()
           C_{i'} = C_{i'} + p_i \tau_{i'}
           if C_{j'} > \omega then

\Box Remove j' from H
```

$$p = \{7, 5, 4, 2\}$$

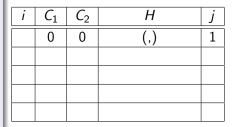
$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$



CMLT

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
     i = 1
     for i = 1 to n do
           while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
             i = i + 1
           if H.empty() then
                Return no solution
           schedule i on j' = H.min()
           C_{i'} = C_{i'} + p_i \tau_{i'}
           if C_{j'} > \omega then

\Box Remove j' from H
```

$$p = \{7, 5, 4, 2\}$$

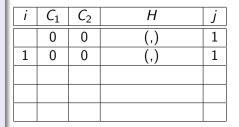
$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$



CMLT

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
     i = 1
     for i = 1 to n do
           while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
             i = i + 1
           if H.empty() then
                Return no solution
           schedule i on j' = H.min()
           C_{i'} = C_{i'} + p_i \tau_{i'}
           if C_{j'} > \omega then

\Box Remove j' from H
```

$$p = \{7, 5, 4, 2\}$$

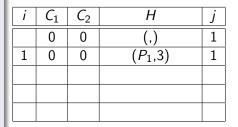
$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$



CMLT

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
     i = 1
     for i = 1 to n do
           while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
             i = i + 1
           if H.empty() then
                Return no solution
           schedule i on j' = H.min()
           C_{i'} = C_{i'} + p_i \tau_{i'}
           if C_{j'} > \omega then

\Box Remove j' from H
```

$$p = \{7, 5, 4, 2\}$$

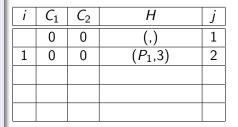
$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$



CMLT

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
     i = 1
     for i = 1 to n do
           while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
             i = i + 1
           if H.empty() then
                Return no solution
           schedule i on j' = H.min()
           C_{i'} = C_{i'} + p_i \tau_{i'}
           if C_{j'} > \omega then

\Box Remove j' from H
```

$$p = \{7, 5, 4, 2\}$$

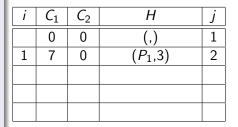
$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$



CMLT

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
     i = 1
     for i = 1 to n do
           while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
             i = i + 1
           if H.empty() then
                Return no solution
           schedule i on j' = H.min()
           C_{i'} = C_{i'} + p_i \tau_{i'}
           if C_{j'} > \omega then

\Box Remove j' from H
```

$$p = \{7, 5, 4, 2\}$$

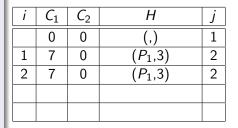
$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$



CMLT

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
            i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
```

$$p = \{7, 5, 4, 2\}$$

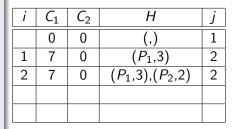
$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$



CMLT

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
            i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
```

$$p = \{7, 5, 4, 2\}$$

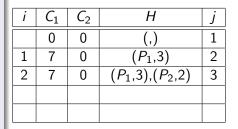
$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$



CMLT

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
            i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
```

$$p = \{7, 5, 4, 2\}$$

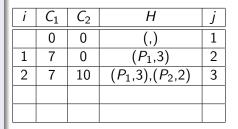
$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$



```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
            i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
end
```

$$p = \{7, 5, 4, 2\}$$

$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$

i	C_1	<i>C</i> ₂	Н	j
	0	0	(,)	1
1	7	0	(<i>P</i> ₁ ,3)	2
2	7	10	$(P_1,3),(P_2,2)$	3
3	7	10	$(P_1,3),(P_2,2)$	3

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
            i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
end
```

$$p = \{7, 5, 4, 2\}$$

$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$

i	C_1	<i>C</i> ₂	Н	j
	0	0	(,)	1
1	7	0	(<i>P</i> ₁ ,3)	2
2	7	10	$(P_1,3),(P_2,2)$	3
3	7	18	$(P_1,3),(P_2,2)$	3

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
            i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
end
```

$$p = \{7, 5, 4, 2\}$$

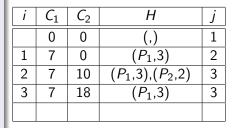
$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$



CMLT

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
            i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
```

$$p = \{7, 5, 4, 2\}$$

$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$

i	C_1	<i>C</i> ₂	Н	j
	0	0	(,)	1
1	7	0	(<i>P</i> ₁ ,3)	2
2	7	10	$(P_1,3),(P_2,2)$	3
3	7	18	(<i>P</i> ₁ ,3)	3
4	7	18	(<i>P</i> ₁ ,3)	3

CMLT

```
\omega: makespan threshold
M(i) = \{j \mid p_{ii} \leq \omega\}
begin
     sort tasks in non-increasing p_i order
     sort processors in non-decreasing \tau_i order
     Let H be an empty heap
    i = 1
     for i = 1 to n do
          while P_i \in M(i) do
                Add P_i to H with key \lambda_i \tau_i
            i = i + 1
          if H.empty() then
                Return no solution
          schedule i on j' = H.min()
          C_{i'} = C_{i'} + p_i \tau_{i'}
          if C_{i'} > \omega then
                Remove j' from H
```

$$p = \{7, 5, 4, 2\}$$

$$\lambda_1 = 3, \tau_1 = 1, p_{i1} = \{7, 5, 4, 2\}$$

$$\lambda_2 = 1, \tau_2 = 2, p_{i2} = \{14, 10, 8, 4\}$$

$$\omega = 10$$

$$M(1) = \{1\}$$

$$M(2) = M(3) = M(4) = \{1, 2\}$$

i	C_1	<i>C</i> ₂	Н	j
	0	0	(,)	1
1	7	0	(<i>P</i> ₁ ,3)	2
2	7	10	$(P_1,3),(P_2,2)$	3
3	7	18	(<i>P</i> ₁ ,3)	3
4	9	18	(<i>P</i> ₁ ,3)	3

$C_{max}(CMLT) \le 2\omega$

- Tasks are ranked by non-increasing duration
- Processor j is used until $C_j > \omega$

$C_{max}(\text{CMLT}) \leq 2\omega$

- Tasks are ranked by non-increasing duration
- Processor j is used until $C_j > \omega$

•
$$M(i) = \{j \mid p_{ij} \le \omega\}$$

$C_{max}(\text{CMLT}) \leq 2\omega$

- Tasks are ranked by non-increasing duration
- Processor j is used until $C_j > \omega$

If CMLT does not return a schedule then there is no schedule π with ${\cal C}_{\max}(\pi) < \omega$

•
$$M(i) = \{j \mid p_{ij} \leq \omega\}$$

• If task *i* cannot be executed on any processors of $M(i) \Longrightarrow \forall j \in M(i), C_j > \omega$

$C_{max}(\text{CMLT}) \leq 2\omega$

- Tasks are ranked by non-increasing duration
- Processor j is used until $C_j > \omega$

•
$$M(i) = \{j \mid p_{ij} \leq \omega\}$$

- If task *i* cannot be executed on any processors of M(*i*) ⇒ ∀*j* ∈ M(*i*), C_j > ω
- $\forall i, i' \in T$ such that $p_i \leq p_{i'}, M(i') \subseteq M(i)$

$C_{max}(\text{CMLT}) \leq 2\omega$

- Tasks are ranked by non-increasing duration
- Processor j is used until $C_j > \omega$

•
$$M(i) = \{j \mid p_{ij} \leq \omega\}$$

- If task *i* cannot be executed on any processors of M(*i*) ⇒ ∀*j* ∈ M(*i*), C_j > ω
- $\forall i, i' \in T$ such that $p_i \leq p_{i'}$, $M(i') \subseteq M(i)$
- $\forall i' \leq i$ such that $p_{i'} > p_i$ must have been schedule to a processor of M(i).

$C_{max}(\text{CMLT}) \leq 2\omega$

- Tasks are ranked by non-increasing duration
- Processor j is used until $C_j > \omega$

•
$$M(i) = \{j \mid p_{ij} \leq \omega\}$$

- If task *i* cannot be executed on any processors of M(*i*) ⇒ ∀*j* ∈ M(*i*), C_j > ω
- $\forall i, i' \in T$ such that $p_i \leq p_{i'}$, $M(i') \subseteq M(i)$
- $\forall i' \leq i$ such that $p_{i'} > p_i$ must have been schedule to a processor of M(i).
- There is more operations in the set of tasks {i' ≤ i} than processors in M(i) can execute in ω units of time.

CMLT generates a schedule such that $\mathit{rel} \leq \mathit{rel}^{*,\omega-}$

Idea: tasks are scheduled on the processor that have the minimum $\lambda \tau$ product which is known to be optimal for unitary tasks.

CMLT a $\left<\bar{2},1\right>$ -approximation algorithm

CMLT generates a schedule such that $\mathit{rel} \leq \mathit{rel}^{*,\omega-}$

Idea: tasks are scheduled on the processor that have the minimum $\lambda \tau$ product which is known to be optimal for unitary tasks.

CMLT a $\left<\bar{2},1\right>$ -approximation algorithm

The time complexity of CMLT is in $O(n \log n + m \log m)$

- cost of sorting tasks: $O(n \log n)$
- cost of sorting processors: $O(m \log m)$
- Adding elements to heap: $O(m \log m)$
- Getting and removing elements from heap 0(1 * n)

Outline of the talk

Introduction, related work and modeling

- 2 The problem
- Independent unitary tasks
- Independent tasks: a bi-approximation algorithm

5 Independent tasks: Pareto front approximation

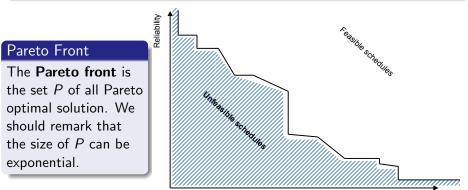
6 Conclusion

Optimality

In multi-criteria, k functions are optimized $f_1 \dots f_k$. Solution S' is **Pareto** dominated by S if $\forall i, f_i(S) \leq f_i(S')$. A solution which is not dominated is **Pareto-optimal**.

Optimality

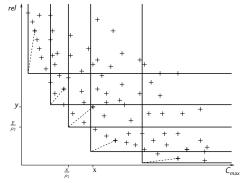
In multi-criteria, k functions are optimized $f_1 \dots f_k$. Solution S' is **Pareto** dominated by S if $\forall i, f_i(S) \leq f_i(S')$. A solution which is not dominated is **Pareto-optimal**.



Makespan

Definition

Informally, P is a $\rho = (\rho_1, \rho_2, ..., \rho_k)$ approximation of P^* if each solution $S^* \in P^*$ is ρ approximated by a solution $S \in P$. Formally, $\forall S^* \in P^*, \exists S \in P, \forall i, f_i(S) \leq \rho_i f_i(S^*)$.



Bold crosses are a (ρ_1, ρ_2) -approximation of the Pareto set.

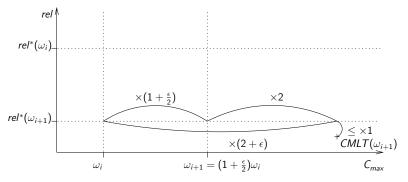
Pareto front approximation algorithm

Papadimitriou and Yannakakis approximation method of the Pareto front

Data: ϵ a positive real number

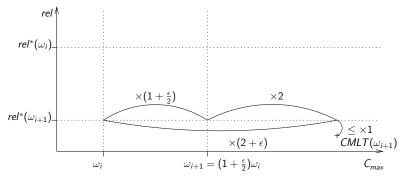
Result: S a set of solutions $C_{max}^{min} = rac{\sum_i p_i}{\sum_i rac{1}{\tau_i}}$ $C_{\max}^{\max} = \sum_{i} p_i \max_i \tau_i$ begin i = 0 $S = \emptyset$ while $i \leq \left\lceil \log_{1+\epsilon/2} \left(\frac{C_{max}^{max}}{C_{max}^{min}} \right) \right\rceil \, \mathbf{do}$ $\omega_i = (1 + \frac{\epsilon}{2})^i C_{max}^{min}$ $\pi_i = CML\bar{T}(\omega_i)$ $S = S \cup \pi_i$ i = i + 1return S end

A $(2 + \epsilon, 1)$ approximation algorithm of the Pareto front



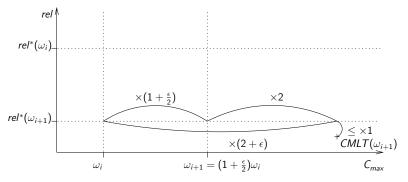
• $C_{max}(CMLT(\omega_{i+1})) \leq 2.\omega_{i+1}$

A $(2 + \epsilon, 1)$ approximation algorithm of the Pareto front



• $C_{max}(CMLT(\omega_{i+1})) \le 2.\omega_{i+1}$ • $\omega_{i+1} = (1 + \frac{\epsilon}{2})\omega_i \Longrightarrow C_{max}(CMLT(\omega_{i+1})) \le (2 + \epsilon)\omega_i$

A $(2 + \epsilon, 1)$ approximation algorithm of the Pareto front

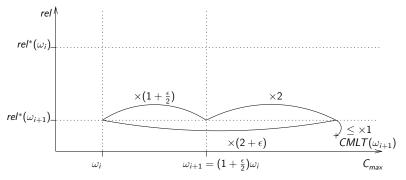


• $C_{max}(CMLT(\omega_{i+1})) \leq 2.\omega_{i+1}$

• $\omega_{i+1} = (1 + \frac{\epsilon}{2})\omega_i \Longrightarrow C_{max}(CMLT(\omega_{i+1})) \le (2 + \epsilon)\omega_i$

• $rel(CMLT(\omega_{i+1})) \leq rel^*(\omega_{i+1})$

A $(2+\epsilon,1)$ approximation algorithm of the Pareto front



•
$$C_{max}(CMLT(\omega_{i+1})) \leq 2.\omega_{i+1}$$

- $\omega_{i+1} = (1 + \frac{\epsilon}{2})\omega_i \Longrightarrow C_{max}(CMLT(\omega_{i+1})) \le (2 + \epsilon)\omega_i$
- $rel(CMLT(\omega_{i+1})) \leq rel^*(\omega_{i+1})$
- $CMLT(\omega_{i+1})$ is a $(2 + \epsilon, 1)$ -approximation of $(\omega_i, rel^*(\omega_{i+1}))$

Cardinality

• Number of solutions less than: $\left\lceil \log_{1+\frac{\epsilon}{2}} \frac{C_{max}^{max}}{C_{min}} \right\rceil \leq \left\lceil \log_{1+\frac{\epsilon}{2}} max_i\tau_i\sum_j 1/\tau_j \right\rceil \leq$

$$\left| + \frac{\epsilon}{2} \frac{C_{max}}{C_{max}^{min}} \right| \le \left| \log_{1+\frac{\epsilon}{2}} \max_{i} \tau_{i} \sum_{j} 1/\tau_{j} \right| \le \left| \log_{1+\frac{\epsilon}{2}} m \frac{\max_{i} \tau_{i}}{\min_{i} \tau_{i}} \right|$$

Г

 \bullet polynomial in $1/\epsilon$ and in m

Cardinality

• Number of solutions less than:

$$\left|\log_{1+\frac{\epsilon}{2}}\frac{C_{\max}^{\max}}{C_{\max}^{\min}}\right| \leq \left|\log_{1+\frac{\epsilon}{2}}\max_{i}\tau_{i}\sum_{j}1/\tau_{j}\right| \leq \left|\log_{1+\frac{\epsilon}{2}}m\frac{\max_{i}\tau_{i}}{\min_{i}\tau_{i}}\right|$$

 \bullet polynomial in $1/\epsilon$ and in m

Complexity

- \bullet Sorting the tasks:independent of ω (can be done once for all)
- Complexity of the Pareto front approximation algorithm: $O(n \log n + \left\lceil \log_{1+\epsilon/2}(\frac{C_{max}}{C_{min}^{max}}) \right\rceil (n + m \log m))$

Outline of the talk

Introduction, related work and modeling

- 2 The problem
- 3 Independent unitary tasks
- Independent tasks: a bi-approximation algorithm
- 5 Independent tasks: Pareto front approximation

6 Conclusion

Conclusion

Problem

- Reliability is a crucial issue
- Scheduling independent tasks on related processors
- Optimizing makespan and reliability
- These criteria are conflicting

Conclusion

Problem

- Reliability is a crucial issue
- Scheduling independent tasks on related processors
- Optimizing makespan and reliability
- These criteria are conflicting

Contribution

- a $\left<\bar{\alpha},1\right>$ -approximation with $\alpha\in[1,+\infty[$ for unitary independant tasks
- \bullet CMLT: a $\left<\bar{2},1\right>$ -approximation for non unitary independant tasks algorithm
- A (2 + ϵ , 1)-approximation of the Pareto front
- Exemplify the role of the $\lambda \tau$ product