Look ahead technique for reduction to Hessenberg form: design of the algorithm and applicability on current hardware

Julien Langou, Matthew Nabity
Department of Mathematical \& Statistical Sciences
University of Colorado Denver
May 14, 2009

Outline

- Background and motivation
- LAPACK routines (unblocked and blocked)
- Look ahead algorithm
- To do list

Motivation

- Reduction to Hessenberg form is the first phase of solving the nonsymmetric eigenvalue problem
- $\mathrm{H}=\mathrm{Q}^{\top} \mathrm{AQ}$ with $\mathrm{Q}^{\top} \mathrm{Q}=\mathrm{I}$
- Cost $\sim(10 / 3) n^{3}$

Motivation

- Can continue to Schur Form and to Diagonal form for an eigenvalue revealing factorization
- $\mathrm{Q}^{\top} \mathrm{Q}=\mathrm{I}$, unitary transformations = stable computation

Why Hessenberg Form?

- A nXn, nonsymmetric
- Compute v and t to zero out the first column

Why Hessenberg Form?

XXXXXXXXXX XXXXXXXXX $\times \times \times \times \times \times \times \times \times$ XXXXXXXX $\mathrm{x} \times \times \times \times \times \times \times \mathrm{x}$ $\times \times \times \times \times \times \times \times$ XXXXXXXX XXXXXXXX XXXXXXXXX XXXXXXXX

- A nXn, nonsymmetric
- Compute v and t to zero out the first column
- Apply on left: $\left(l-v / t /\left.v\right|^{T}\right) A$

Why Hessenberg Form?

| $x \times x$ | x | x | x | x | x |
| :--- | :--- | :--- | :--- | :--- | :--- |$\times x$ XXXXXXXXXX XXXXXXXXX XXXXXXXXXX XXXXXXXXXX $\mathrm{x} \times \times \times \times \times \times \times \times \mathrm{x}$ XXXXXXXXX XXXXXXXXX XXXXXXXXXX XXXXXXXXX

- A nXn, nonsymmetric
- Compute v and t to zero out the first column
- Apply on left:

$$
\left(l-v|t| v l^{\top}\right) A
$$

- Apply on right:

$$
\left(l-v_{\mid} t_{\mid} v_{1}{ }^{T}\right) A\left(I-\left.v_{\mid} t_{\mid v}\right|^{T}\right)
$$

- Work destroyed...

Hessenberg Reduction xGEHD2

$\times \times \times \times \times \times \times \times \times x$ XXXXXXXXX $\mathrm{X} \times \times \times \times \times \times \times \mathrm{X}$ XXXXXXXXX $\mathrm{x} \times \mathrm{x} \times \mathrm{X} \times \mathrm{XX} \mathrm{x}$ XXXXXXXXXX XXXXXXXXX X X X X X X X X X $\mathrm{X} \times \times \times \times \times \times \times \times \mathrm{X}$ XXXXXXXXXX
- Compute v_{l} and t_{l}

Hessenberg Reduction xGEHD2

	$\times \times \times \times \times \times \times \times$
XXXXXXXXXX	
	XXXXXXXXX
	$\mathrm{x} \times \mathrm{x} \times \mathrm{x} \times \mathrm{x}$
	$\times \times \times \times \times \times \times \times \times$
	$\mathrm{x} \times \times \times \times \times \times \mathrm{x}$
	x $\times \times \times \times \times \times \times$
	X $\times \times \times \times \times \times \times$
	XXXXXXXX
	$\mathrm{X} \times \times \times \times \times \times \times \mathrm{x}$

- Compute vı and t_{l}
- Apply on left: $\left(I-v_{ı} t_{i} I^{T}\right) A$

Hessenberg Reduction xGEHD2

XXXXXXXXXX	
	X $\times \times \times \times \times \times \times \times$
	X $\times \times \times \times \times \times \times$
	X \times X \times X \times X \times
	X X X X X X X
	X $\times \times \times \times \times \times \times \mathrm{X}$
	$\mathrm{x} \times \times \times \times \times \times \mathrm{x}$
	X $\times \times \times \times \times \times \times$
	X $\times \times \times \times \times \times \times \times$
	$\mathrm{X} \times \times \times \times \times \times \times \mathrm{x}$

- Compute v_{l} and t_{l}
- Apply on left: $\left(I-v_{ı} t_{I} I^{T}\right) A$
- Apply on right:
$\left(I-v ı t l_{l}{ }^{T}\right) A\left(I-v ı t_{l} l_{l}{ }^{T}\right)$
- Call updated matrix A_{I}

Hessenberg Reduction xGEHD2

$\begin{aligned} & \times \\ & \times \times \times \times \times \times \times \times \times \\ & \hline \end{aligned}$	
	X X X X X X X
	X X X X X X X
	$\mathrm{X} \times \times \times \times \times \times \times \mathrm{x}$
	$\times \times \times \times \times \times \times \times \times$
	$\mathrm{X} \times \times \times \times \times \times \mathrm{x}$
	$\mathrm{X} \times \times \times \times \times \times \mathrm{x}$
	$\mathrm{x} \times \times \times \times \times \times \times$
	$\mathrm{x} \times \times \times \times \times \times \times \mathrm{x}$

- Compute v2 and t_{2}

Hessenberg Reduction xGEHD2

- Compute v2 and t_{2}
- Apply on left: $\left(I-v_{2} t_{2} v_{2}{ }^{T}\right) A_{\text {I }}$

Hessenberg Reduction xGEHD2

- Compute v_{2} and t_{2}
- Apply on left: $\left(I-v_{2} t_{2} v_{2}{ }^{\top}\right) A_{\text {I }}$
- Apply on right:

$$
\left(I-v_{2} t_{2} v_{2}^{\top}\right) A_{l}\left(I-v_{2} t_{2} v_{2}^{\top}\right)
$$

- Call updated matrix A_{2}, etc ...

Hessenberg Reduction xGEHD2

XXXXXXXXX XXXXXXXXXX XXXXXXXXX XXXXXXXX $\times \times \times \times \times \times \times$ X X X X X $\times \times \times \times \mathrm{X}$ $\times \times \times \times$ $\times \times \times$ $\times \mathrm{X}$	- A nXn nonsymmetric - ~ $(10 / 3) n^{3}$ - $\sim n^{3}$ data transfers - Level - 2 BLAS

xGEHD2

- Compute t_{l}, v_{l} from Ist col. of A

Compute $A_{1}:\left(I-v_{l} t_{l} v_{l}{ }^{\top}\right) A\left(I-v_{l} t_{l} v_{l}{ }^{\top}\right)$
Compute t_{2}, v_{2} from $2 n d$ col. of A_{1}

Compute A_{2} :
$\left(I-v_{2} t_{2} v_{2}{ }^{\top}\right) A_{1}\left(I-v_{2} t_{2} v_{2}{ }^{\top}\right)$
Compute t_{3}, v_{3} from 3 rd col. of A_{2}

Continue...

Introducing Blocking in xGEHD2

Compute t_{l}, v_{l} from Ist col. of A
Compute $A_{1}:\left(I-v_{l} t_{\mid} v_{l}{ }^{\top}\right) A\left(I-v_{l} t_{l} v_{l}{ }^{\top}\right)$
Compute t_{2}, v_{2} from 2 nd col. of A_{1}
$=\left(I-v_{l} t_{l} v_{l}^{\top}\right) A\left(I-v_{l} t_{l} v_{l}{ }^{\top}\right) e_{2}$
$=\left(I-v_{l} v_{l} l_{l}^{\top}\right) A\left(e_{2}-v_{l} t_{l}\left(v_{l}{ }^{\top} e_{2}\right)\right)$
(we need all of A for this)
Compute A_{2} :
$\left(I-v_{2} t_{2} v_{2}^{\top}\right) A_{1}\left(I-v_{2} t_{2} v_{2}^{\top}\right)$
Compute t_{3}, v_{3} from 3rd col. of A_{2}
Continue...

Introducing Blocking in xGEHD2

Compute t_{l}, v_{l} from Ist col. of A
Compute $A_{1}:\left(I-v_{l} t_{l} v_{l}{ }^{\top}\right) A\left(I-v_{l} t_{l} v_{l}{ }^{\top}\right)$
Compute t_{2}, v_{2} from 2 nd col. of A_{1}
$=\left(I-v_{l} t_{l} v_{l}^{\top}\right) A\left(I-v_{l} t_{l} v_{l}{ }^{\top}\right) e_{2}$
$=\left(I-v_{l} v_{l} l_{l}^{\top}\right) A\left(e_{2}-v_{l} t_{l}\left(v_{l}{ }^{\top} e_{2}\right)\right)$
(we need all of A for this)
Compute A_{2} :
$\left(I-v_{2} t_{2} v_{2}^{\top}\right) A_{1}\left(I-v_{2} t_{2} v_{2}{ }^{\top}\right)$
Compute t_{3}, v_{3} from 3rd col. of A_{2}
Continue...

Introducing Blocking in xGEHD2

Compute t_{l}, v_{l} from Ist col. of A
Compute $A_{1}:\left(I-v_{l} t_{l} v_{l}{ }^{\top}\right) A\left(I-v_{l} t_{l} v_{l}{ }^{T}\right)$
Compute t_{2}, v_{2} from 2 nd col. of A_{1}
$=\left(I-v_{l} t_{l} v_{l}^{\top}\right) A\left(I-v_{l} t_{l} v_{l}{ }^{\top}\right) e_{2}$
$=\left(I-v_{l} v_{l} l_{l}^{\top}\right) A\left(e_{2}-v_{l} t_{l}\left(v_{l}{ }^{\top} e_{2}\right)\right)$
(we need all of A for this)
Compute A_{2} :
$\left(I-v_{2} t_{2} v_{2}{ }^{\top}\right) A_{1}\left(I-v_{2} t_{2} v_{2}{ }^{\top}\right)$
Compute t_{3}, v_{3} from 3 rd col. of A_{2}
Continue...

Introducing Blocking in xGEHD2

Compute t_{l}, v_{l} from I st col. of A
Compute $A_{1}:\left(I-v_{1} t_{1} v_{1}{ }^{\top}\right) A\left(I-v_{1} t_{1} v_{1}{ }^{\top}\right)$
Compute t_{2}, v_{2} from $2 n d$ col. of A_{I}

$$
\begin{aligned}
& =\left(I-v_{1} t_{1} v_{1}^{\top}\right) A\left(I-v_{1} t_{1} v_{l}{ }^{\top}\right) e_{2} \\
& =\left(I-v_{l} t_{l} v_{l}^{\top}\right) A\left(e_{2}-v_{1} t_{l}\left(v_{1}{ }^{\top} e_{2}\right)\right)
\end{aligned}
$$

(we need all of A for this)
Compute A_{2} :
$\left(I-v_{2} t_{2} v_{2}{ }^{\top}\right) A_{1}\left(I-v_{2} t_{2} v_{2}{ }^{\top}\right)$
Compute t_{3}, v_{3} from 3 rd col. of A_{2}
Continue...

Blocking and xGEHRD

Blocking and x GEHRD

- Combine into single update $A_{k}=\left(I-V T V^{\top}\right) A\left(1-V T V^{\top}\right)^{\top}$
($\sim 4 n^{2} k$ FLOPS and n^{2} data)
Update

Update

- Combine into single update

Blocking

Look ahead

- Can we overlap panel factorization and update???

Look ahead

- Can we overlap panel factorization and update???

Look ahead

- Early Attempt

Blocking and x GEHRD

- Combine into single update

$$
A_{2 k}=\left(I-V T V^{\top}\right) A_{k}\left(I-V T V^{\top}\right)^{\top}
$$

$\left(\sim 4 n^{2} k\right.$ FLOPS and n^{2} data)

Look ahead

Conclusions / Further Work

- Need to study and model memory access/ transfers, cost of copy, cost of computation
- Explore potential in hybrid framework with specialized hardware for matrix vector product
- Opportunity for changing the data layout of matrix A during the copy

