
Click to edit Master subtitle style

Scheduling Sparse Numerical Computations
 For

Energy & Performance Efficiencies

Padma Raghavan
Computer Science and Engineering
Institute for CyberScience
The Pennsylvania State University

Research Supported by NSF, DoD and IBM
Scheduling 2009, Knoxville May 13-15, 2009

Outline
n I. HPC architectures

n Impacts on algorithm & s/w design—
opportunities for scheduling

n II. Energy-Aware Scaling
n Increasing efficiency: Examples of

algorithm & s/w redesign through
scheduling

n Summary

Scheduling
I. Scheduling used loosely to indicate

– Combinations of data staging and task scheduling;
turning load imbalance into energy savings; core-
thread assignments for energy-saving

II. Several instances could potentially be formulated in
more traditional forms such as

– Multi-objective dynamic scheduling
– Master thread assigning pool of tasks
– All with resource, capacity constraints

 44

Voltage/frequency Scaling

• Reducing supply voltage (Vdd) decreases
dynamic energy
– Dynamic Energy ~ C*f*Vdd2

• Frequency (f) decreases with supply
voltage, leading to longer execution time

• Leakage Energy ~ Ileak * Vdd / f
• EDP = Energy * Delay

~ (Dynamic Energy + Leakage Energy) / f

Measuring Energy Efficiency

Time (s) Time (s)

Po
w
er
(
W
)

En
er
gy
(J)

1 2 3 4 5 6 7 1 2 3 4 5 6 7

7
6
5
4
3
2
1

7
6
5
4
3
2
1

Same code on two different systems A and B

B

slow, low

fast, high

Equal energy (PDP) does not
differentiate A from B

EDP=16

EDP=4

EnergyDelayProduct (Energy X Time)
is lower
for faster system A

A

B

A

I: Exascale Architectures

• Then, now and beyond
• From fast, hot …
• To parallel, cooler
• To billion-way parallel,
heterogeneous, unreliable

{FB03CB2B-A5F2-4CCE-89C8-9CEF7BC3277A}

Single node
P = 1

{76E23BDA-44C3-4E87-84D7-D08AE099136F}

Multi node
P = P x 1,000,000

{03C13D25-C5EA-4942-ACE9-433AD503B02E}

Multi core P = P x 100

{0E9244D1-6664-4107-9770-858C393E991A}

Multi threaded P = P x 4

{EB176889-E7F3-429E-A09F-B337F0C84B8F}

ILP
P = P x 4

Toward Exascale

Fixed power per chip
More cores, threads per chip

billion-way parallelism
Demands algorithm redesign to

increase efficiency

Future systems will
consist of millions of
nodes

x 4

x 1,000,000

x 100 x 4

150MW

150MW

150MW
150MW

Importance of Network Power

• Network power will increase in
importance
– As high as 60-70% system
– DVFS and link throttling

options to save energy

• Can messaging be scheduled to
reduce energy without
performance impacts while link
throttling ?

 Process Variability

•Manufacturing is imperfect
•Die for 4 chips@ 16 cores

• Top fast, high leak
• Bottom slow, low leak
• Variations within chip

•Reorganize computations to
model variations
•Schedule and load balance for
performance and energy
•Algorithms/software will have to
model these variations

Failures & Soft-Errors
•Components will fail in 100 core chips

• Not cost effective to throw out chip

•Use cores in diminished capacity
• Example: failure of one functional unit
• Disable core if unusable

•Soft errors (bit flips) in low V regimes &
algorithm correctness
•Algorithms/software have to adapt –
opportunities for scheduling

Caches & Memory

CPU MEM

board package substrate

CPU MEM CPU
MEM

§Caches not useful for applications w/o reuse or long reuse distances
§Alternatives such as user programmable memories (scratchpad) that are
power efficient
§Options for data-staging to mask latency
§Algorithm/software reorganization, pipelining, optimizing off-chip to on-chip
throughput

II: Energy-Aware Scaling:
Focus on Efficiency
• Exploiting concurrency & managing power

for O(N) sparse graph/matrix
– Algorithm/library design for parallelism and

dynamic adaptivity for energy efficiency
• Across nodes & network
• At node

• Results using simulators
– Accepted methodology in computer architecture
– Limit-study of potential benefits

Sparse/Irregular Data-

Driven Computations

Application requirements->
algorithm selection + tuning -
> H/W, S/W adaptivity

II: Energy-Aware Algorithms

• II (a) Opportunities across nodes

– Network energy and collective
communications

– HPPAC-IPDPS’06 – Sarah Conner, Mary
Jane Irwin, P. R.

Partition and Map to MPP Nodes

 Grow problem size with number of nodes
for weak (iso-efficient) scaling

Cross Node Scaling

Torus Network: Managing Power

Across nodes: compute
& communicate
phases

• Can network link
shutdown

– Save energy for an
application?

– Save energy even
at a collective
communication?

C
om

m
un

ic
at

e

C
om

pute

Network Energy & Weak Scaling

FFT Sparse Mat-Vec

Number of nodes Number of nodes

Collective Communications on
a Torus Network

• Consider operations such as
reduce

• Focus on energy saving
opportunities

• Methods could be programmed
into libraries like MPI for energy-
aware scaling

• Network parameters as in BG/L

19

Link Shutdown Timer?

• Link shutdown: Electrically disconnecting links
between nodes that aren’t in use

• Includes link (cables) plus routers, buffers, etc. —
Active and passive energy saved

• Cutoff timer: How long a link is inactive before it is
shut off

• Wakeup latency: How long it takes to wake a link
back up once it is needed again

20

Reduce Results

µs

Link Shutdown in Collective Communication
•Many links remain
unused. For reduce,
it’s 66%

•Implement simple
link shutdown (LS)
hardware in the net

•Library code X LS
hardware can utilize
link shutdown

•With 100 µs over
99% shutdown is
available

Reduce Operation, 512 node torus

II: Energy-Aware Scaling

• II (b) Opportunities across nodes
– Converting load imbalance to energy

savings
– Tree-based sparse codes
– HPPAC-IPDPS’06 – G. Chen, K. Malkowski,

M. Kandemir, P. R.

Tree-Based Parallel Multifrontal/Panel
Sparse Solver

• Each tree node= dense/blocked matrix operations
• The tree dictates data-dependencies

– Computations at a node depend only on subtree rooted at the node
– Computation in disjoint subtrees are independent

• Task-parallelism at lower levels,data-parallelism at higher levels

• Tree is weighted with computation & communication costs
• Model can generalize to Barnes-Hut etc. ….Tree-based Hybrid Direct-

Iterative Preconditioned Solvers (SIAM J. Sci. Comp, Teranishi, P.R.)

• Tree mapped to processors for load-balance
– Even “best” scheme has imbalances of 10-30% of ideal
– Processors and links on lightly loaded paths can be voltage

Coarse Grain: Tree-Structured
Parallelism

• Tree /hierarchical parallelism at core of many divide and
conquer and multilevel methods

Supernode= data parallelTree = From Partitioning + Ordering

Local, Task

Data+Task

P0
P1 P2

P3

P0-P1 P2-P3

P0..P3

Example Weighted Tree
2
0
0

3
0
0

1
0
0

6
0

1
0
0

5
0

5
0

8
0

6
0

A

B G

C E F H I

D

P0 P1 P2 P3 P4

L
oc
al
p
ha
se
Di
st
ri
b
ut
ed
p
ha
se

Example VTE Tree
2
0
0

3
0
0

1
0
0

6
0

1
0
0

5
0

5
0

8
0

6
0

A

B G

C E F H I

D

P0 P1 P2 P3 P4

1
40
20
0

1
10
0
30
0

1
50
10
0

1
60
60

1
50
10
0

1
50
50

1
50
50

1
80
80

1
60
60

A

B G

C E F H I

D

Volt
Level
Time

Energy

Algorithm I

• At node x with children a and b
– If W(a) > W(b), voltage scale T(b) proportional to

W(b)/W(a) (using the nearest available V-F pair)
– Use the scaling factor to update weights in VTE tree

• Start at the root and apply recursively
• Execution time is not increased
• Can be generalized to include scaling with time

penalties VoltageScale(node)
{
 Assign lowest possible V level to lighter subtree
 VoltageScale(leftSubtree)
 VoltageScale(rightSubtree)
}

Volt/Freq/Power Levels in
Examples

Voltage Frequency Power

1 1 1

0.8 0.8 0.512

0.6 0.6 0.216

0.4 0.4 0.064

Algorithm I: Example
1
40

200

1
100
300

1
50
100

1
60
60

1
50
100

1
50
50

1
50
50

1
80
80

1
60
60

A

B G

C E F H I

D

Algorithm I: Example
1
40

200

1
100
300

0.8
62.
5

64

1
60
60

1
50
100

1
50
50

1
50
50

0.8
100
51.
2

0.8
75
38.
4

A

B G

C E F H I

D

Algorithm I: Example
1
40

200

1
100
300

0.8
62.
5

64

0.6
100
21.
6

1
50
100

1
50
50

1
50
50

0.8
100
51.
2

0.8
75
38.
4

A

B G

C E F H I

D

Algorithm I: Example
1
40

200

1
100
300

0.8
62.
5

64

0.6
100
21.
6

1
50
100

1
50
50

1
50
50

0.8
100
51.
2

0.8
75
38.
4

A

B G

C E F H I

D

Algorithm I: Example
1
40

200

1
100
300

0.8
62.
5

64

0.6
100
21.
6

1
50
100

1
50
50

1
50
50

0.8
100
51.
2

0.6
100
21.
6

A

B G

C E F H I

D

Energy consumption 858.4, a 14.2% reduction

Improving Algorithm I
1
40
200

1
100
300

0.6
83.
3
64

0.6
100
21.
6

1
50

100

1
50
50

1
50
50

0.8
100
51.
2

0.6
100
21.
6

A

B G

C E F H I

D

1
40
200

1
100
300

0.8
62.
5
64

0.6
100
21.
6

1
50
100

1
50
50

1
50
50

0.6
133
.3

28.
8

0.6
100
21.
6

A

B G

C E F H I

D

Refinements

1. Apply Algorithm I (VS1)
– Refine by scaling individual nodes when feasible
– Selection of nodes to scale

• Root-first (VS2)
• Child-first (VS3)

2. Allow performance degradation
– VoltageScale(node, 0): no degradation
– P percent degradation: VoltageScale(node, T*P)

3. Consider CPU and link scaling
– Use computation and communication loads

Experiments

• Power numbers from Transmeta Crusoe
• 20 voltage levels
• Algorithms:

– VS1:Algorithm I + individual node scaling
VS2: Algorithm II (root-first) VS3:
Algorithm II (child-first)

– Allowing delays with VS3
– Allowing CPU+Link Scaling

Energy Savings

0%

5%

10%

15%

20%

25%

30%

35%

bcs
st

k3
1_

P28

bcs
st

k3
2_

P11
0

bcs
st

k3
5_

P17

cr
ys

tk
02

_P
11

cr
ys

tk
03

_P
24

fin
an5

12
_P

28

nas
as

rb
_P

22

qa8
fk

_P
119

tu
be

1_
P7

20
5x

20
5_

P3

25
6x

25
6_

P7

32
0x

32
0_

P15

40
0x

40
0_

P31

50
0x

50
0_

P63

62
4x

62
4_

P12
7

Algorithm I VS2 VS3

Average for VS1, VS2, and VS3 are 16%, 21%, and 21% for
practical problems (17%, 21%, and 21% for model problems).

Allowing Delays (VS3)

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

0% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Allowable Performance Penalty

E
n

er
g

y
S

av
in

g
s

bcsstk31_P28

bcsstk32_P110

bcsstk35_P17

crystk02_P11

finan512_P28

CPU+Link Voltage Scaling

Average Savings: CPU-VS (27%), LINK-VS (23%), CPU-LINK-VS
(40%)

Tree-Workloads and V-F
Scaling

• Indicates potential for transforming
imbalances to energy savings

• M. Sato et. al : V-F saving on transmeta
cluster on general workloads and
corroborated our results
– Focused on real V-F scaling models taking into

account
• overheads for scaling up/down
• link sharing

II: Energy-Aware Algorithms

• II (c) Opportunities at a multicore node

– Scheduling for energy and reliability
– IPDPS-08, Yang Ding, Mahmut Kandemir, P. R

Scenarios
1. Change number of cores
2. Change number of cores and number of threads
3. Change number of cores, number of threads, and voltage/frequency

levels

Mechanism
Helper thread + dynamic scheduling

Function-based adaptivity

Energy-Aware Adaptation to Failures
Program Execution

16 threads on 16
cores
@maximum frequency

?

2 cores go down

? threads on ? cores
@ ? frequency

 4444

Problem

• Can we adapt application execution to
changes in core availability or core loads
for enhanced energy & performance
efficiency +

• Reduce energy delay product (EDP) at
runtime by varying
– Number of cores
– Number of threads
– Voltage/frequency levels

 4545

Number of Threads Matters

16 threads: 0.267
8 threads: 0.218

Improvement: 18%

 4646

Helper Thread Based Adaptation

• Helper thread’s recipe
– Collect performance/energy statistics as

the execution progresses
– Calculate EDP values
– Use data fitting with available data and

interpolate to predict configuration
– Will work EDP on parameter space is

reasonably smooth

 4747Number of Cores

P
re

di
ct

ed
 E

D
P

16142 84

Data Fit +Interpolate (change only # cores)

 4848
Obj103

Results (change only # cores)

 4949

Results (change # cores & #
threads)

Number of Threads

N
um

be
r

of
 C

or
es

1614118

8
9

11

14

16
(16,14)

EDP Landscape for Multigrid

(16,16)

Change # cores

(16,9)

20% reduction

Change #cores, threads

(11,11)
52% reduction

threads # cores

Change #cores, threads
& V-F

56% reduction (14,14)

Best EDP
adaptivity?

Monitor-
Model- Adapt

[Ding, Kandemir, Raghavan, Irwin, IPDPS’08]

 5151

Summary of Results

Summary

• Algorithm/software redesign needed for sparse/irregular
codes to
– Convert performance gaps into energy savings
– Schedule for higher performance at lower energy

• Across nodes in large nets: Control network energy
dynamically: opportunities even in a collective
communication

• Across nodes: Convert load imbalance to energy savings
• At node: Schedule for performance, energy when there

are h/w or load variations

• Software control of data-staging

Acknowledgements
• Joint work with:

– Gulin Chen, Sarah Conner, Yang Ding and Konrad
Malkowski

– Mary Jane Irwin and Mahmut Kandemir
• Support from:

– NSF, DoD, IBM
– Institute for CyberScience@PSU

• Thanks to:
– Google Images, Wikipedia, ARSTechnica
– Scheduling 2009 Organizers, audience

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53

