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n I. HPC architectures

n Impacts  on algorithm & s/w design—
opportunities for scheduling

n II. Energy-Aware Scaling
n Increasing efficiency: Examples of 

algorithm & s/w redesign  through 
scheduling

n Summary



  

Scheduling
I.  Scheduling used  loosely to indicate

– Combinations of data staging and task scheduling;  
turning load imbalance into energy savings; core-
thread assignments for energy-saving

II. Several instances could potentially be  formulated in 
more traditional forms such as 

– Multi-objective dynamic scheduling
– Master thread assigning pool of tasks
– All with resource, capacity constraints
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Voltage/frequency Scaling

• Reducing supply voltage (Vdd) decreases 
dynamic energy
– Dynamic Energy ~ C*f*Vdd2

• Frequency (f) decreases with supply 
voltage, leading to longer execution time

• Leakage Energy ~ Ileak * Vdd / f
• EDP = Energy * Delay 

~ (Dynamic Energy + Leakage Energy) / f



  

Measuring Energy Efficiency
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I: Exascale Architectures

• Then, now and beyond
• From fast, hot …
• To parallel, cooler
• To  billion-way parallel, 
heterogeneous, unreliable



  

{FB03CB2B-A5F2-4CCE-89C8-9CEF7BC3277A}

Single node 
P = 1

{76E23BDA-44C3-4E87-84D7-D08AE099136F}

Multi node 
P = P x 1,000,000

{03C13D25-C5EA-4942-ACE9-433AD503B02E}

Multi core P = P x 100

{0E9244D1-6664-4107-9770-858C393E991A}

Multi threaded P = P x 4

{EB176889-E7F3-429E-A09F-B337F0C84B8F}

ILP 
P = P x 4

Toward Exascale

Fixed power per chip
More cores, threads per chip

billion-way parallelism
Demands algorithm  redesign to 

increase efficiency

Future systems will 
consist of millions of 
nodes

x 4
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x 100 x 4

150MW

150MW
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Importance of Network Power

• Network power will increase in 
importance  
– As high as 60-70% system
– DVFS and link throttling 

options  to save energy

• Can messaging be scheduled to 
reduce energy without 
performance impacts while link 
throttling ?



  

 Process Variability

•Manufacturing  is imperfect
•Die for 4 chips@ 16 cores

• Top fast, high leak
• Bottom slow, low leak
• Variations within chip

•Reorganize  computations to 
model  variations
•Schedule  and load balance for 
performance and energy
•Algorithms/software will have to  
model these variations



  

Failures  & Soft-Errors
•Components will fail in 100 core chips

• Not cost effective to throw out chip

•Use cores in diminished capacity
• Example: failure of one functional unit
• Disable core if unusable

•Soft errors (bit flips) in low V regimes & 
algorithm correctness
•Algorithms/software have to adapt –
opportunities for  scheduling



  

Caches & Memory

CPU MEM

board package substrate

CPU MEM CPU
MEM

§Caches  not useful for applications w/o reuse or long reuse distances 
§Alternatives such as user programmable memories (scratchpad) that are 
power efficient
§Options for data-staging to mask latency
§Algorithm/software reorganization, pipelining, optimizing off-chip to on-chip 
throughput



  

II: Energy-Aware Scaling: 
Focus on Efficiency
• Exploiting concurrency  & managing power 

for O(N) sparse graph/matrix 
– Algorithm/library design for parallelism and 

dynamic adaptivity for energy efficiency
• Across nodes & network
• At node

• Results using simulators 
– Accepted methodology in computer architecture
– Limit-study of potential benefits 



  

Sparse/Irregular Data-

Driven Computations 

Application requirements-> 
algorithm selection + tuning -
> H/W, S/W adaptivity



  

II: Energy-Aware Algorithms

• II (a) Opportunities across nodes

– Network energy and collective 
communications

– HPPAC-IPDPS’06 – Sarah Conner,  Mary 
Jane Irwin,  P. R.



  

Partition and Map to MPP Nodes



  

  Grow problem size with number of nodes 
for weak  (iso-efficient) scaling  

Cross Node Scaling



  

Torus Network: Managing Power

Across nodes: compute 
& communicate 
phases

• Can network link 
shutdown 

– Save energy for an 
application?

– Save energy even 
at a collective 
communication?
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Network Energy & Weak Scaling

FFT                          Sparse Mat-Vec

Number of nodes Number of nodes



  

Collective Communications on 
a Torus Network

• Consider  operations such as 
reduce

• Focus on energy saving 
opportunities

• Methods could be programmed 
into libraries like MPI for energy-
aware scaling

• Network parameters as in BG/L

19



  

Link Shutdown Timer?

• Link shutdown: Electrically disconnecting links 
between nodes that aren’t in use

• Includes link (cables) plus routers, buffers, etc. — 
Active and passive energy saved

• Cutoff timer: How long a link is inactive before it is 
shut off

• Wakeup latency: How long it takes to wake a link 
back up once it is needed again

20



  

Reduce Results

µs



  

Link Shutdown in Collective Communication
•Many links remain 
unused. For reduce, 
it’s 66%

•Implement simple 
link shutdown (LS) 
hardware in the net

•Library code X  LS 
hardware can utilize 
link shutdown

•With 100 µs over 
99% shutdown is 
available

Reduce Operation, 512 node torus



  

II: Energy-Aware Scaling

• II (b) Opportunities  across nodes
– Converting load imbalance to energy 

savings
– Tree-based sparse codes
– HPPAC-IPDPS’06 – G. Chen, K. Malkowski,  

M. Kandemir,  P. R.



  

Tree-Based Parallel Multifrontal/Panel 
Sparse Solver

• Each tree node= dense/blocked matrix operations
• The tree dictates data-dependencies

– Computations at a node depend only on subtree rooted at the node
– Computation in disjoint subtrees  are  independent

• Task-parallelism at lower levels,data-parallelism at higher levels

• Tree is weighted  with computation  & communication costs
• Model can generalize to Barnes-Hut etc. ….Tree-based Hybrid Direct-

Iterative Preconditioned Solvers (SIAM J. Sci. Comp, Teranishi, P.R.)

• Tree mapped to processors for  load-balance 
– Even “best” scheme has  imbalances of 10-30% of ideal
– Processors  and links on lightly loaded paths can be voltage  



  

Coarse Grain: Tree-Structured 
Parallelism

• Tree /hierarchical parallelism at core of many divide and 
conquer and multilevel methods

Supernode= data parallelTree = From Partitioning + Ordering

Local, Task

Data+Task

P0
P1 P2

P3

P0-P1 P2-P3

P0..P3



  

Example Weighted Tree
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Example VTE Tree
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Algorithm I

• At node x with children a and b
– If W(a) > W(b), voltage scale  T(b) proportional to 

W(b)/W(a) (using the nearest available V-F pair)
– Use the scaling factor to update  weights in VTE tree

• Start at the root and apply recursively
• Execution time is not increased
• Can be generalized to include scaling with time 

penalties VoltageScale(node)
{
  Assign lowest possible V level to lighter subtree 
  VoltageScale(leftSubtree)
  VoltageScale(rightSubtree)
}



  

Volt/Freq/Power Levels in 
Examples

Voltage Frequency Power

1 1 1

0.8 0.8 0.512

0.6 0.6 0.216

0.4 0.4 0.064



  

Algorithm I: Example
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Algorithm I: Example
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Algorithm I: Example
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Algorithm I: Example
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Improving Algorithm I
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Refinements

1. Apply Algorithm I (VS1)
– Refine  by scaling individual nodes when feasible 
– Selection of nodes to scale

• Root-first  (VS2)
• Child-first (VS3)

2. Allow performance degradation
– VoltageScale(node, 0): no degradation
– P percent degradation: VoltageScale(node, T*P)

3. Consider CPU and link scaling
– Use computation and communication loads



  

Experiments

• Power numbers from Transmeta Crusoe
• 20 voltage levels
• Algorithms:

– VS1:Algorithm I + individual node scaling 
VS2: Algorithm II (root-first) VS3: 
Algorithm II (child-first)

– Allowing delays with VS3
– Allowing CPU+Link Scaling



  

Energy Savings
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Allowing Delays (VS3)
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CPU+Link Voltage Scaling

Average Savings: CPU-VS (27%), LINK-VS (23%), CPU-LINK-VS 
(40%)



  

Tree-Workloads and V-F 
Scaling

• Indicates potential for transforming 
imbalances to energy savings

• M. Sato et. al : V-F saving on transmeta 
cluster on general workloads and 
corroborated our results
– Focused on real V-F scaling models taking into 

account
• overheads for scaling up/down 
• link sharing



  

II: Energy-Aware Algorithms

• II (c) Opportunities at a multicore node

– Scheduling for energy and reliability
– IPDPS-08, Yang Ding, Mahmut Kandemir, P. R



  

Scenarios
1. Change number of cores
2. Change number of cores and number of threads
3. Change number of cores, number of threads, and voltage/frequency 

levels

Mechanism
Helper thread + dynamic scheduling

Function-based adaptivity

Energy-Aware Adaptation to Failures
Program Execution

16 threads on 16 
cores
@maximum frequency

?

2 cores go down

? threads on ? cores
@ ? frequency
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Problem

• Can we adapt application execution to 
changes in core availability or core loads 
for enhanced energy & performance 
efficiency +

• Reduce energy delay product (EDP) at 
runtime by varying
– Number of cores
– Number of threads
– Voltage/frequency levels 
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Number of Threads Matters

16 threads: 0.267
8 threads: 0.218

Improvement: 18% 
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Helper Thread Based Adaptation

• Helper thread’s recipe
– Collect performance/energy statistics as 

the execution progresses
– Calculate EDP values
– Use  data fitting with available data and 

interpolate to predict configuration 
– Will work EDP on parameter space is 

reasonably smooth
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Obj103

Results  (change only # cores)
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Results  (change # cores & # 
threads)
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# threads # cores
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& V-F

56% reduction (14,14)
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Monitor- 
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[Ding, Kandemir, Raghavan, Irwin, IPDPS’08]
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Summary of Results



  

Summary

• Algorithm/software redesign needed for sparse/irregular 
codes to 
–  Convert performance gaps into energy savings
–  Schedule for higher performance at lower energy

• Across nodes in large nets: Control network energy 
dynamically: opportunities even in a collective 
communication

• Across nodes: Convert load imbalance to energy savings
• At node:  Schedule for performance, energy when there 

are  h/w  or load variations

• Software control of data-staging 
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