

Online Scheduling with QoS Constraints

Uwe Schwiegelshohn Scheduling for large-scale systems Knoxville, TN, USA May 14, 2009

Problem Description

- Online scheduling r_{i,online}
 - Jobs are submitted over time.
 - At its submission r_i , job J_i is immediately allocated to an eligible machine.
- Parallel identical machines P_m
 - Each job J_i has the same processing time p_i on each eligible machine.
- Ordered machine eligibility
 - There is a fixed order of the machines: 1,2,...,m
 - Using this order, the first machine eligible to execute job J_i is machine k_i.
 - Every machine i with $i \ge k_j$ is also eligible to execute job J_j : $M_j = \{i | i \ge k_j\}$
- Makespan C_{max}
 - It is the goal to minimize the makespan of the schedule.

$$P_m | r_{j,online}, M_j | C_{max}$$

Previous Results

- - P_m|M_j|C_{max} with no restrictions on M_j.
 The problem is NP-hard as P_m||C_{max} is already NP-hard.
- $P_m|p_i=1, M_i|C_{max}$ with nested machine eligibility constraints.

 - $M_j = M_k, M_j \subset M_k, M_j \supset M_k$, or $M_j \cap M_k = \emptyset$. The Least Flexible Job First (LFJ) rule optimally solves this problem.
 - M. Pinedo: Scheduling: Theory, Algorithms, and Systems, Prentice Hall, 2002.
- $P_m | M_i | C_{max}$ with ordered eligibility.
 - Least eligibility longest processing time order guarantees the approximation factor 2-1/(m-1).
 - H-C. Hwang, S.Y. Chang, K. Lee. Parallel machine scheduling under a grade of service provision, Computer & Operations Research 31, 2055-2061 (2004).
- $P_m | r_{i,online}, M_i | C_{max}$ with no restrictions on M_i .
 - Competitive ratio log n for deterministic and randomized cases.
 - Y. Azar, J. Naor, R. Ron. The Competitiveness of On-Line Assignments, Journal of Algorithms 18, 221-237 (1995).

Relevance of the Problem

- Shall I allocate my precious resources to somebody not paying enough for them or run the risk that these resources are not used at all?
- In practice, this is a fixed capacity problem with customer rejection.
 - This problem is different from the utilization of a fixed number of machines.
 - There is a close connection with utilization if there ins no rejection.
 - The makespan can represent this objective.

5

Application Examples

- Packaging in lattice boxes
 - The granularity of the material determines the required size of the lattice.

- Servers with different amount of main memory
 - The storage requirement of a job determines the eligibility of a server.
- Class of transportation
 - The ticket determines the class of transportation.

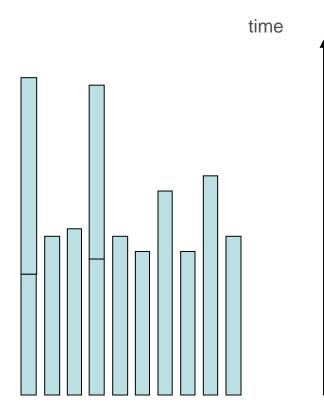


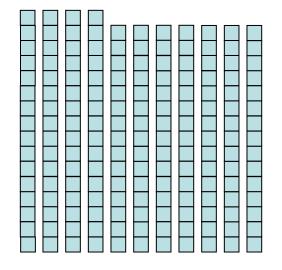
Continuous Model for Large-scale Systems

- We allow fractional machines and normalize the machine space.
 - The machine space is represented by the interval [0,1] of real numbers.
 - Job J_i can only be allocated to the interval $[k_i, 1]$ with $0 \le k_i \le 1$.
- Each job has a very short processing time.
 - Job allocation does not need to consider individual processing times.
- Machine eligibility is represented by the job density function p(x)
 - $p(x): [0,1] \rightarrow \mathbb{R}^{\geq 0}$: Total processing time of jobs with $k_j = x$.
 - Release dates are not considered within the job density function.
- There is a completion time function that determines the makespan.
 - $c_{S}(x): [0,1] \rightarrow \mathbb{R}^{\geq 0}$: Completion time function of schedule S
 - C_{max}(S)=max{c_S(x)|0≤x≤1}: Makespan of schedule S
 - Idle times are included.



Long and Short Processing times

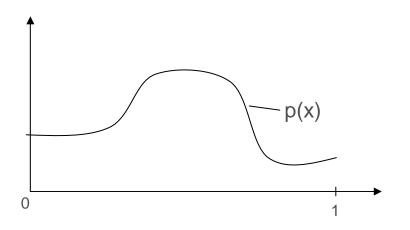




machines

machines

Job Density and Completion Time Functions



Job density function

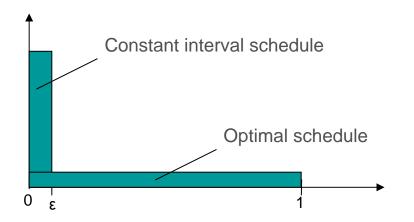
idle areas in the schedule $C_{max}(S)$ $C_{s}(x)$ 0

Completion time function

$$\int_{0}^{1} p(x) dx = \int_{0}^{1} c_{s}(x) dx$$
 if there are no intermediate idle areas in the schedule.

Simple Approaches with Bad Results

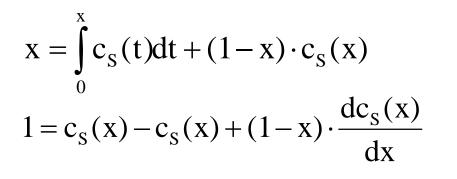
- Constant interval approach: A new job J_j is allocated such that the maximum of the function c_s(x) is increased the least in the interval [k_j, max{k_j+ε,1}).
 - The competitive factor is ε^{-1} .



- Greedy approach: A new job J_i is allocated such that the maximum of the function c_s(x) is increased the least in the interval [k_i,1).
 - p(x)=1, jobs are submitted in quick succession in order of k_j .
 - The competitive factor is not constant.

Greedy Approach

Х



$$\frac{\mathrm{d}c_{\mathrm{S}}(\mathrm{x})}{\mathrm{d}\mathrm{x}} = \frac{1}{1-\mathrm{x}} \Longrightarrow c_{\mathrm{S}}(\mathrm{x}) = \mathrm{C} \cdot \ln \frac{1}{1-\mathrm{x}}$$

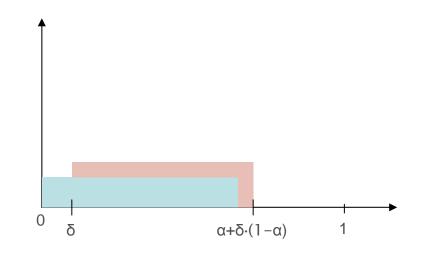
$$\int c_{s}(x)dx = C \cdot \left((1-x) \cdot \ln(1-x) + x \right)$$

$$\frac{1}{2} = \frac{1}{2} \mathbf{C} \cdot \left(1 - \ln 2\right) + \frac{1}{2} \mathbf{C} \cdot \ln 2 \Longrightarrow \mathbf{C} = 1$$

 $\lim_{x\to 1} c_{S}(x) \to \infty$

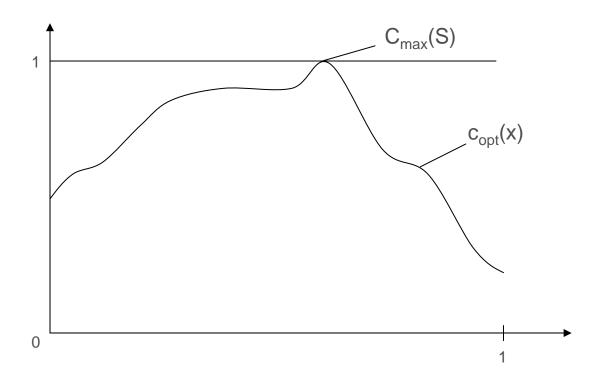
Interval Approach

- A job J_j is only executed in the interval $[k_j, k_j+(1-k_j)/\alpha)$ with $\alpha>1$.
- In this approach, additional jobs cannot decrease the makespan of a schedule.
- Example: Assume that a group of jobs with $k_1=0$ is released at time 0 and immediately followed by another group of jobs with $k_2=\delta$



Making a Schedule Worse

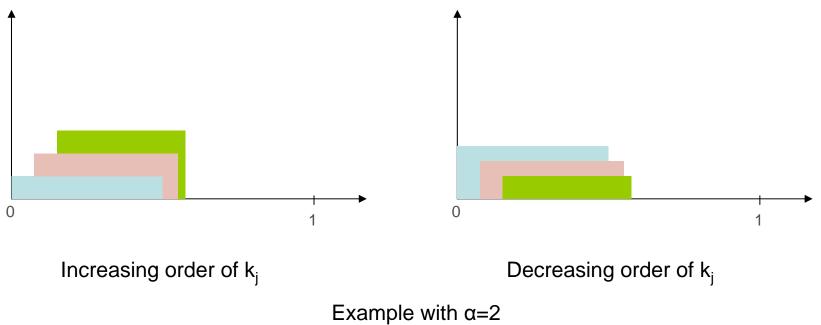
- Jobs are added until c_{opt}(x)=const for all x and the schedule contains no idle areas.
 - The ratio max_x{c_S(x)} to max_x{c_{opt}(x)} cannot decrease.
- We normalize the job density function such that $c_{opt}(x)=1$.





Worst Case: Job Submission Order

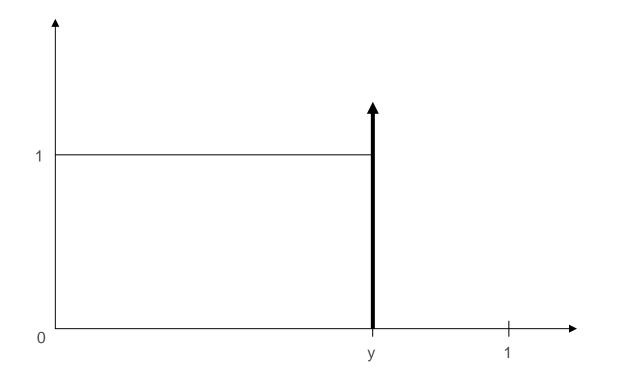
- The jobs are submitted in quick succession in increasing order of k_i.
 - The difference between the starting values of two intervals k_2-k_1 is larger than the difference between the ending values of these intervals $(1-1/\alpha)\cdot(k_2-k_1)$.
 - An increasing order of k_i produces larger C_{max} values than a decreasing order.



Worse Case Input Data

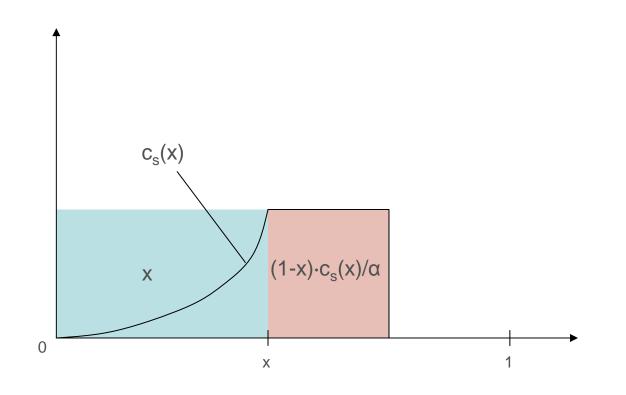
- Assume y=arg{max_x{c_S(x)}}.
 - x≥y: Every job with that executes in the optimal schedule on a machine with a number greater than y is changed to a job with k_i=y.
 - The makespan of the optimal schedule remains unchanged.
 - $C_{max}(S)$ cannot decrease as jobs with $k_j > y$ do not contribute to $c_s(y)$.
 - x<y: If the eligibility bound k_j of a job J_j is less than the machine number x at which it is executed in the optimal schedule then k_j is increased to x.
 - The makespan of the optimal schedule remains unchanged.
 - C_{max}(S) cannot decrease as this transformation can only increase the machine number on which a job is executed in schedule S.
- The job density function of worst case input data is 1 for x<y and a Dirac pulse for x=y such that the area of the pulse is (1-y).

Job Density Function of Worst Case Input Data



Differential Equation of the Interval Approach

$$\mathbf{x} = \int_{0}^{\mathbf{x}} \mathbf{c}_{\mathrm{S}}(t) \mathrm{d}t + \frac{(1-\mathbf{x})}{\alpha} \cdot \mathbf{c}_{\mathrm{S}}(\mathbf{x})$$



16

Differential Equation of the Interval Approach

$$x = \int_{0}^{x} c_{s}(t)dt + \frac{(1-x)}{\alpha} \cdot c_{s}(x)$$

$$1 = c_{s}(x) - \frac{1}{\alpha} \cdot c_{s}(x) + \frac{(1-x)}{\alpha} \cdot \frac{dc_{s}(x)}{dx}$$

$$\frac{dc_{s}(x)}{dx} \cdot \frac{1-x}{\alpha} = 1 - c_{s}(x) \cdot \left(1 - \frac{1}{\alpha}\right)$$

$$\frac{dc_{s}(x)}{dx} = \frac{\alpha}{1-x} - \frac{\alpha}{1-x} \cdot \left(1 - \frac{1}{\alpha}\right) \cdot c_{s}(x) = \frac{1-\alpha}{1-x} \cdot c_{s}(x) + \frac{\alpha}{1-x}$$

Solution of the Differential Equation

$$c_{S}^{h}(x) = \exp\left(\int \frac{1-\alpha}{1-x} dx\right) = \exp\left((\alpha-1) \cdot \ln(1-x)\right) = (1-x)^{\alpha-1}$$

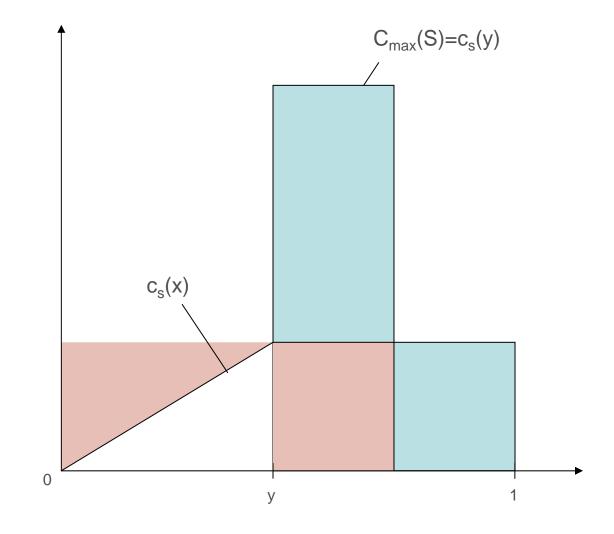
$$c_{S}^{p}(x) = (1-x)^{\alpha-1} \cdot \int \frac{1-x}{(1-x)^{\alpha-1}} dx = (1-x)^{\alpha-1} \cdot \frac{\alpha}{\alpha-1} \cdot (1-x)^{1-\alpha} = \frac{\alpha}{\alpha-1}$$

$$c_{s}(x) = C \cdot c_{s}^{h}(x) + c_{s}^{p}(x) = C \cdot (1 - x)^{\alpha - 1} + \frac{\alpha}{\alpha - 1}$$

$$c_{s}(0) = 0 \Longrightarrow C = \frac{\alpha}{1-\alpha}$$
 $c_{s}(x) = \frac{\alpha}{1-\alpha} \cdot ((1-x)^{\alpha-1}-1)$



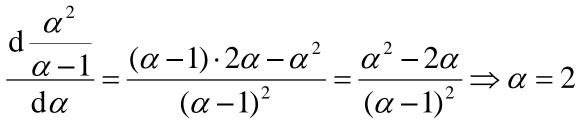
Interval Schedule S for α =2 and a Given y



e ĥ

Determination of the Optimal Value for $\boldsymbol{\alpha}$

$$f(y) = c_{s}(y) + \alpha \Longrightarrow \frac{df(y)}{dy} = \alpha \cdot (1 - y)^{\alpha - 2} > 0$$
$$y \to 1 \Longrightarrow f(y) \to \frac{\alpha}{\alpha - 1} + \alpha = \frac{\alpha^{2}}{\alpha - 1}$$



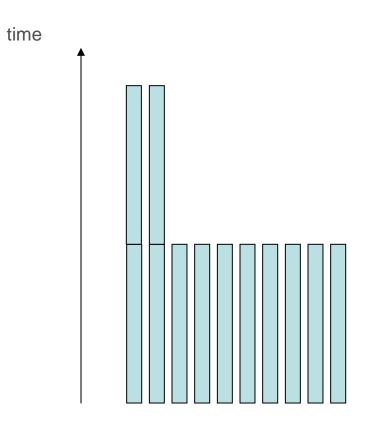
$$y \rightarrow 1 \Longrightarrow f(y) \rightarrow \frac{2}{2-1} + 2 = 4$$

Transformation to the Discrete Case

- The interval allocation is approximated by allowing a job to be allocated to a machine if the continuous interval of the job would contain at least of fraction of this machine and afterwards applying list scheduling.
 - Some machines may receive more total processing time than in the continuous case.
 - The additional processing time is upper bounded by the processing time of the longest job.
- Due to the different processing times of the individual jobs, not all machines of an interval may achieve the same makespan although this might have happen in the continuous case.
 - The difference between the makespan of such two machines is at most the processing time of the longest job (list scheduling).
- Altogether the approximation cannot increase the competitive factor by more than 1.

institute

Consequence of the Approximation



machines of an interval

Conclusion

- For very large systems, online job scheduling on parallel identical machines with ordered machine eligibility achieves a competitive factors of 5.
- For the proof, we used a generalization to a continuous case and derived and solved a differential equation.
- We approximated the continuous case by simply applying list scheduling.
- For systems with few machines, the competitive factor is smaller as the value of y in the continuous case is bounded by m-1.