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Abstract: In this paper, we tackle pipeline workflow applications that are executed on a dis-
tributed platform with setup times. In such applications, several computation stages are intercon-
nected as a linear application graph, and each stage holds a buffer of limited size where intermediate
results are stored and a processor setup time occurs when passing from one stage to another. The
considered stage/processor mapping strategy is based on interval mappings, where an interval of
consecutive stages is performed by the same processor and the objective is the throughput opti-
mization. Typical examples for this kind of applications are streaming applications such as audio
and video coding or decoding, image processing using co-processing devices as FPGA. Even when
neglecting setup times, the problem is NP-hard on heterogeneous platforms and we therefore re-
strict to homogeneous resources. We provide an optimal algorithm for constellations with identical
buffer capacities. When buffer sizes are not fixed, we deal with the problem of allocating the buffers
in shared memory and present a b/(b+ 1)-approximation algorithm.

Key-words: setup times; buffer; coarse-grain workflow application; throughput; complexity
results.



Optimisation du débit dans l’ordonnancement des
flux en pipeline avec temps de reconfiguration

Résumé : Dans ce rapport, nous traitons les applications de type pipe-
line exécutées sur des platformes distribuées avec des temps de reconfiguration.
Dans ce type d’applications, les différentes tâches qui composent un même cal-
cul sont interconnectées selon un graphe linéaire, et à chaque tâche est assigné
un buffer de taille limitée, dans lequel les résultats intermédiaires sont stockés.
Un temps de reconfiguration est nécessaire à chaque processeur pour passer de
l’exécution d’une tâche à une autre. La stratégie d’affectation considérée des
tâches sur les processeurs est basée sur le principe d’une allocation par inter-
valles, dans laquelle un intervalle de tâches consécutives est affecté au même
processeur. L’objectif est ici l’optimisation du débit. Un exemple d’applications
regroupe celles gérant des flux de données (streaming applications), comme
l’encodage/décodage audio et vidéo, ou le traitement d’un flux d’images à l’aide
de coprocesseurs tels que le FPGA. De plus, même sans prendre en compte les
temps de reconfiguration, le problème est NP-complet dès lors que les proces-
seurs sont hétérogènes, même avec des communications homogènes. Nous pro-
posons un algorithme optimal pour l’ordonnancement des tâches au sein d’un
même processeur disposant de buffers de tailles identiques. Lorsque la taille des
buffers n’est pas fixée, nous traitons le problème de l’allocation des buffers par-
tageant une même mémoire et proposons une approche heuristique, notamment
une b/(b+ 1)-approximation.

Mots-clés : temps de reconfiguration; buffer; flux de travaux; débit; résultats
de complexité.
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1 Introduction
In this paper, we consider pipeline workflow applications mapped on a dis-
tributed platform such as a grid. This kind of applications is used to process
large data sets or data that are continuously produced by some source and pro-
duce some final results. The first stage of the pipeline is applied to an initial
data to produce an intermediate result that is then sent to the next stage of the
pipeline and so on until the final result is computed. Examples of such appli-
cations include image set processing where the different stages may be filters,
encoders, image comparison or merging and video capture processing and dis-
tribution where codecs must be applied on the video flow before being delivered
to some device. In this context, a first scheduling problem is to map the pipeline
stages on the processors. Subhlock and Vondran [12, 13] show that there exists
an optimal interval mapping for a given pipeline and a given platform when
communications and processors are homogeneous. An interval mapping is de-
fined as a mapping where only consecutive pipeline stages are mapped on the
same processor. However, the cost of switching between stages of the applica-
tion on one processor is not taken into account. When a new data set arrives
on the processor, the first local stage starts to process it as soon as the previous
data is output. Then this data set moves from stage to stage until the last local
stage, and it is sent to the processor in charge of the following stage. So, at each
step of the execution, we switch from one stage to the next one. As a result, if
the cost of switching cannot be neglected, several setup times must be added to
the processing cost.

Benoit and Robert [3] prove that the basic interval mapping problem with-
out setup times is NP-hard as soon as communications or computations are
heterogeneous, even without setup times. For this reason, we restrict this work
to homogeneous platforms, where all processors have the same speed and all
communication links have the same bandwidth.

The problem of reconfiguration that requires a setup time has been widely
studied, and covers a lot of domains (see the survey by Allahverdi et al. [2]).
For instance, in semiconductor factories, Zhang and Goldberg [14] addressed
the problem of wafer-handling robots calibration. They propose a low-cost
solution to reduce the robot end effector tolerance requirements, and thus the
calibration times, down to 20 times. A solution based on ant colony optimization
is proposed to reduce the setup costs in batch processing of different recipes
of semiconductors [8, 9]. In the scope of micro-factories, due to the cost of
conception and production of micro-assembly cells, micro-assembly cells are
being designed with a modular architecture that can perform various tasks,
at the cost of a reconfiguration time between them [7]. In the domain of pure
computing, setup times may appear when there is a need to swap resources, or to
load a different program in memory, e.g., to change the compiler in use [1]. Some
authors have also shown interest in using buffers to stock temporary results after
each stage of the pipeline, in order to reduce the amount of setups performed.
Bryan and Norman [6] consider a flowshop wherein a job consists in m stages
mapped on m processors, and a processor must be reconfigured after each job to
process the next one (in their example, the clean-out of a reactor in a chemical
processing facility). They acknowledge that the problem of sequence-dependent
setup times, in which a setup time depends on the previous stage and the next
one, is NP-hard, and they propose several heuristics. Luh et al. [10] study
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Throughput optimization for pipeline workflow scheduling with setup times 4

a scheduling problem in the manufacturing of gas insulated switchgears. The
problems involve significant setup times, strict local buffer capacities, and few
possible processing routes.

However, most of those researches focus on the ability of processors to process
batches of information (or pieces) from a specific type, or family, and then to be
reconfigured to process batches from another family. The common assumption
is that the number of processors is high enough to cover all stages, i.e., each
stage is mapped on a distinct processor (one-to-one mapping). In other words, a
single processor or a series of processors follows a predefined set of instructions
before being reconfigured to process the next batch. Thus, those works mainly
focus on merely reducing setup times. When abstracting from setup times, the
one-to-one mapping problem can be solved in polynomial time via a binary
search algorithm, provided that communications are homogeneous [3]. In our
approach, we consider that the number of stages is greater than the number
of available processors. We therefore focus on interval mappings, where several
consecutive stages are mapped onto the same processor.

In a first step, we tackle the inner-processor scheduling problem, where a sin-
gle processor has to process several consecutive and dependent pipeline stages.
Continuously switching between the stages may lead to a drop in performance,
whereas buffering the data and defining a schedule for the processing of stages
may limit the number of setups. Hence buffers are introduced to store interme-
diate results. This makes it possible to perform one stage several times, before
switching to the next one. Usually the buffers are limited by the available mem-
ory of the system and the buffer size hence influences the possible schedules as
it limits the number of repetitions. Several other parameters are also taken into
account as the duration of each stage’s setup, the homogeneity or heterogene-
ity of buffers, and the available memory. Eventually, once the inner-scheduling
problem has been dealt with, we have to prove the optimality of the overall
execution of the pipeline (in terms of throughput).

Starting from the interval mapping results, we tackle in this paper the prob-
lem of optimizing the cost of switching between stages mapped on the same
processor, depending on the buffer sizes. We formally define the optimization
problem in Section 2. The main contributions follow: (i) we provide optimal
algorithms when buffers are of fixed (and identical) size within a processor
(Section 3); and (ii) we discuss how to allocate memory to buffers on a single
processor in Section 4, both from a theoretical perspective (optimal algorithm
in some cases), and from a practical point of view (polynomial time heuris-
tics). We formally prove that the heuristics are good approximation algorithms
(b/(b+1)-approximation in the worst case), and we evaluate them through a set
of simulations. Finally, we conclude and give trails for future works in Section 5.

2 Framework
In this section, we formally define the context of our study.

The application is a linear workflow application, or pipeline (see Figure 1).
It continuously processes a large amount of consecutive data sets. Formally, a
pipeline is expressed as a set S of n stages: S = {S1, . . . , Sn}. Each data set
is fed into the pipeline and traverses the pipeline from one stage to another
until the entire pipeline is passed. A stage Si receives a task of size δi from the
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previous stage, treats the data set which takes a number of wi computations,
and outputs data of size δi+1. The output data of stage Si is the input data of
the next stage Si+1.

δ6

w1 w2 w3 w4 w5

S2 S4 S5S1 S3

δ1 δ2 δ3 δ4 δ5

Figure 1: Example of pipeline application.

The target platform is a set P of p homogeneous processors P = {P1, . . . , Pp}
fully interconnected as a clique. Each processor Pu has a processing speed (or
velocity) v, expressed in instructions per time unit, and a memory of size M . It
takesX/v time units for Pu to executeX floating point operations. Each proces-
sor Pu is interconnected with a processor Pv via a bidirectional communication
link lu,v of bandwidth β (expressed in input size units per time unit). We work
with a linear cost model for communications, so it takes X/β time units to send
or receive a message of size X from processor Pu to processor Pv. Furthermore
communications are based on the bi-directional one-port model [4, 5], where a
given processor can send and receive at the same time, but for both directions
can only support one message at a time. Distinct processor pairs can however
communicate in parallel. Communications are non-blocking, i.e., a sender does
not have to wait for its message to be received as it is stored in a buffer, and
the communications can be covered by the processing times provided that a
processor has enough data to process.

Each processor can process data sets from any stage. However, to switch
from the execution from a stage Si to a stage Sj , the processor Pu has to be
reconfigured for the next execution. This induces setup times, denoted as st.
Several models are considered: uniform setup times (st), where all setup times
are fixed to the same value, sequence-independent setup times (sti), where the
setup time only depends on the next stage Si to which the processor will re-
configure, and sequence-dependent setup times (sti,j) that depend on both the
current stage Si and the next stage Sj .

The problem with sequence-dependent setup times requires to look for the
best setup order in a schedule to minimize the impact of setup times. This
has already been proved to be NP-hard, and can be modeled as a Traveling
Salesman Problem (TSP) [11]. Hence we will not study this problem in this
paper, and we focus on st and sti instead.

To execute a pipeline on a given platform, each processor is assigned an in-
terval of consecutive stages. Hence, we search for a partition of [1..n] into m ≤ p
intervals Kk = [Ik, Jk] such that Ik ≤ Jk for 1 ≤ k ≤ m, I1 = 1, Ik+1 = Jk + 1
for 1 ≤ k ≤ m−1 and Jm = n. Interval Kk is mapped onto a processor Pu. The
allocation function a makes the correspondence between stages, intervals and
processors. For a stage Si, a(i) = u if it is mapped on Pu. For a processor Pu,
a′(u) = k if Pu is processing interval Kk. Once the mapping is fixed, the proces-
sor internal schedule has to be decided, since it influences the global execution
time. Indeed, each processor is able to perform sequentially its allocated stages.
However, setup times are added each time a processor switches from one stage
to another. To reduce setup times, a processor may process several consecutive
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data sets for a same stage. The intermediate results are stored in buffers, and
each stage Si mapped on Pu has an input buffer Bi of size mi,u.

The sizes of these input buffers depend on the memory size M available
on Pu and on the number of allocated stages, as well as on the input data sizes.
The capacity bi,u of buffer Bi is the number of input data sets that the buffer
is able to store within the allocated memory mi,u. Hence, a processor is able
to process data sets for a stage Si as long as Bi is not empty, and Bi+1 is not
full. Actually, if Si is the last stage of the interval mapped on Bu, we allocate
an output buffer BOu of size mou, with a capacity bou, and this output buffer
should not be full, as illustrated in Figure 2.

The current number of input data sets in the buffer Bi is b̂i, while the current
number of data sets in the output buffer BOu is b̂ou.

P1 P2

S3S2S1

BO1B3B2B1 B4 B5 BO2

S4 S5

Figure 2: Example of interval mapping with buffers bu – Stages S1 to S3 are
mapped on P1: b1,1 = b2,1 = b3,1 = bo1 = b1 = 3, while stages S4 and S5 are
mapped on P2: b4,2 = b5,2 = bo2 = b2 = 5.

The objective function is to maximize the throughput ρ of the application,
ρ = 1

P , where P is the average period of time between the output of two consec-
utive data sets. Therefore, we aim at minimizing the period of the application.
Since our framework model allows us to cover communication time by compu-
tation time, P is formally defined by: P = maxu

(
max

(
in(u), cpu(u), out(u)

))
,

where in(u), cpu(u), out(u) are respectively the mean time to input, process
and output one data set onto Pu ∈ P . In the next two sections, we explicitly
evaluate the application period depending on fixed or variable buffer sizes.

3 Fixed buffer sizes
In this section, we deal with the scheduling problem with fixed buffer sizes for
both single and multiple processors: we consider that buffers are homogeneous
within a processor (i.e., they have the same capacity). We first describe a
scheduling algorithm for a single processor on which all buffers are identical.
Then, we tackle the problem of interval mappings on multiple processors.

3.1 Single processor scheduling (bi = b)
With a single processor, the mapping is known, since stages S1 to Sn form a
single interval. We propose a polynomial time greedy algorithm to solve the
problem of single processor scheduling and prove its optimality. The idea is to
maximize the number of data sets that are processed for a stage between each
setup. This is done by selecting a stage for which the input buffer is full and the
output buffer is empty, so that we can compute exactly b data sets, where b is
the number of data sets that fits in each buffer. Therefore, we compute b data
sets for stage S1, hence filling the input buffer of S2, and then perform a setup
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so that we can compute b data sets for stage S2, and so on, until these b data
sets exit the pipeline. Then we start with stage S1 again. We call the proposed
algorithm GREEDY-B in the following.

To prove the optimality of GREEDY-B, we introduce a few definitions:

Definition 1. During the whole execution, for 1 ≤ i ≤ n,
• nbout is the total number of data sets that are output;
• nbsti is the number of setups performed on stage Si;
• nbst =

∑n
i=1 nbsti is the total number of setups;

• nbcompi is the average number of data sets processed between two setups
on stage Si.

We have for 1 ≤ i ≤ n:
nbcompi =

nbout
nbsti

, nbsti = nbout
nbcompi

, and nbst =
∑n
i=1

nbout
nbcompi

.

Proposition 1. For each stage Si (1 ≤ i ≤ n), nbcompi ≤ b.

Proof. For each stage Si, the number of data sets that can be processed after a
setup is limited by its surrounding buffers. Once a setup is done to any stage Si,
it is not possible to perform more computations than there are data sets or than
there is room for result sets. Since all buffers can contain exactly b data sets,
we have nbcompi ≤ b.

Proposition 2. On a single processor with homogeneous buffers, the period can
be expressed as:

P =

n∑
i=1

wi
v

+

n∑
i=1

sti
nbcompi

.

Proof. The period is the total execution time divided by the total number of
processed data sets nbout. The execution time is the sum of the time spent
computing, and the time to perform the setups. The computation time is the
time to compute each stage once (wi/v for stage Si), multiplied by the number
of data sets nbout. The reconfiguration time is the sum of the times required to
perform each setup: nbsti × sti. Therefore, the period can be expressed as:

P =
1

nbout

(
n∑
i=1

wi
v
× nbout+

n∑
i=1

sti × nbsti

)
,

and we conclude the proof by stating that nbsti = nbout
nbcompi

.

Lemma 1. On a pipeline with homogeneous buffers, the lower bound of the
period on a processor is:

Pmin =

n∑
i=1

(wi
v

+
sti
b

)
.

Proof. The result comes directly from Propositions 1 and 2:

P =

n∑
i=1

wi
v

+

n∑
i=1

sti
nbcompi

≥
n∑
i=1

wi
v

+

n∑
i=1

sti
b

= Pmin.
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Theorem 1. The scheduling problem on a single processor can be solved in
polynomial time, using the GREEDY-B algorithm.

Proof. It is easy to see that GREEDY-B is always performing b computations
between two setups, and therefore nbcompi = b for 1 ≤ i ≤ n. Therefore, the
period obtained with this algorithm is exactly Pmin, which is a lower bound on
the period and hence it is optimal.

3.2 Multi processor scheduling (bi = bu)
The interval mapping problem on fully homogeneous platforms without setup
times can be solved in polynomial time using dynamic programming [12, 13].We
propose the use of this dynamic programming algorithm for homogeneous plat-
forms, taking into account the setup times in the calculation of a processor’s
period. To be precise, the calculation of the period is the one obtained by the
GREEDY-B algorithm.

Let c(j, k) be the optimal period achieved by any interval mapping that maps
stages S1 to Sj and that uses at most k processors. Let per(i, j) be the average
period of the processor on which stages Si to Sj are mapped. Note that per(i, j)
takes the communication step into account. We have:

c(j, k) = min
1≤l≤j−1

(max(c(l, k − 1), per(l + 1, j))),

with the initial condition c(j, k) = +∞ if k > j.
Given the memory M , we can compute the corresponding buffer capac-

ity b(i, j) =
⌊

M∑j+1
k=i δk

⌋
= bu, since we assume identical buffer capacities. There-

fore:

per(i, j) = max

(
δi
β
,

j∑
k=i

(wk
v

+
stk
b(i, j)

)
,
δj+1

β

)
The main difference with the ordinary use of the dynamic programming

algorithm is that Pu consumes bu input data sets or outputs bu data sets in
waves because of GREEDY-B. So c(n, p) returns the optimal period if and only
if the period is actually dictated by the period of the slowest processor, i.e., the
slowest processor cannot be in starvation or in saturation because of intermittent
access to the input/output buffers. The following theorem ensures that this is
true:

Theorem 2. On a pipeline with inner-processor homogeneous buffer capaci-
ties bu, the period P is dictated by the period of the slowest processor.

Proof. We prove the theorem by induction on the number of processors.
Let us consider first a pipeline mapped onto two processors. We aim at

proving that the slowest of the two processors is never slowed down either by a
lack of input data sets or by a saturation of its output buffer. Let P1 and P2

be the two processors; BO1 is the output buffer of P1, and BIa′(2),2 is the input
buffer of P2. Let P1, P2 and b1, b2 their respective period and output/input
buffer sizes (bo1 = b1 and bIa′(u),2 = b2). Let CT1 be the time needed by P1 to
process b1 data sets, and CT2 the time needed by P2 to process b2 data sets.

We assume that the bandwith of the communication links is large enough
so that communication times are covered by computation times. If not, the

RR n° 7886



Throughput optimization for pipeline workflow scheduling with setup times 9

period of the system would be dictated by the communication times, whatever
the period of the processors.

We consider the two following cases, each of them being split into two sub-
cases: (1) P2 is the slowest processor (P1 ≤ P2) with b1 ≤ b2 (1.a) or b2 ≤ b1
(1.b) and (2) P1 is the slowest processor (P2 ≤ P1) with b1 ≤ b2 (2.a) or b2 ≤ b1
(2.b).

1. P1 ≤ P2 thus CT1

b1
≤ CT2

b2
: in this case the processor P2 has not to be in

starvation. So b̂2 = b2 when P2 is starting a new cycle for a duration of
CT2 unit of time (ut). Moreover we assume that at the beginning both
the output and the input buffers respectively of P1 and P2 are full. If not,
this situation occurs after an initialization phase.

(a) b1 ≤ b2
We have b2

b1
≤ CT2

CT1
. We distinguish three cases:

• If the rational part of CT2

CT1
is zero ({CT2

CT1
} = 0) then CT2 = qCT1

(q ∈ N). That means P1 gives exactly enough b1 output data
sets to allow P2 to enter a new cycle and to perform b2 input
data sets each time P2 finishes the previous cycle.

• We observe the same conclusion when CT2 ≥ d b2b1 eCT1 because
each cycle time CT2 the processor P1 produces b2 + x output
data sets while P2 only performs b2 input data sets. From time
to time the BO1 and the input buffer BIa′(2),2 are saturated.

• In the last case we have:

CT2 = qCT1 + r

with q =
⌊
CT2
CT1

⌋
and r = CT2 mod CT1

and
b2
b1
CT1 ≤ CT2 <

⌈
b2
b1

⌉
CT1

In this platform configuration, the worst case occurs when the
processor P2 is as fast as possible and P1 is as slow as possible
(P1 = P2) and when P1 and P2 respectively produces b1 output
data sets or consumes b2 input data sets at once. So we have
also b2 = qb1 + r.

In the following, we propose to prove by induction that P2 can
always start a new cycle without delay. That means that the
amount of data sets in BO1 and BIa′(2),2 is almost equal to b2
before P2 enters a new computation cycle.
Let Cj be the jth computation cycle of P2. Since CT2 = qCT1+r,
during a cycle Cj (CT2 ut) P1 is able to output qb1 data sets and
starts a (q + 1)th before the ending of Cj . So the cumulative
advance of P1 allows periodically P1 to finish (q+1) cycles instead
of q. Let i = b jrb1 c be the number of times P1 has finished an
extra cycle since the start of C1.

RR n° 7886
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We define an induction hypothesis which gives, after the jth com-
putation cycle (Cj) of P2, that the amount of data sets within
BO1 and BIa′(2),2 is larger than b2 with:

b̂o1 + b̂Ia′(2),2 = (jq + i+ 1)b1 − (j − 1)b2

for all 1 ≤ j < CT1.
In any case, P1 started a new computation cycle exactly (jr −
iCT1)ut before the end of Cj . This is because every cycle P1

starts its last cycle r ut sooner (CT2 = qCT1+ r), and each time
an extra cycle of P1 occurs, the advance of P1 is decreased by
the value of CT1 (we later refer to this extra time P1 has to start
a cycle as its advance over Cj). If this hypothesis is verified then
P2 can start Cj+1 without delay.
We show in the following that these conditions allow P2 to enter
a new computation cycle without delay for j = 1, 2 ((ii)(iii)).
Then considering that these conditions are true for j, we show
that P2 can enter Cj+1 without delay (iv):
i. After the initialization stage, we have:

b̂o1 + b̂Ia′(2),2 = b1 + b2

P2 can start its first processing cycle (C1) because b2 input
data sets are available for P2.

ii. During C1 and before the beginning of the next cycle C2 of
P2, P1 has enough place to produce at least qb1 output data
sets (there is room for b2 = qb1 + r actually). Now:

b̂o1 + b̂Ia′(2),2 = (q + 1)b1

Since b1 > r and thus qb1+b1 > qb1+r, P2 is able to enter the
processing cycle C2 because (q + 1)b1 > b2. At this time P1

has already started a computing cycle for r ut. Its advance
is too short to be able to finish an extra cycle (i = 0).

iii. After C2 P1 produced at least qb1 other new output data and
P2 consumed b2 input data. At this time:

b̂o1 + b̂Ia′(2),2 = (2q + 1)b1 − b2

P2 can enter C3 only if b2 is full, that is only if (2q+1)b1−b2 ≥
b2. This implies that 2r ≤ b1. If this condition is true, then
P2 can indeed start C3 without delay (and the induction is
true), and the advance of P1 is now 2r ut. Otherwise, we have
2r > b1, and since we are at j = 2 then i = b jrb1 c = b

2r
b1
c =

1. In other words the cumulative advance of P1 was large
enough to have performed an extra output of b1 data sets
during C2. Thus we can add b1 to the previous expression of
b̂o1 + b̂Ia′(2),2. We obtain:

b̂o1 + b̂Ia′(2),2 = (2q + 1)b1 − b2 + b1 = (2q + 1 + 1)b1 − b2

RR n° 7886
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The advance of P1 on the ending of C2 is now (2r−CT1)ut.
Since we have indeed (2q + 1 + 1)b1 > 2b2 ((q + 1)b1 > b2),
and thus (2q+1+1)b1−b2 > b2, P2 can also start C3 without
delay.
The induction hypothesis is true for j = 1, 2, and the advance
of P1 is (2r − iCT1) in any case because of the value of i.

iv. Let us consider that the j first cycles of P2 have been started
witout delay. So the following expression is true at the end
of Cj−1, that allows P2 to start Cj without delay. Moreover
the cumulative advance of P1 is ((j−1)r−iCT1)ut. We have:

b̂o1 + b̂Ia′(2),2 = ((j − 1)q + i+ 1)b1 − ((j − 1)− 1)b2 ≥ b2

The question is if this expression true at the end of Cj . Dur-
ing Cj , P2 performs b2 input data sets and P1 outputs at
least qb1 data sets and its advance on P2 is ((j−1)r−iCT1+
jr)ut = (jr− iCT1)ut. The number of data sets in BO1 and
BIa′(2),2 becomes:

b̂o1+ b̂Ia′(2),2 = ((j−1)q+ i+1)b1− ((j−1)−1)b2− b2+ qb1

b̂o1 + b̂Ia′(2),2 = (jq + i+ 1)b1 − (j − 1)b2

Then we obtain that b̂o1 + b̂Ia′(2),2 ≥ b2 if:

(jq + i+ 1)b1 ≥ jb2

and i ≥ jr

b1
− 1 with b2 = qb1 + r

This expression is always true, as i = b jrb1 c and bxc > x− 1.
We can conclude that the induction hypothesis is always true
for j < CT1.

v. We can also conclude that the induction hypothesis is always
true for any positive j, as there is a periodic cycle for which
the states of buffers and machines are the same. Indeed, we
know that in CT1 units of time P1 outputs exactly b1 data
sets and loops back: if we start to count time as when P1

outputted x < b1 data sets, after exactly CT1 ut it will have
outputted the rest, and have started to output x other data
sets. Likewise in CT2 units of times, P2 will output exactly
b2 data sets. For both, in CT1×CT2 units of time, they will
output b1 × CT2 (respectively b2 × CT1) data sets. As the
worst case studied is P1 = P2 and thus CT1

b1
= CT2

b2
, we can

can conclude that b1×CT2 = b2×CT1, and thus by the time
j = (k + 1)CT1, and thus CT1 × CT2 units of times have
elapsed since j = kCT1, both processors will be in the exact
same state as before (assuming the induction hypothesis is
true within that time).

This concludes the case where P1 ≤ P2 and b1 ≤ b2.
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(b) b2 ≤ b1
We have CT1

CT2
≤ b1

b2
. We distinguish three cases:

• By using the same arguments as before, if the rational part of
CT1

CT2
is zero ({CT1

CT2
} = 0) then CT1 = qCT2 (q ∈ N). That means

P1 outputs exactly enough b1 output data sets to allow P2 to
enter q cycle for a duration of CT2 ut each. After a computation
cycle of P1, the same scenario is repeating for ever. In this case,
P2 has no delay.

• We observe the same conclusion when CT1 ≤ b b1b2 cCT2 because
the time CT1 needed by the processor P1 to output b1 is shorter
than the time for P2 to consume b b1b2 cb2 input data sets. From
time to time the BO1 and the input buffer BIa′(2),2 are saturated.

• In the last case we have:

CT1 = qCT2 + r

with q =
⌊
CT1
CT2

⌋
and r = CT1 mod CT2

and
⌊
b1
b2

⌋
CT2 < CT1 ≤

b1
b2
CT2

As we assumed in the previous case (b1 ≤ b2), in this platform
configuration, the worst case occurs when the processor P2 is as
fast as possible and P1 is as slow as possible (P1 = P2) and when
P1 and P2 respectively produces b1 output data sets or consumes
b2 input data sets at once. So we have also b1 = qb2 + r.

In the following, we propose to prove by induction that P2 can
always start q or q+1 cycles without delay between two consec-
utive outputs of P1. That means that the amount of data sets
in BO1 and BIa′(2),2 is almost equal to (q+1)b2 or qb2 before P1

enters a new computation cycle.
Let Cj be the jth computation cycle of P1. Since CT1 = qCT2+r,
during a cycle Cj (CT1 ut) P2 is able to consume qb2 data sets
and starts a (q + 1)th after the ending of Cj . So the cumulative
advance of P2 allows periodically P2 to perform (q+1) cycles in-
stead of q. Let i = b jrb2 c be the number of times P2 has performed
an extra cycle since the beginning of C1.
We define an induction hypothesis which gives, after the jth com-
putation cycle (Cj) of P1, that the amount of data sets within
BO1 and BIa′(2),2 is larger than (q + 1)b2 or qb2 with:

b̂o1 + b̂Ia′(2),2 = (j + 1)b1 − (jq + i)b2

for all 1 ≤ j < CT2.
In any case, P2 started a new computation cycle exactly (jr −
iCT2)ut before the end of Cj .
If this hypothesis is verified then P2 has no delay during Cj+1.
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We show in the following that these conditions allow P2 to re-
peat its computation cycle without delay for j = 1 (ii)). Then
considering that these conditions are true for j, we show that P2

has no delay for its q or q+1 next cycle it has to perform before
the ending of Cj+1 (iii):
i. After the initialization stage, we have:

b̂o1 + b̂Ia′(2),2 = b1 + b2

P2 can start its q first processing cycles during C1, as P1 and
P2 start at the same time.

ii. After C1 and before the beginning of the next cycle C2 of P1,
P1 outputs b1 output data sets and P2 consumed qb2 data
sets and has start the (q + 1)th for r ut. Now:

b̂o1 + b̂Ia′(2),2 = b1 + b2 + b1 − (q + 1)b2

b̂o1 + b̂Ia′(2),2 = 2b1 − qb2

This expression corroborates the general expression of b̂o1 +
b̂Ia′(2),2 for j = 1. Moreover since b1 = qb2 + r, if r ≥ b2

2
then:

b̂o1 + b̂Ia′(2),2 ≥ (q + 1)b2

Indeed, the starting of the last cycle of P2 has begun since
2r ut. So during the next cycle C2, P2 must start (q + 1)
cycles. The previous expression show that P2 will be able to
start all its cycles without delay during C2. In this case P2

will start its last cycle for (2r−CT2)ut before the end of C2

and i = 1.
If r < b2

2 , then 2b1 − qb2 = qb2 + 2r. Because of the value
of r, there is only q new cycle starts in C2 and the storage
of data sets is enough large to make there starts possible
without delay. In this case P2 will start its last cycle for
(2r)ut before the end of C2 and i = 0.

iii. Let us consider that the j first cycles of P1 have been started
without P2 delay, that the amount of data sets stored into
BO1 and BIa′(2),2 is the following:

b̂o1 + b̂Ia′(2),2 = (j + 1)b1 − (jq + i)b2

Moreover the last cycle of P2 started jr− iCT2 ut before the
end of Cj , with i = b jrb2 c the number of time P2 starts (q+1)
cycles instead of q (except during C1).
The condition to make possible the beginning of (q + 1) P2

cycles during Cj+1 is

b̂o1 + b̂Ia′(2),2 ≥ (q + 1)b2

This means that
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(j + 1)r

b2
− 1 ≥ i = bjr

b2
c

Because r < b2, the condition is true only if

b (j + 1)r

b2
c = bjr

b2
c+ 1

So, during Cj+1 P2 can perform an extra cycle without delay.
The value of r makes the value of i to be incremented to (i+1)
at the end of Cj+1. It starts this extra cycle ((j + 1)r− (i+
1)CT2)ut before the end of Cj+1.
If the previous condition is wrong, (j+1)r

b2
− 1 < i or r <

i+1
j+1b2. Because CT1 = qCT2 + r we have also r < i+1

j+1CT2.
This implies that P2 performs only q cycle between Cj and
Cj+1. But the first cycle of P2 that ends in this period has
started before the beginning of Cj+1. The considered period
of time is CT1 + jr − iCT2 in which there are only q cycles
CT2:

CT1 + jr − iCT2 = (j + 1)r + qCT2 − iCT2
Since r < i+1

j+1CT2:

(j + 1)r + qCT2 − iCT2 < (i+ 1)CT2 + qCT2 − iCT2
(j + 1)r + qCT2 − iCT2 < (q + 1)CT2

Therefore:
CT1 + jr − iCT2 < (q + 1)CT2

So there are only q new cycle starts in this case and as P1

outputs b1 = qb2+r new output data sets at the beginning of
Cj+1, P2 performs its input data without delay and it starts
this last cycle ((j + 1)r − iCT2)ut before the end of Cj+1.

iv. As with the first studied case (b1 ≤ b2), we can observe there
is a periodic cycle on both processors of CT1 × CT2. This
allows to say the induction hypothesis is true for all j.

This concludes the case where P1 ≤ P2 and b2 ≤ b1.

2. P2 ≤ P1 thus CT2

b2
≤ CT1

b1
The idea here is to prove that the output buffer

BO1 of the first processor P1 is never saturated. We consider system in
its worst configuration regarding this constraint: the output buffer of P1

(BO1) and the input buffer of P2 (BIa′(i),i) are full when P1 and P2 start
their repsective computation cycle.

(a) b1 ≤ b2
We have b2

b1
≥ CT2

CT1
. We distinguish three cases:

• If the rational part of CT2

CT1
is zero ({CT2

CT1
} = 0) then CT2 = qCT1

(q ∈ N). That means that P2 consumes exactly b2 data sets when
P1 outputs qb1 = b2 output data sets. Each time P2 consumes b1
input data sets, P1 outputs less than b1 output data sets because

RR n° 7886



Throughput optimization for pipeline workflow scheduling with setup times 15

of their respective period. In the case where P1 is the faster as
possible, it fills at most qb1 = b2 output data sets. As BO1 and
BIa′(2),2 have a global storage capacity of b1 + b2, these buffers
are never saturated in this case.

• We observe the same conclusion when CT2 ≤ b b2b1 cCT1 because
each cycle time CT2 processor P2 is able to consume more than
b b2b1 cb2 output data sets while P1 only outputs b b2b1 cb1 or (b b2b1 c+
1)b1 output data sets. From time to time the BO1 and the input
buffer BIa′(2),2 can be empty.

• In the last case we have:

CT2 = qCT1 + r

with q =
⌊
CT2
CT1

⌋
and r = CT2 mod CT1

and
⌊
b2
b1

⌋
CT1 < CT2 ≤

b2
b1
CT1

As defined before, the worst case occurs also when P1 = P2, when
BO1 and BIa′(i),i are full at the starting and when P1 outputs
b1 output data sets at once. The difference is that P2 consumes
one input data set each period P2 so as to free the input buffer
as slow as possible. So we also have b2 = qb1 + r.

In the following we re-use the same notation as defined in (1.a)
(j, i) and the defintion of the cycle Cj as the jth computation
cycle of processor P2.
Due to the previous constraints introduced to handle this case,
we can also re-use the already proved inductive formula of the
total number of data sets within BO1 and BIa′(2),2:

∀j < CT1 b̂o1 + b̂Ia′(2),2 = (jq + 1 + i)b1 − (j − 1)b2

In the following we have to prove by induction that b̂o1+ b̂Ia′(2),2

never exceeds b1 + b2:
i. After the initialization stage, we have:

b̂o1 + b̂Ia′(2),2 = b1 + b2

P2 can start its first processing cycle (C1) because b2 input
data sets are available for P2, and P1 has enough place to
output qb1 output data sets because of the place freed by P2

step by step (qb1 < b2). P1 has started its last cycle for r ut.
So, during C1 BO1 and BIa′(2),2 are not saturated.

ii. By using the previous expression of b̂o1 + b̂Ia′(2),2, after C1

and before the starting of C2 the total amount of data sets
insides the buffer BO1 and BIa′(2),2 is:

b̂o1 + b̂Ia′(2),2 = (q + 1)b1
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During the next cycle of P2 (C2), P2 is consuming b2 data sets
and P1 adds at least qb1 outputs. But P1 has started cycles
that can potentially finish during C2 sooner, and before the
beginning of C3. The period of time that we have to consider
is (r + CT2)ut with CT2 = qCT2 + r. So if CT1 ≤ 2r, P1 is
finishing (q + 1) cycles before the ending of C2 and q if not.
Since P2 is consuming b2 data sets in the same time, we have
to verify the following constraint in the worst case (i = 1):

b̂o1 + b̂Ia′(2),2 = (2q + 2)b1 − b2 ≤ b1 + b2

This constraint is verified only if b1 ≤ 2r (b2 = qb1 + r).
And this is also the condition to allow P1 to output (q+1)b1
output data set during C2. If CT1 > 2r (i = 0) we have to
verify the next constraint with i = 0 and qb1 outputs instead
of (q + 1)b1:

b̂o1 + b̂Ia′(2),2 = (2q + 1)b1 − b2 ≤ b1 + b2

This constraint is qb1 ≤ b2 that is always true by detinition
of b1 and b2.
Thus, by the end of C2 and before C3, P1 has been working
on its current computation cycle for (2r− iCT1)ut, and BO1

and BIa′(2),2 are never saturated during C2.
iii. Let us consider that during the j first cycles of P2. After Cj ,

BO1 and BIa′(2),2 are never saturated. We have to prove no
saturation occurs during the next cycle Cj+1.
At the end of Cj , the number of stored data sets within BO1

and BIa′(2),2 is given by the formula:

b̂o1 + b̂Ia′(2),2 = (jq + 1 + i)b1 − (j − 1)b2

During the next cycle Cj+1, P2 consumes b2 input data sets
while P1 outputs (q + i)b1 data sets. As P2 consumes as
fast as P1 outputs in average, each time P1 outputs b1 data
sets P2 has freed b1 places within the input buffer of P2.
Since b2 = qb1 + r the q first computation cycle of P1 do
not increase the number data sets within the buffers. But
P1 has started its first output before the start of Cj+1. If
the extra period of time in which P1 computes data sets is
high enough, that extra amount of data sets can potentially
be outputted before the ending of Cj+1. This whole period
of time is (jr− iCT1 +CT2)ut. So we have to verify that an
extra cycle of P1 does not saturate the buffers.
If this period is larger than (q+1)CT1 then an extra cycle is
finishing before the ending of Cj+1. This extra cycle occurs
when:

r ≥ i+ 1

j + 1
b1 or (i+ 1) ≤ j + 1

b1

This last constraint is true for instance when:
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(i+ 1) = bj + 1

b1
c

This equality means that i has to be incremented by one at
the end of Cj+1 to represent the number of extra cycles.
Now we have to verify if an extra cyle does not saturate the
buffers. So the next contraints must be true:

b̂o1 + b̂Ia′(2),2 = ((j + 1)q + 1+ i+ 1)b1 − (j − 1)b2 ≤ b1 + b2

We obtain (i + 1) ≤ (j+1)r
b1

what is true because we have
(i + 1) extra cycles during the (j + 1)th cycles of P2. This
constraint remains true without an extra cycle of P1 during
Cj+1.

iv. As with the two other studied cases, we can observe there
is a periodic cycle on both processors of CT1 × CT2. This
allows to say the induction hypothesis is true for all j.

This concludes the case where P2 ≤ P1 and b1 ≤ b2.
(b) b2 ≤ b1

We have b1
b2
≤ CT1

CT2
. We distinguish three cases:

• By using the same arguments as before, if the rational part of
CT1

CT2
is zero ({CT1

CT2
} = 0) then CT1 = qCT2 (q ∈ N). That means

P2 consumes exactly enough qb2 input data sets to allow P1 to
output qb1 data sets for a duration of CT1 ut each. After a
computation cycle of P1, the same scenario is repeating for ever.
In this case, P1 has always enough place to output its data sets.
There is no starvation.

• We observe the same conclusion when CT1 ≥ d b1b2 eCT2 because
the time CT1 needed by processor P1 to output b1 is longer than
the time for P2 to consume d b1b2 eb2 input data sets. From time
to time the output buffer BO1 and the input buffer BIa′(2),2 can
be empty.

• In the last case we have:

CT1 = qCT2 + r

with q =
⌊
CT1
CT2

⌋
and r = CT1 mod CT2

and
b1
b2
CT2 ≤ CT1 <

⌈
b1
b2

⌉
CT2

As assumed before, the worst case occurs when the processor P1

is as fast as possible and P2 is as slow as possible (P1 = P2),
when BO1 and BIa′(i),i are full at the starting, when P1 outputs
b1 output data sets at once and when P2 consumes one input
data set each period P2 so as to free the input buffer as slow as
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possible. So we also have b1 = qb2 + r.

In the following we re-use the same notation as defined in (1.b)
(j, i) and the defintion of cycle Cj as the jth computation cycle
of processor P1.
Due to the previous constraints introduced to handle this case,
we can also re-use the already proved inductive formula of the
total number of data sets within BO1 and BIa′(2),2:

b̂o1 + b̂Ia′(2),2 = (j + 1)b1 − (jq + i)b2

for all 1 ≤ j < CT2.
In any case, after Cj , P2 has started a new computation cycle for
(jr − iCT2)ut for the same reason explained in the case (1.b).
In the following we prove by induction that b̂o1 + b̂Ia′(2),2 never
exceeds b1 + b2:
i. After the initialization stage, we have:

b̂o1 + b̂Ia′(2),2 = b1 + b2

P2 can start its q+1 first processing cycles during C1 because
P1 and P2 start at the same time and because BO1 and
BIa′(2),2 contain b1 + b2 > (q + 1)b2 data sets. So before the
ending of C1 the buffers contain only r input data sets. P1

has started its last cycle for r ut. During C1 the buffers are
not saturated.

ii. After C1 and before the beginning of the next cycle C2 of P1,
P1 outputs b1 output data sets and P2 consumed (q + 1)b2
data sets. Now:

b̂o1 + b̂Ia′(2),2 = b1 + r = 2b1 − qb2
Since the next data sets is only adding at once at the end
of the new cycle C2, and since P2 is consuming at least qb2
data sets, the buffer are only decreasing during C2. So the
condition that the buffers are not saturated during C2 is:

b̂o1 + b̂Ia′(2),2 ≤ b1 + b2

With b̂o1+ b̂Ia′(2),2 = b1+ r, the condition is verified because
r < b2.
During C2, P2 consumed at least qb2 input data sets or (q+
1)b2 when b2 ≤ 2r (i = 1) as explained several times before.
We recall that i = b jrb2 c. Thus, P2 started a new computation
cycle exactly (2r − iCT2)ut before the end of C2, and the
amount of data sets within the buffer is 2r − ib2 at the end
of C2.
During C2, BO1 and BIa′(2),2 are not saturated and P1 has
no delay.

iii. Let us consider now that during the j first cycles of P1, there
is no delay on processor P1 and the amont of data sets within
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BO1 and BIa′(2),2:

b̂o1 + b̂Ia′(2),2 = (j + 1)b1 − (jq + i)b2

As introduced before, b̂o1 + b̂Ia′(2),2 decreases during a cycle
of P1. The consequence is that b̂o1 + b̂Ia′(2),2 ≤ b1 + b2 is a
sufficient condition to avoid the saturation of the buffer and
thus to avoid P1 to be delayed. After the cycle Cj we have
a total of data sets between BO1 and BIa′(2),2:

b̂o1 + b̂Ia′(2),2 = (j + 1)b1 − (jq + i)b2

using b1 = qb2 + r we obtain:

jr ≤ (i+ 1)b2

and thus
jr

b2
− 1 ≤ i =

⌊
jr

b2

⌋
that is always true by definition of the floor function. It
means that P1 will never be delayed and the period of both
processors P1 and P2 is P1.

iv. As with the other studied cases, we can observe there is a
periodic cycle on both processors of CT1×CT2. This allows
to say the induction hypothesis is true for all j.

This concludes the case where P2 ≤ P1 and b2 ≤ b1.

Now we consider j processors on which some stages of a pipeline application
is mapped using an interval mapping. We assume that the theorem is true for
these j processors, i.e., the period is dictated by the period of the slowest of
these processors. We have now to prove that the theorem is still true when we
add a j + 1th processor that processes some more stages.

Since the period of the j first processors is dictated by the slowest one, we can
group these processors as one single processor whose period (the mean duration
between two consecutive outputs) is the period of the slowest processor. This
period is given by the inner-processor scheduling algorithm. Moreover, the size
of the output buffer BOj of this processor is boj , the size of the last buffer in
this set of processors.

Using this observation, all the previously studied cases can be applied, where
P1 is the single processor replacing the j first processors, and P2 is the j + 1th

processor. This concludes the proof.

3.3 Single processor scheduling with different buffer sizes
We complete the fixed buffer size study by considering buffers with different
sizes. GREEDY-B chooses either a stage whose input buffer is full and we have
enough space to fully empty it, or a stage whose output buffer is empty and we
have enough data sets to compute in order to fully fill it. That way, we still
maximize the amount of data sets processed after each setup: we are limited by
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the lowest capacity buffer, which is either a fully emptied input buffer, or a fully
filled output buffer. It may not return an optimal schedule in the general case,
but we can prove its optimality in the case of multiple buffers, i.e., each buffer
capacity is a multiple of the capacities of both its predecessor and its successor:
for 1 ≤ i ≤ n, min(bi, bi+1)|max(bi, bi+1).

Theorem 3. The scheduling problem with multiple buffers on a single processor
can be solved in polynomial time, using the GREEDY-B algorithm.

Proof. We first amend Proposition 1 as nbcompi ≤ min(bi, bi+1) (for 1 ≤ i ≤
n), and thus, according to this and Proposition 2, the lower bound of the period,
as showed in Lemma 1, is Pmin =

∑n
i=1

(
wi

v + sti
min(bi,bi+1)

)
.

With the GREEDY-BI algorithm, we setup on a stage if and only if Condi-
tion 1 or 2 is observed (see Algorithm ??):

• Condition 1 is reached if and only if bi ≥ bi+1 and we can compute enough
data sets to fill an empty bi+1. Therefore, bi ≥ bi+1 and nbcompi = bi+1

in this case.

• Condition 2 is reached if and only if bi ≤ bi+1 and we can compute enough
data sets to empty a full bi. Therefore, bi ≤ bi+1 and nbcompi = bi.

We always have: SetupSi
⇐⇒ Condition 1 or Condition 2, which cor-

responds to SetupSi
⇐⇒ (bi ≥ bi+1 and nbcompi = bi+1) or (bi ≤ bi+1

and nbcompi = bi). The logical outcome is that SetupSi ⇐⇒ nbcompi =
min(bi, bi+1).

This means that using GREEDY-BI, the number of computations per setup
for one stage is constant and is always min(bi, bi+1). Since the value is con-
stant, it is also the value of the average number of computations per setup:
∀i, nbcompi = min(bi, bi+1).

According to Proposition 2, for any scheduling algorithm the period is P =∑n
i=1

(
wi

v

)
+
∑n
i=1

(
sti

nbcompi

)
, and therefore the period obtained with GREEDY-

BI is
∑n
i=1

(
wi

v

)
+
∑n
i=1

(
sti

min(bi,bi+1)

)
, which corresponds exactly to Pmin,

hence concluding the proof.

4 Variable buffer sizes
In this section, we tackle the problem of allocating the buffers for all stages
on a single processor P from an available memory M . We focus on platforms
with homogeneous data input sizes (δi = δ) and setup times (sti = st). First
we propose an allocation algorithm, ALL-B, which returns buffers of identical
capacities, and we discuss its optimality in Section 4.1. In Section 4.2, we design
polynomial time heuristics for the case when the algorithm is not optimal, and
we evaluate them through simulations in Section 4.5. Finally, we briefly discuss
in Section 4.6 the cases with δi or sti.

4.1 Allocation algorithm
If n stages are mapped on one processor then it needs n+ 1 buffers. Given the
memory M and the size of the data δ, if we want all buffers to contain the same
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number of data sets, then the maximum number of data sets that can fit in each
buffer can be computed as:

b =

⌊
M

(n+ 1)δ

⌋
.

The ALL-B algorithm allocates memory for each buffer according to this
uniform distribution. The actual memory allocated for each buffer is mi = m =

bδ =
⌊
M
n+1

⌋
. The memory used by this allocation is then (n+1)δ× b ≤M , and

we call R =M − (n+1)δ× b the remainder of memory after the allocation, i.e.,
the unused part of the memory.

We prove that this allocation algorithm is optimal if the remainder is lower
than δ.

Theorem 4. The algorithm ALL-B is optimal on a single processor (i.e., the
period is minimized with this allocation) when R =M−(n+1)δ×

⌊
M

(n+1)δ

⌋
< δ.

Proof. First note that since all data sets have the same size, the maximum
number of data sets that can fit in memory is bM/δc, and the remainder of the
memory cannot be used. Let M ′ = (n + 1)δ ×

⌊
M

(n+1)δ

⌋
. We assume in this

theorem that M −M ′ < δ, i.e., even if M ′ ≤ M , both memories can contain
exactly the same number of data sets. Moreover, b = M ′

(n+1)δ is an integer
number of data sets. Therefore, we assume in the following that the memory is
M =M ′, so that we do not need to consider integer parts anymore.

Next, we need to express the period of a solution in which buffers may have
different sizes, i.e., the i-th buffer can contain bi data sets, for 1 ≤ i ≤ n+1. We
can reuse the result of Lemma 1, and the only difference comes from the fact
that we need to amend Proposition 1 as nbcompi ≤ min(bi, bi+1) (for 1 ≤ i ≤ n),
since the input (resp. output) buffer of stage Si can contain bi (resp. bi+1) data
sets, and once a setup is done for a stage Si, it is not possible to perform more
computations than there are data sets or than there is room for result sets.
Finally, since we consider that all setup times are identical, we have:

Pmin(b1, . . . , bn+1) =

n∑
i=1

wi
v

+

n∑
i=1

st

min(bi, bi+1)
.

We want to prove by induction on n that the minimum of this function is
reached for b1 = · · · = bn+1 = b = M

(n+1)δ , under the constraint that
∑n+1
i=1 biδ =

M . Note that we do not need in the following to assume that the b and bi’s are
integer, but the condition on R ensures that the value of b is an integer when
considering a pipeline of n stages.

• For n = 1, we have

Pmin(b1, b2) =
1∑
i=1

(wi
v

+
st

min(bi, bi+1)

)
=
w1

v
+

st

min(b1, b2)
.

Knowing that b1 + b2 = M/δ = 2b, we can express b1 and b2 as b1 = b + ε
and b2 = b− ε. Thus:

Pmin(b1, b2) =
w1

v
+

st

min(b+ ε, b− ε)
,
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and this function is clearly minimized when ε = 0, i.e., b1 = b2 = b.

• Let us assume now that the result holds true for n − 1, and let bn+1 be the
size of the buffer that is added when considering n stages instead of n− 1. The
memory available for the n− 1 first stages is therefore M − bn+1δ. Recall that
values of bi’s may not be integer at this point. The period can be expressed as
follows, reusing the period for the n− 1 first stages Pn−1:

Pmin(b1, . . . , bn+1) = Pn−1 +
wn
v

+
st

min(bn, bn+1)
.

By induction, the minimum value for Pn−1 is obtained when b1 = · · · = bn =
M−bn+1δ

nδ . We then have:

Pn−1 =

n−1∑
i=1

wi
v

+ n× st

M/nδ − bn+1/n
=

n−1∑
i=1

wi
v

+
n2 × st

M/δ − bn+1
;

Pmin(b1, . . . , bn+1) =

n∑
i=1

wi
v

+
n2 × st

M/δ − bn+1
+

st

min(bn, bn+1)
.

Let us assume first that bn+1 ≤ bn. We then have min(bn, bn+1) = bn+1, and
the goal is to minimize f(x) = n2

M/δ−x + 1
x , where x corresponds to bn+1. The

first derivative of this function is f ′(x) = n2

(M/δ−x)2 −
1
x2 , and its only positive

root is x = M
(n+1)δ , which corresponds to a minimum of the function f(x). For

this value of bn+1, we have b1 = · · · = bn = M
(n+1)δ = bn+1, and hence the

hypothesis bn+1 ≤ bn is verified, and the solution that minimizes the period is
such that all bi’s are equal.

However, if bn+1 ≥ bn, we need to minimize a function of bn, and n2

M/δ−bn+1
+

st
bn
≥ n2

M/δ−bn + st
bn
. We obtain the same function f(x) as above, and hence

the lower bound on the period is minimized for bn = M
(n+1)δ . Moreover, the

smaller bn+1, the smaller the expression of the period, since the only term in
bn+1 is n2

M/δ−bn+1
. Therefore, the period is minimized for bn+1 = bn, hence

obtaining the same solution as in the first case bn+1 ≤ bn.
Finally, we conclude by saying that for the pipeline with n stages, the value

of b is an integer thanks to the condition on the memory, and the lower bound
on the period is reached according to Theorem 1.

4.2 Memory remainder
If there is a remainder in the memory after the allocation of buffers ALL-B, it
is under certain conditions possible to use this remainder to increase the size of
some buffers. It may also be possible to have another allocation, not based on
ALL-B, that would make better or full use of the memory. In both cases, the
period achieved by some scheduling algorithm may be lower than the one we
have.

Proposition 3. Given an application with homogeneous setup times st and
input sizes δ, the buffer allocation ALL-B may not give an optimal solution if
R ≥ δ.
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Proof. Let us consider a single processor, with a memoryM = 20, and a speed
v = 1. A total of n = 6 stages are mapped on this processor, and we have
δ = w = st = 1.

There are seven buffers, and therefore ALL-B returns buffers of size b = 2,
and the remainder is R = 20− 2× 7 = 6. The optimal period using this distri-
bution is obtained by scheduling the stages with the GREEDY-B algorithm (see
Theorem 1), and therefore:

P =

6∑
i=1

(wi
v

)
+

6∑
i=1

(st
b

)
= 6 +

(1
2
+

1

2
+

1

2
+

1

2
+

1

2
+

1

2

)
= 9 .

However, let us consider the following allocation: b1 = b2 = b3 = b4 = 2 and
b5 = b6 = b7 = 4. This allocation uses all the memory, and it corresponds to
the definition of multiple buffers. Therefore, the optimal period is obtained by
scheduling the stages with the GREEDY-B algorithm, and:

P =

6∑
i=1

(wi
v

)
+

6∑
i=1

( st

min(bi, bi+1)

)
= 6 +

(1
2
+

1

2
+

1

2
+

1

2
+

1

4
+

1

4

)
= 8.5 .

This allocation leads to a smaller period than ALL-B, which concludes the
proof.

4.3 Heuristics for ALL-B allocation with a remainder
We developed several heuristics to deal with the memory remainder created by
ALL-B. Note that after allocating buffers with ALL-B, ∀1 ≤ i ≤ n + 1, bi = b,
and there is not enough memory left to have ∀1 ≤ i ≤ n + 1, bi = b + 1 (since
R < (n+1)δ). In some cases however, it is still possible to use R to increase the
size of several (but not all) buffers. According to Proposition 3, the use of this
remainder may lead to a decrease of the period. We restrict to the construction
of multiple buffers as defined above, so that we are able to find optimally the
period thanks to the GREEDY-B algorithm. Hence, if there is enough memory
to increase the size of buffers by steps of b, and if there is as least 2bδ memory
left, then the size of two consecutive buffers can be doubled, resulting in halving
the number of setups for the corresponding stage.

H1 (see Algorithm 1) – The first algorithm allocates batches of 2bδ to in-
crease the size of the two last buffers by b each, and continues to increase them
as long as 2bδ memory units are available. According to the expression of the
period, increasing the size of these two consecutive buffers reduces the setup
times for Sn, while keeping the same values everywhere else.

H2 (see Algorithm 2) – The second algorithm starts off by doubling the size
of the two last buffers if there are 2bδ memory units left, then will continue to
increase the capacity of the adjacent buffers by b as long as bδ memory units
are still available. Note that since R < (n+1)δ, the algorithm is guaranteed to
end before having doubled the size of all buffers.
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Data: M – the memory available
Output: mi – the memory allocated for each buffer Bi, and R – the

remainder.

Apply ALL-B: current buffer sizes are mi = bδ, capacity is bi = b, the
remainder is R =M − (n+ 1)bδ;

while R ≥ 2bδ do
mn+1 ← mn+1 + bδ; bn+1 ← bn+1 + b;
mn ← mn + bδ; bn ← bn + b;
R ← R− 2bδ;

end
Algorithm 1: Heuristic H1 for memory remainder reallocation.

Data: M – the memory available
Output: mi – the memory allocated for each buffer Bi, and R – the

remainder.

Apply ALL-B: current buffer sizes are mi = bδ, capacity is bi = b, the
remainder is R =M − (n+ 1)bδ;

if R ≥ 2bδ then
k ← n+ 1;
while R ≥ bδ do

mk ← mk + bδ; bk ← bk + b;
R ← R− bδ;
k ← k − 1;

end
end
Algorithm 2: Heuristic H2 for memory remainder reallocation.

4.4 Performance of the heuristics
Given the available memory M ,

• Pb(M) is the period obtained if ∀i ∈ [1, n+ 1], bi = b;

• Palgo(M) is the period obtained by one of the heuristics (it may be spec-
ified as PH1, or PH2);

• Popt(M) is the optimal (minimal) period that can be achieved with mem-
ory M .

We compute the value of b obtained by ALL-B algorithm, and therefore
M = b(n + 1)δ + R, with R < (n + 1)δ. It has already been proved (see
Theorem 4) that if there is no remainder after ALL-B, Pb(M) is optimal. More
formally:

M = b(n+ 1)δ ⇐⇒ Pb(M) = Popt(M) .

We define M∗ = (b+ 1)(n+ 1)δ =M + (n+ 1)δ −R. With a memory M∗,
there is also no remainder and Pb+1(M

∗) = Popt(M∗). We first prove that both
Palgo(M) and Popt(M) can be bounded by Pb(M) and Pb+1(M

∗) respectively:

Lemma 2. We have Pb(M) ≥ Palgo(M) ≥ Popt(M) ≥ Pb+1(M
∗).

RR n° 7886



Throughput optimization for pipeline workflow scheduling with setup times 25

Proof. By definition, we have Palgo(M) ≥ Popt(M). For the upper bound,
both algorithms (H1 and H2) are potentially improving Pb(M) by exploiting
the remainder, and the period cannot be increased by the allocation of the
remainder of the memory.

For the lower bound, note that Pb+1(M
∗) is the optimal period with mem-

oryM∗ > M , and therefore Popt(M) cannot be better, otherwise we would have
a better solution with M∗ that would not use all memory.

Theorem 5. The three algorithms ALL-B, H1 and H2 are b+1
b -approximation

algorithms.

Proof. LetW =
∑n+1
i=1

(
wi

v

)
. We have Pb(M) =W + (n+1)st

b , and Pb+1(M
∗) =

W + (n+1)st
b+1 . Therefore,

Pb(M)

Pb+1(M∗)
=
W + (n+1)st

b

W + (n+1)st
b+1

≤
(n+1)st

b
(n+1)st
b+1

=
b+ 1

b
,

since W > 0 and (n+1)st
b+1 ≤ (n+1)st

b .
Finally, thanks to Lemma 2, we have:

Palgo(M) ≤ Pb(M) ≤ b+ 1

b
Pb+1(M

∗) ≤ b+ 1

b
Popt(M) ,

which concludes the proof (recall that Pb(M) is the period obtained by algorithm
ALL-B). Note that the worst approximation ratio is achieved for b = 1, and then
we have 2-approximation algorithms. However, when b increases, the period
achieved by the algorithms tend to the optimal solution.

4.5 Simulation results
We evaluate the quality of the heuristics for buffer allocation with some simu-
lations. We vary both the pipeline size (i.e., the number of buffers to allocate),
and the memory M of the processor. Both parameters have an impact on the
value of b and the remainder, and hence on the efficiency of the heuristics.

Therefore, we conduct two simulations. In the first one, the available memory
is fixed to M = 150 and the size n of the pipeline increases: 3 ≤ n ≤ 50. Thus,
if there are more stages, less memory is available for each buffer. In the second
simulation, the size of the pipeline is fixed to n = 5, but the available memoryM
increases: 6 ≤ M ≤ 50. Without loss of generality, we assume that δ = 1, and
therefore with n = 5 andM = 6, there is just enough memory to allocate buffers
of capacity one to all stages. When M increases, the capacity b obtained by
ALL-B increases.

We run the two heuristics and compute the period for each configuration
(PH1 and PH2), as well as the period Pb obtained by Pb(M) (algorithm ALL-B
without using the remainder), and the lower bound on the period Pb+1 achieved
by Pb+1(M

∗) (algorithm ALL-B with capacities b + 1, assuming that we have
enough memory). As we can observe in Figures 3 and 4, both PH1 and PH2 are
included in [Pb, ..,Pb+1]. We can also observe that PH2 is always at least equal
to PH1, and often better (lower period).

In Figure 3, PH1 tends to always be very close to Pb, while PH2 only gets
close when the remainder is small. This is due to the more restrictive nature
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of H1, and the way it uses the remainder. At each iteration of H1, it needs
exactly 2bδ supplementary memory, while only bδ are required for H2. Also,
note that after doubling the size of the two last buffers, for every new 2bδ
available, H2 is doubling the size of two more buffers, thus halving the value of
two more 1

b terms in the setup times part of the period. H1 keeps on halving
the same last fraction, which has less impact on the overall value of the period.

In Figure 4, while PH2 is still better than PH1, we can see that both have the
same value as soon as M ≥ 18, which corresponds to b ≥ 3 for ALL-B. In fact,
for any value of n, there is a breaking point in the values of M for which both
heuristics do not improve ALL-B anymore, which corresponds to 2b ≥ n + 1.
Since the value of the remainder is always lower than (n + 1)δ by definition,
and the required remainder for the heuristics to have an effect is 2bδ, whenever
the value of M is high enough so that 2b ≥ n + 1, both heuristics return the
same result as ALL-B. Note however that the worst case is b = 1, since that
the approximation ratio is then b+ 1/b = 2, while the ratio tends to one when
b increases. Therefore, the heuristics do not improve the solution when there is
a lot of memory, but ALL-B becomes very close to the optimal solution, as can
be seen in the figure.

4.6 With heterogeneous data input sizes or setup times
(sti, δi)

The case of heterogeneous setup times (sti) is kept for future work, since it
turns out to be much more complex. Indeed, allocating buffers while taking
setup times into account requires to prioritize higher setup times by allocating
larger buffer capacities. However, this requires both the input and output buffers
of the corresponding stage to be larger, and it will inevitably lead to side effects
on surrounding stages.

For heterogeneous data input sizes (δi), we can use a variant of the ALL-B
algorithm to allocate buffers of identical capacities, in terms of data sets: bi =⌊

M∑n+1
k=1 δk

⌋
= b.

In this case, the memory used is
∑n+1
i=1 b × δi ≤ M , and the remainder is

R = M −
∑n+1
i=1 b × δi. However, even if there is no remainder, the allocation

may not be optimal:

Proposition 4. Given an application with homogeneous setup times st and het-
erogeneous input sizes δi, the buffer allocation ALL-B may not give an optimal
solution, even if the remainder R = 0.

Proof. Let us consider a single processor, with a memory M = 301, speed
v = 1. There are n = 4 stages with w = st = 1. The different input sizes are:
δ1 = 20, δ2 = 20, δ3 = 1, δ4 = 1, δ5 = 1 (δ5 is the output size of S4).

ALL-B returns buffers of size b = 7, and the remainder is R = 301 −
(20 × 7 + 20 × 7 + 1 × 7 + 1 × 7 + 1 × 7) = 0. The optimal period using this
distribution is obtained by scheduling the stages with the GREEDY-B algorithm
(see Theorem 1), and therefore:

P =

4∑
i=1

(wi
v

)
+

4∑
i=1

(st
b

)
= 4 +

(1
7
+

1

7
+

1

7
+

1

7

)
= 4.571 .
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However, let us consider the following allocation: b1 = b2 = 6 and b3 =
b4 = b5 = 18. This allocation uses less memory, yet has way higher capacity
buffers for b3 to b5, with the only trade-off being the reduction of the capacity
of b1 and b2 by one. This allocation corresponds to the definition of multiple
buffers. Therefore, the optimal period is obtained by scheduling the stages with
the GREEDY-BI algorithm, and:

P =

4∑
i=1

(wi
v

)
+

4∑
i=1

( st

min(bi, bi+1)

)
= 4 +

(1
6
+

1

6
+

1

18
+

1

18

)
= 4.444 .

This allocation leads to a smaller period than ALL-B, which concludes the
proof.

5 Conclusion
In this paper, we present solutions to the problem of optimizing setup times and
buffer use for pipeline workflow applications. For the problem of fixed buffer
sizes, of identical size within a same processor, we provide an optimal greedy
algorithm for a single processor, and a dynamic programming algorithm for
multiple processors. In the latter case, the application period is equal to the
period of the slowest processor. In the case of variable buffer sizes, we tackle the
problem of distributing the available processor memory into buffers such that
the period is minimized. When the memory allocation results in no remainder
(the whole memory is used), the algorithm turns out to be optimal, and we
propose some approximation algorithms for the other cases.

In future work, we plan to consider sequence-dependent setup times (sti,j),
a problem that is already known to be NP-complete. We envisage the design of
competitive heuristics, whose performance will be assessed through simulation.
Furthermore, for the sti case, we plan to investigate the memory allocation
problem on a single processor. On the long term, we will consider the case of
heterogeneous buffer capacities bi. This case is particularly interesting, as the
buffer allocation heuristics lead to heterogeneous buffer sizes, which have not
yet been proved optimal with our scheduling solutions for multiple processors.
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