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Algorithmes d’approximation pour des problèmes
d’optimisation énergie/fiabilité/temps d’exécution

Résumé : Dans ce papier, nous considérons le problème d’ordonnancement d’une ap-
plication sur une plateforme parallèle de calcul. L’application est un graphe de tâches
particulier: soit une chaı̂ne de tâche, soit un ensemble de tâches indépendantes. La
plateforme est constituée de processeurs identiques, dont la vitesse peut être modifiée
dynamiquement. Cette plateforme est aussi sujette à des fautes: lorsque l’on réduit la
vitesse d’exécution d’un processeur pour diminuer la consommation d’énergie, ce pro-
cesseur a une plus grande chance de faillir. C’est pourquoi, pour augmenter la fiabilité
du processus, l’ordonnanceur va devoir choisir de re-exécuter ou répliquer certaines
tâches (les exécuter deux fois, soit sur le même processeur, soit sur deux processeurs
distincts). Le problème est donc tri-critère: nous cherchons à minimiser la consom-
mation d’énergie, tout en préservant une limite sur le temps d’exécution, ainsi qu’une
borne sur la fiabilité de chaque tâche.

Nos contributions résident en l’écriture d’algorithmes d’approximation efficaces
pour les deux classes de graphes étudiées. Dans le cas des chaı̂nes linéaires, nous pro-
posons un schéma d’approximation entièrement polynomial (FPTAS). Puis nous prou-
vons qu’il n’existe pas d’algorithmes d’approximation à facteur constant dans le cas des
tâches indépendantes, sauf si P=NP, mais nous sommes cependant capable d’exhiber
un algorithme d’approximation lorsque l’on autorise une relaxation de la contrainte sur
le temps d’exécution.

Mots-clés : Ordonnancement, énergie, fiabilité, temps d’exécution, modèles, algo-
rithmes d’approximation
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1 Introduction
Energy-awareness is now recognized as a first-class constraint in the design of new
scheduling algorithms. To help reduce energy dissipation, current processors from
AMD, Intel and Transmeta allow the speed to be set dynamically, using a dynamic
voltage and frequency scaling technique (DVFS). Indeed, a processor running at speed
s dissipates s3 watts per unit of time (Aydin and Yang, 2003). However, it has been
recognized that reducing the speed of a processor has a negative effect on the reliability
of a schedule: if a processor is slowed down, it has a higher chance to be subject to
transient failures, caused for instance by software errors (Zhu et al, 2004; Degalahal
et al, 2005).

Motivated by the application of speed scaling on large scale machines (Oliner et al,
2004), we consider a tri-criteria problem energy/reliability/makespan: the goal is to
minimize the energy consumption, while enforcing a bound on the makespan, i.e., the
total execution time, and a constraint on the reliability of each task. The application is
a particular task graph, either a linear chain of tasks, or a set of independent tasks. The
platform is made of identical processors, whose speed can be dynamically modified.

In order to make up for the loss in reliability due to the energy efficiency, we con-
sider two standard techniques: re-execution consists in re-executing a task twice on
the same processor (Zhu et al, 2004; Zhu and Aydin, 2006), while replication consists
in executing the same task on two distinct processors simultaneously (Assayad et al,
2011). We do not consider checkpointing, which consists in “saving” the work done at
some points, hence reducing the amount of work lost when a failure occurs (Melhem
et al, 2003; Zhang and Chakrabarty, 2003).

The schedule therefore requires us to (i) decide which tasks are re-executed or
replicated; (ii) decide on which processor(s) each task is executed; (iii) decide at which
speed each processor is processing each task. For a given schedule, we can compute
the total execution time, also called makespan, and it should not exceed a prescribed
deadline. Each task has a reliability that can be computed given its execution speed
and its eventual replication or re-execution, and we must enforce that the execution of
each task is reliable enough. Finally, we aim at minimizing the energy consumption.
Note that we consider a set of homogeneous processors, but each processor may run at
a different speed; this corresponds to typical current platforms with DVFS.

Related work. The problem of minimizing the energy consumption without exceed-
ing a given deadline, using DVFS, has been widely studied, without accounting for
reliability issues. The problem for a linear chain of tasks is known to be solvable in
polynomial time in this case, see Aupy et al (2012a). Alon et al (1997) showed that the
problem of scheduling independent tasks can be approximated by a factor (1+ε): they
exhibit a polynomial-time approximation scheme (PTAS). Benoit et al (2011) stud-
ied the performance of greedy algorithms for the problem of scheduling independent
tasks, with the objective of minimizing the energy consumption, and proposed some
approximation algorithms.

All these works do not account for reliability issues. However, Zhu et al (2004)
showed that reducing the speed of a processor increases the number of transient fail-
ure rates of the system; the probability of failures increases exponentially, and this
probability cannot be neglected in large-scale computing (Oliner et al, 2004). Few au-
thors have tackled the tri-criteria problem including reliability, and to the best of our
knowledge, there are no approximation algorithms for this problem. Zhu and Aydin
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Approximation algorithms for energy/reliability/makespan optimization problems 4

(2006) initiated the study of this problem, using re-execution. However, they restrict
their study to the scheduling problem on a single processor, and do not try to find any
approximation ratio on their algorithm. Assayad et al (2011) have proposed an off-
line tri-criteria scheduling heuristic called TSH, which uses replication to minimize the
makespan, with a threshold on the global failure rate and the maximum power con-
sumption. TSH is an improved critical-path list scheduling heuristic that takes into ac-
count power and reliability before deciding which task to assign and to replicate onto
the next free processors. However, the complexity of this heuristic is unfortunately
exponential in the number of processors, and the authors did not try to give an approx-
imation ratio on their heuristic. Finally, Aupy et al (2012b) also study the tri-criteria
problem, but from a heuristic point of view, without trying to ensure any approximation
ratio on their heuristics. Moreover, they do not consider replication of tasks, but only
re-execution as in Zhu and Aydin (2006). However, they present a formal model of the
tri-criteria problem, re-used in this paper.

Finally, there is some related work specific to the problem of independent tasks,
since several approximation algorithms have been proposed for variants of the problem.
One may try to minimize the `k norm, that is, the quantity (

∑p
q=1(

∑
i∈load(q) wi)

k)1/k,
with p processors, where i ∈ load(q) means that task Ti is assigned to processor q, and
wi is the weight of task Ti, i.e., the execution time of the task (Alon et al, 1997).
Minimizing the power consumption then amounts to minimizing the `3 norm (Benoit
et al, 2011), and the problem of makespan minimization is equivalent to minimizing
the `∞ norm: minimize max1≤q≤p

∑
i∈load(q)wi (Graham, 1969; Ausiello et al, 1999).

These problems are typical load balancing problems, in which the load (computation
requirement of the tasks) must be balanced between processors, according to various
criteria.

Main contributions. In this paper, we investigate the tri-criteria problem of mini-
mizing the energy consumption with a bound on the makespan and a constraint on
the reliability. First in Section 2, we formally introduce this tri-criteria scheduling
problem, based on the previous models proposed by Zhu and Aydin (2006) and Aupy
et al (2012b). To the best of our knowledge, this is the first model including both re-
execution and replication in order to deal with failures. The main contribution of this
paper is then to provide approximation algorithms for some particular instances of this
tri-criteria problem. For linear chains of tasks, we propose a fully polynomial-time
approximation scheme (Section 3). Then in Section 4, we show that there exists no
constant factor approximation algorithm for the tri-criteria problem with independent
tasks, unless P=NP. We prove that by relaxing the constraint on the makespan, we can
give a polynomial-time constant factor approximation algorithm. To the best of our
knowledge, these are the first approximation algorithms for the tri-criteria problem.

2 Framework
Consider an application task graph G = (V, E), where V = {T1, T2, . . . , Tn} is the
set of tasks, n = |V |, and where E is the set of precedence edges between tasks. For
1 ≤ i ≤ n, task Ti has a weight wi, that corresponds to the computation requirement
of the task. S =

∑n
i=1 wi is the sum of the computation requirements of all tasks.

The goal is to map the task graph onto p identical processors that can have ar-
bitrary speeds, determined by their frequency, that can take any value in the interval
[fmin, fmax] (dynamic voltage and frequency scaling with continuous speeds). Higher
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frequencies, and hence faster speeds, allow for a faster execution, but they also lead to
a much higher (supra-linear) power consumption. Note that Aupy et al (2012b) showed
that it is always better to execute a task at a single speed, and therefore we assume in
the following that each execution of a task is done at a single speed.

We now detail the three objective criteria (makespan, reliability, energy), and then
formally define the optimization problem in Section 2.4.

2.1 Makespan
The makespan of a schedule is its total execution time. The first task is scheduled at
time 0, so that the makespan of a schedule is simply the maximum time at which one
of the processors finishes its computations. Given a schedule, the makespan should not
exceed the prescribed deadline D.

Let Exe(wi, f) be the execution time of a task Ti of weight wi at speed f . We en-
force the classical linear cost model for execution times (Melhem et al, 2003): Exe(wi, f) =
wi

f . Note that we consider a worst-case scenario, and the deadline D must be matched
even in the case where all tasks that are scheduled to be executed several times fail
during their first executions, hence all execution and re-execution times should be ac-
counted for.

2.2 Reliability
To define the reliability, we use the failure model of Zhu et al (2004), Zhu and Aydin
(2006) and Shatz and Wang (1989). We do not consider fail-stop failures that corre-
spond to hardware failures and interrupt definitively the failed processor (until repair),
but rather transient failures, which are caused by software errors for example. Such
failures invalidate only the execution of the current task; the processor subject to that
failure will be able to recover and execute the subsequent tasks assigned to it (if any),
for instance a re-execution of the failed task.

We use the reliability model that states that the radiation-induced transient failures
follow a Poisson distribution (Zhu et al, 2004). The parameter λ of the Poisson distribu-
tion is then λ(f) = λ̃0 e

d̃ fmax−f
fmax−fmin , where fmin ≤ f ≤ fmax is the processing speed,

the exponent d̃ ≥ 0 is a constant, indicating the sensitivity of failure rates to dynamic
voltage and frequency scaling, and λ̃0 is the average failure rate at speed fmax. We
see that reducing the speed for energy saving increases the failure rate exponentially.
The reliability of a task Ti executed once at speed f is the probability of a successful
execution, and it is expressed as

Ri(f) = e−λ(f)×Exe(wi,f).

Because the failure rate λ̃0 is usually very small, of the order of 10−5 per time unit
(Assayad et al, 2011), or even 10−6 (Baleani et al, 2003; Pop et al, 2007), we can use
the first order approximation of Ri(f) as

Ri(f) = 1− λ(f)× Exe(wi, f)

= 1− λ̃0 ed̃
fmax−f

fmax−fmin × wi
f

= 1− λ0 e−df ×
wi
f
,

where d = d̃
fmax−fmin

and λ0 = λ̃0e
dfmax .
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Note that this equation holds if λ(f)× wi

f � 1. With, say, λ(f) = 10−5, we need
wi

f ≤ 103 to get an accurate approximation with λ(f) × wi

f ≤ 0.01: the task should
execute within 16 minutes. In other words, large (computationally demanding) tasks
require reasonably high processing speeds with this model (which makes full sense in
practice).

We consider that a task is reliable enough when it is executed once at a speed greater
than or equal to a threshold speed frel = αfmax, where fmin

fmax
≤ α ≤ 1 is fixed by the

user and corresponds to the reliability of the system. For highly critical systems, α = 1
and therefore frel = fmax (Zhu, 2006). In order to limit energy consumption, the
execution speed of a task can be further decreased, but then the probability of having
at least one transient failure during the execution of this task increases drastically, both
because of the extended execution time and the increased failure rate λ(f). In this case,
we therefore enforce the execution of a backup task (Zhu and Aydin, 2006; Zhu, 2006).
We do not execute automatically this task at the maximum speed (or speed frel) as
was done in previous work, but rather we choose a re-execution speed such that the
reliability of both executions is at least equal to the reliability of a single execution at
speed frel. Therefore, either task Ti is executed only once at speed f ≥ frel, or it
is executed twice (speeds f (1) and f (2)), and the reliability, i.e., the probability that at
least one of the attempts do not fail: Ri = 1− (1−Ri(f (1)))(1−Ri(f (2))) should be
at least equal to Ri(frel).

We restrict to one single backup task, which can be scheduled either on the same
processor as the original task (what we call re-execution), or on another processor (what
we call replication). Intuitively, having two or more backup tasks may lead to further
energy savings, but at a price of a highly increased execution time (and a much more
complex study).

Note that if both execution speeds are equal, i.e., f (1) = f (2) = f , then the relia-
bility constraint becomes 1− (λ0wi

e−df

f )2 ≥ Ri(frel), and therefore

λ0wi
e−2df

f2
≤ e−dfrel

frel
.

In the following, finf,i is the maximum between fmin and the solution to the equation
λ0wi

e−2dfinf,i

(finf,i)2
= e−dfrel

frel
, and hence if task Ti is executed twice at a speed greater than

or equal to finf,i, then the reliability constraint is met.

2.3 Energy
The total energy consumption corresponds to the sum of the energy consumption of
each task. Let Ei be the energy consumed by task Ti. For one execution of Ti at
speed f , the corresponding energy consumption isEi(f) = Exe(wi, f)×f3 = wi×f2,
which corresponds to the dynamic part of the classical energy models of the literature
(Aydin and Yang, 2003; Bansal et al, 2007). Note that we do not take static energy into
account, because all processors are up and alive during the whole execution.

If task Ti is executed only once at speed f , then Ei = Ei(f). Otherwise, if task Ti
is executed twice at speeds f (1) and f (2), it is natural to add up the energy consumed
during both executions, just as we consider both execution times when enforcing the
deadline on the makespan. Again, this corresponds to the worst-case execution sce-
nario. We obtain Ei = Ei(f

(1)
i ) + Ei(f

(2)
i ). Note that some authors (Zhu and Aydin,

2006) consider only the energy spent for the first execution in the case of re-execution,

RR n° 8107
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which seems unfair: re-execution comes at a price both in the makespan and in the
energy consumption. Finally, the total energy consumed by the schedule, which we
aim at minimizing, is E =

∑n
i=1Ei.

2.4 Optimization problem
Given an application graph G = (V, E) and p identical processors, TRI-CRIT is the
problem of finding a schedule that specifies which tasks should be executed twice, on
which processor and at which speed each execution of a task should be processed, such
that the total energy consumption E is minimized, subject to the deadline D on the
makespan and to the local reliability constraints Ri ≥ Ri(frel) for each Ti ∈ V .

Note that TRI-CRIT may have no solution: it may well be the case that the deadline
cannot be enforced even if all tasks are executed only once at speed fmax.

We focus in this paper on the two following sub-problems that are restrictions of
TRI-CRIT to special application graphs:

• TRI-CRIT-CHAIN: the graph is such that
E = ∪n−1i=1 {Ti → Ti+1};

• TRI-CRIT-INDEP: the graph is such that E = ∅.

3 Linear chains
In this section, we focus on the TRI-CRIT-CHAIN problem, that was shown to be NP-
hard even on a single processor (Aupy et al, 2012b). We derive an FPTAS (Fully
Polynomial-Time Approximation Scheme) to solve the general problem with replica-
tion and re-execution on p processors. We start with some preliminaries in Section 3.1
that allow us to characterize the shape of an optimal solution, and then we detail the
FPTAS algorithm and its proof in Section 3.2.

Note that TRI-CRIT-CHAIN has a solution if and only if S
fmax

≤ D: all tasks
must fit within the deadline when executed at the maximum speed. In this section, we
therefore assume that S

fmax
≤ D, otherwise there is no solution.

3.1 Characterization
While TRI-CRIT-CHAIN is NP-hard even on a single processor, the problem has poly-
nomial complexity if neither replication nor re-execution can be used. Indeed, each
task is executed only once, and the energy is minimized when all tasks are running at
the same speed. Note that this result can be found in (Aupy et al, 2012a).

Lemma 1. Without replication or re-execution, solving TRI-CRIT-CHAIN can be done
in polynomial time, and each task is executed at speed max

(
frel,

S
D

)
.

Proof. For a linear chain of tasks, all tasks can be mapped on the same processor,
and scheduled following the dependencies. No task may start earlier by using another
processor, and all tasks run at the same speed. Since there is no replication nor re-
execution, each task must be executed at least at speed frel for the reliability constraint.
If S/frel > D, then the tasks should be executed at speed S/D so that the deadline
constraint is matched (recall that S =

∑n
i=1 wi), hence the result. This is feasible

because S/D ≤ fmax.
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Next, accounting for replication and re-execution, we characterize the shape of
an optimal solution. For linear chains, it turns out that with a single processor, only
re-execution will be used, while with more than two processors, there is an optimal
solution that does not use re-execution, but only replication.

Lemma 2 (Replication or re-execution). When there is only one processor, it is opti-
mal to only use re-execution to solve TRI-CRIT-CHAIN. When there are at least two
processors, it is optimal to only use replication to solve TRI-CRIT-CHAIN.

Proof. With one processor, the result is obvious, since replication cannot be used. With
more than one processor, if re-execution was used on task Ti, for 1 ≤ i ≤ n, we can
derive a solution with the same energy consumption and a smaller execution time by
using replication instead of re-execution. Indeed, all instances of tasks Tj , for j < i,
must finish before Ti starts its execution, and similarly, all instances of tasks Tj , for
j > i, cannot start before both copies of Ti has finished its execution. Therefore, there
are always at least two processors available when executing Ti for the first time, and
the execution time is reduced when executing both copies of Ti in parallel (replication)
rather than sequentially (re-execution).

We further characterize the shape of an optimal solution by showing that two copies
of the same task can always be executed at the same speed.

Lemma 3 (Speed of the replicas). For a linear chain, when a task is executed two
times, it is optimal to have both replicas executed at the same speed.

Proof. With one processor, we have seen in the previous lemma that it was optimal
to only use re-execution. The proof for re-execution has been done by Aupy et al
(2012b): by convexity of the energy and reliability functions, it is always advantageous
to execute two times the task at the same speed, even if the application is not a linear
chain.

With two or more processors, we have seen in the previous lemma that it was op-
timal to only use replication. Let us consider a solution for which there exists i such
that task Ti is executed twice at speeds f1 < f2. Then the solution where task Ti is
executed twice at speed f1+f2

2 meets the reliability and makespan constraints, and has
a lower energy consumption.

Reliability

1−
(
1−Ri

(
f1+f2

2

))2

−(1−(1−Ri(f1))(1−Ri(f2)))

=−
(

2λ0wi
e−d(f1+f2)/2

f1 + f2

)2

+

(
λ0wi

e−df1

f1

)(
λ0wi

e−df2

f2

)
= λ20w

2
i

(
e−d(f1+f2)

f1f2
− 4

e−d(f1+f2)

(f1 + f2)2

)
This is strictly positive because (f1 − f2)2 = f21 + f22 − 2f1f2 > 0, and therefore

(f1 + f2)2 > 4f1f2. Therefore, the reliability of the new solution is greater than the
reliability of the solution with distinct speeds.

Makespan The previous execution time of the task was wi

f1
since f1 < f2 and both

executions are simultaneous (see Proof of Lemma 2). It becomes 2wi

f1+f2
< wi

f1
, and

therefore the deadline constraint is still met.
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Energy Finally, we show that we have a better energy consumption:

2wi

(
f1+f2

2

)2

−wi
(
f22 +f21

)
= −wi

2
(f1−f2)

2
< 0

To conclude, we have shown that if we have a solution where a task is executed
twice, but both executions are not at the same speed, then we can exhibit a better
solution (in terms of energy consumption) that meets the reliability and makespan con-
straints with one unique speed.

We can further characterize an optimal solution by providing detailed information
about the execution speeds of the tasks, depending on whether they are executed only
once, re-executed, or replicated.

Lemma 4. If D > S
frel

, then in any optimal solution of TRI-CRIT-CHAIN, all tasks
that are neither re-executed nor replicated are executed at speed frel.

Proof. The proof for p = 1 (re-execution) can be found in (Aupy et al, 2012b). We
prove the result for p ≥ 2, which corresponds to the case with replication and no re-
execution (see Lemma 2). Note first that since D > S

frel
, if no task is replicated, we

have enough time to execute all tasks at speed frel.
Now, let us consider that task Ti is replicated at speed fi (recall that both replicas

are executed at the same speed, see Lemma 3), and task Tj is executed only once at
speed fj . Then, we have fj ≥ frel (reliability constraint on Tj), and 1√

2
frel ≥ fi

(otherwise, executing Ti only once at speed frel would improve both the energy and
the execution time while matching the reliability constraint).

If fj > frel, let us show that we can rather execute Tj at speed frel and Ti
at a new speed f ′i>fi, while keeping the same deadline: wi

f ′i
+

wj

frel
= wi

fi
+
wj

fj
. The

energy consumption is then 2wif
′2
i + wjf

2
rel. Moreover, we know that the minimum

of the function 2wif
2
1 + wjf

2
2 , given that wi

f1
+
wj

f2
is a constant (where f1 and f2

are the unknowns), is obtained for f1 = 1
21/3

f2, thanks to Theorem 1 by Aupy et al
(2012a), recalled in Appendix A: the constraints are identical to a fork graph with
w0 = wj and w1 = w2 = wi, and hence f1 = f2 × w1

(2w3
1)

1
3

. Therefore, if the optimal

speed of Tj (that is f2) is strictly greater than frel, then the optimal speed for Ti is
f ′i =f1 = 1

21/3
f2 >

1
21/2

f2 >
1

21/2
frel, that means that we can improve both energy

and execution time by executing Ti only once at speed frel. Otherwise, the speed of
Tj is further constrained by frel, hence the previous inequality (f1= 1

21/3
f2) does not

hold anymore, and the function is minimized for f2 = frel. The value of f ′i can be
easily deduced from the constraint on the deadline. This proves that all tasks that are
not replicated are executed at speed frel.

Let Vr be the subset Vr ⊆ V of tasks that are either re-executed or replicated, and
let X =

∑
Ti∈Vr

wi. According to Lemma 4, the other tasks take a time S−X
frel

, and the
remaining time available for tasks of Vr is D − S−X

frel
. Ideally, all tasks are executed at

the same speed fre-ex, as small as possible, so that the deadline constraint is met, as
illustrated in Figure 1. We must also ensure that fre-ex is not smaller than fmin, and if
this speed allows each task of Vr to meet the reliability constraint, then we can derive
the energy of a schedule.

Following Lemma 4, we are able to precisely define fre-ex, and give a closed form
expression of the energy of a schedule when fre-ex is large enough.

RR n° 8107
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Corollary 1. Given a subset Vr of tasks re-executed or replicated, letX =
∑
Ti∈Vr

wi,
and

fre-ex =

 max
(
fmin,

2X
Dfrel−S+X frel

)
if p = 1;

max
(
fmin,

X
Dfrel−S+X frel

)
if p ≥ 2.

Then, if fre-ex ≥ maxTi∈Vr
finf,i, all tasks of Vr are executed twice at speed fre-ex,

and the optimal energy consumption is

(S −X)f2rel + 2Xf2re-ex. (1)

Note that the energy consumption only depends onX , and therefore TRI-CRIT-CHAIN
is equivalent in this case to the problem of finding the optimal set of tasks that have to
be re-executed or replicated.

Proof. Given a deadline D, the problem is to find the set of re-executed (or replicated)
tasks, and the speed of each task. Thanks to Lemma 4, we know that the tasks that
are not in this set are executed at speed frel, and given the set of tasks re-executed
or replicated, we can easily compute the optimal speed to execute each task in order
to minimize the energy consumption. All tasks are executed at the same speed: the
proof for p = 1 (re-execution) can be found in (Aupy et al, 2012b). We prove the
result for p ≥ 2, which corresponds to the case with replication and no re-execution
(see Lemma 2). Suppose that Ti and Tj are executed twice at speeds fi > fj ≥
max(finf,i, finf,i[j]), let f̃ = fifj

wi+wj

wifj+wjfi
. Then fi > f̃ > fj , and therefore,

we can execute both tasks at speed f̃ while keeping the same deadline (wi

f̃
+

wj

f̃
=

wi

fi
+

wj

fj
) and matching the reliability constraints (since f̃ ≥ max(finf,i, finf,i[j]),

then two executions of task Ti or Tj at speed f̃ match the reliability constraint). By
convexity, such an execution gives a smaller energy consumption. We can iterate on all
the tasks that are replicated. Finally, if fre-ex ≥ maxTi∈Vr

finf,i we have the result.
To conclude, we have λ X

fre-ex
+ S−X

frel
= D, with λ= 1 in the case of replication

(p≥2), and λ=2 in the case of re-execution (p=1), hence the corollary.

Re-execution speeds. We are now ready to compute the optimal solution, given a sub-
set Vr ⊆ V . We have not accounted yet for tasks Ti ∈ Vr such that finf,i > fre-ex.
In this case, Ti is executed at speed finf,i, and all the other tasks are (tentatively)
executed at a new speed fnewre-ex ≤ fre-ex such that D is exactly met. We do this iter-
atively until there are no more tasks Ti such that finf,i > fnewre-ex. Using the procedure
COMPUTE Vl(Vr) (see Algorithm 1), we can therefore compute the optimal energy
consumption in a time polynomial in |Vr|. We denote by Vl the set of tasks that are
re-executed at speed finf,i (it is a subset of Vr, the set of tasks that are re-executed).
Note that all tasks of Vr \ Vl are re-executed at the speed fre-ex returned by COM-
PUTE Vl(Vr).

Let (Vl, fre-ex) be the result of COMPUTE Vl(Vr). Then the optimal energy con-
sumption is (S −X)f2rel +

∑
Ti∈Vl

2wif
2
inf,i +

∑
Ti∈Vr\Vl

2wif
2
re-ex .

D0

V \ Vr Vr

frel fre-ex

Figure 1 – Illustration of the set Vr and fre-ex
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Algorithm 1: Computing re-execution speeds; tasks in Vr are re-executed.
procedure COMPUTE Vl(Vr)
begin

V
(0)
l = ∅;

f
(0)
re-ex =

 max
(
fmin,

2X
Dfrel−S+X frel

)
if p = 1;

max
(
fmin,

X
Dfrel−S+X frel

)
if p ≥ 2.

j = 0;
while j = 0 or V (j)

l 6= V
(j−1)
l do

j := j + 1;
V

(j)
l = V

(j−1)
l ∪ {Ti ∈ Vr | finf,i > f

(j−1)
re-ex};

f
(j)
re-ex =


max

(
fmin,

∑
Ti∈Vr\V

(j)
l

2wi

D−S−X
frel
−
∑

Ti∈V
(j)
l

2wi
finf,i

)
if p=1;

max

(
fmin,

∑
Ti∈Vr\V

(j)
l

wi

D−S−X
frel
−
∑

Ti∈V
(j)
l

wi
finf,i

)
if p≥2.

return (V
(j)
l , f

(j)
re-ex);

Corollary 2. If D > S
frel

, TRI-CRIT-CHAIN can be solved using an exponential time
exact algorithm.

Proof. The algorithm computes for every subset Vr of tasks the energy consumption if
all tasks in this subset are re-executed, and it chooses a subset with the minimal energy
consumption, that corresponds to an optimal solution. It takes an exponential time to
compute every subset Vr ⊆ V , with |V | = n.

Thanks to Corollary 1, we are also able to identify problem instances that can be
solved in polynomial time.

Theorem 1. TRI-CRIT-CHAIN can be solved in polynomial time in the following
cases:

1. D ≤ S
frel

(no re-execution nor replication);

2. p = 1, D ≥ 1+c
c

S
frel

, where c is the only positive solution to the polynomial

7X3+21X2−3X−1=0, and hence c = 4
√

2
7 cos 1

3 (π − tan−1 1√
7
)−1 (c ≈

0.2838), and for 1≤ i≤n, finf,i ≤ 2c
1+cfrel (all tasks can be re-executed);

3. p ≥ 2, D ≥ 2 S
frel

, and for 1 ≤ i ≤ n, finf,i ≤ 1
2frel (all tasks can be

replicated).

Proof. First note that when D ≤ S
frel

, the optimal solution is to execute each task only
once, at speed S

D , since S/D ≥ frel. Indeed, this solution matches both reliability
and makespan constraints, and it was proven to be the optimal solution in Lemma 2 by
Aupy et al (2012a) (it is easy to see that replication or re-execution would only increase
the energy consumption).
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Let us now consider that D > S
frel

. We aim at showing that the minimum of the
energy function is reached when the total weight of the re-executed or replicated tasks
is

X =

{
c(Dfrel − S) if p = 1;
(Dfrel − S) if p ≥ 2.

(2)

Necessarily, when this total weight is greater than S, the optimal solution is to re-
execute or replicate all the tasks, hence the theorem. We consider the two cases p = 1
and p ≥ 2.

Case 1 (p = 1). We want to show that the minimum energy is reached when the
total weight of the subset of tasks is exactly c(Dfrel−S). Let I = {i | Ti is executed
twice in the solution}, and let X =

∑
i∈I wi.

We saw in Corollary 1 that the energy consumption cannot be lower than (S −
X)f2rel + 2Xf2re-ex, where fre-ex = 2X

Dfrel−S+X frel. Therefore, we want to mini-
mize

E(X) = (S −X)f2rel + 2X

(
2X

Dfrel − S +X
frel

)2

.

If we differentiate E, we can see that the minimum is reached when

−1 +
24X2

(Dfrel − S +X)2
− 16X3

(Dfrel − S +X)3
= 0,

that is, −(Dfrel − S +X)3 + 24X2(Dfrel − S +X)− 16X3 = 0, or

7X3+21(Dfrel − S)X2

− 3(Dfrel − S)2X − (Dfrel − S)3 = 0.

The only positive solution to this equation is

X = c(Dfrel − S),

and therefore the minimum is reached for this value of X , and then fre-ex = 2c
1+cfrel.

When X ≥ S, re-executing each task is the best strategy to minimize the energy
consumption, and that corresponds to the case D ≥ 1+c

c
S
frel

. The re-execution speed
may then be lower than 2c

1+cfrel. Therefore, it may happen that finf,i > fre-ex for
some task Ti. However, even with a tighter deadline, it would be better to re-execute Ti
at speed 2c

1+cfrel rather than to execute it only once at speed frel. Therefore, since
finf,i ≤ 2c

1+cfrel, it is optimal to re-execute Ti, at the lowest possible speed, i.e., finf,i.
Note that this changes the value of fre-ex, and the call to COMPUTE Vl(V ) (see Algo-
rithm 1) returns tasks that are executed at speed finf,i, together with the re-execution
speed for all the other tasks.

Case 2 (p ≥ 2). Similarly, we want to show that, in this case, the minimum energy
is reached when the total weight of the subset of tasks that are replicated is exactly
Dfrel − S. Let I = {i | Ti is executed twice in the solution}, and let X =

∑
i∈I wi.

We saw in Corollary 1 that the energy consumption cannot be lower than (S −
X)f2rel+2Xf2re-ex where fre-ex = X

Dfrel−S+X frel. Therefore, we want to minimize

E(X) = (S −X)f2rel + 2X

(
X

Dfrel − S +X
frel

)2

.
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If we differentiate E, we can see that the minimum is reached when

−1 +
6X2

(Dfrel − S +X)2
− 4X3

(Dfrel − S +X)3
= 0,

that is, −(Dfrel − S +X)3 + 6X2(Dfrel − S +X)− 4X3 = 0, or

X3+3(Dfrel − S)X2

− 3(Dfrel − S)2X − (Dfrel − S)3 = 0.

The only positive solution to this equation is

X = Dfrel − S,

and therefore the minimum is reached for this value of X , and then fre-ex = 1
2frel.

When X ≥ S, replicating each task is the best strategy to minimize the energy
consumption, and that corresponds to the case D ≥ 2S

frel
. Similarly to Case 1, it is easy

to see that each task should be replicated, even if finf,i > fre-ex, since finf,i ≤ 1
2frel.

The optimal solution can also be obtained with a call to COMPUTE Vl(V ).

3.2 FPTAS for TRI-CRIT-CHAIN

We derive in this section a fully polynomial-time approximation scheme (FPTAS) for
TRI-CRIT-CHAIN, based on the FPTAS for SUBSET-SUM (Cormen et al, 2009), and
the results of Section 3.1. Without loss of generality, we use the term replication for
either re-execution or replication, since both scenarios have already been clearly iden-
tified. The problem consists in identifying the set of replicated tasks Vr, and then the
optimal solution can be derived from Corollary 1; it depends only on the total weight
of these tasks,

∑
Ti∈Vr

wi, denoted in the following as w(Vr).
Note that we do not account in this section for finf,i or fmin for readability rea-

sons: finf,i can usually be neglected because λ0wi/f is supposed to be very small
whatever f , and fmin simply adds subcases to the proofs (rather than an execution at
speed f , the speed should be max(f, fmin)).

First we introduce a few preliminary functions in Algorithm 2, and we exhibit their
properties. These are the basis of the approximation algorithm.

WhenD > S
frel

, X-OPT(V,D, p) returns the optimal value for the weight w(Vr) of
the subset of replicated tasks Vr, i.e., the value that minimizes the energy consumption
for TRI-CRIT-CHAIN, according to Equation (2). The optimality comes directly from
the proof of Theorem 1.

Given a value X , which corresponds to w(Vr), ENERGY(V,D, p,X) returns the
optimal energy consumption when a subset of tasks Vr is replicated.

Then, the function TRIM(L, ε,X) trims a sorted list of numbersL = [L0, · · · , Lm−1]
in time O(m), given L and ε. L is sorted into non decreasing order. The function re-
turns a trimmed list, where two consecutive elements differ by at least a factor (1 + ε),
except the last element, that is the smallest element of L strictly greater than X . This
trimming procedure is quite similar to that used for SUBSET-SUM (Cormen et al,
2009), except that the latter keeps only elements lower than X . Indeed, SUBSET-
SUM can be expressed as follows: given n strictly positive integers a1, . . . , an, and
a positive integer X , we wish to find a subset I of {1, . . . , n} such that

∑
i∈I wi is

as large as possible, but not larger than X . In our case, the optimal solution may be
obtained either by approaching X by below or by above.
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Given a list L = [L0, . . . , Lm−1], ADD-LIST(L, x) adds element x at the end of
list L (i.e., it returns the list [L0, . . . , Lm−1, x]); L+w is the list [L0 +w, . . . , Lm−1 +
w]; and MERGE-LISTS(L,L′) is merging two sorted lists (and returns a sorted list).

Finally, the approximation algorithm is APPROX-CHAIN(V,D, p, ε) (see Algo-
rithm 2), where 0 < ε < 1, and it returns an energy consumption E that is not greater
than (1 + ε) times the optimal energy consumption.

Algorithm 2: Approximation algorithm for TRI-CRIT-CHAIN.
function X-OPT(V,D, p)
begin

S =
∑
Ti∈V wi;

if p = 1 then return c(Dfrel − S);
else return Dfrel − S;

function ENERGY(V,D, p,X)
begin

S =
∑
Ti∈V wi;

if p=1 then return (S−X)f2rel+2X
(

max
(
fmin,

2X
Dfrel−S+X frel

))2
;

else return (S −X)f2rel + 2X
(

max
(
fmin,

X
Dfrel−S+X frel

))2
;

function TRIM(L, ε,X)
begin

m = |L|; L = [L0, . . . , Lm−1]; L′ = [L0]; last = L0;
for i = 1 to m− 1 do

if (last ≤ X and Li > X) or Li > last× (1 + ε) then
L′ = ADD-LIST(L′, Li); last = Li;

return L′;

function APPROX-CHAIN(V,D, p, ε)
begin

X = bX-OPT(V,D, p)c; n = |V |; L(0) = [0];
for i = 1 to n do

L(i) = MERGE-LISTS(L(i−1), L(i−1) + wi);
L(i) = TRIM(L(i), ε/(28× 2n), X);

Let Y1 ≤ Y2 be the two largest elements of L(n);
return min(ENERGY(V,D, p, Y1), ENERGY(V,D, p, Y2));

We now prove that this approximation scheme is an FPTAS:

Theorem 2. APPROX-CHAIN is a fully polynomial-time approximation scheme for
TRI-CRIT-CHAIN.

Proof. We assume that
• if p = 1, then S

frel
< D < 1+c

c
S
frel

< 5 S
frel

;
• if p ≥ 2, then S

frel
< D < 2 S

frel
;

otherwise the optimal solution is obtained in polynomial time (see Theorem 1).
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Let Iinf = {V ′ ⊆ V | w(V ′) ≤ X-OPT(V,D, p)}, and Isup = {V ′′ ⊆ V | w(V ′′) >
X-OPT(V,D, p)}. Note that Iinf is not empty, since ∅ ∈ Iinf .

First we characterize the solution with the following lemma:

Lemma 5. Suppose D > S
frel

. Then in the solution of TRI-CRIT-CHAIN, the subset
of replicated tasks Vr is either an element V ′ ∈ Iinf such that w(V ′) is maximum, or
an element V ′′ ∈ Isup such that w(V ′′) is minimum.

Proof. Recall first that according to Lemma 4, the energy consumption of a linear
chain is not dependent on the number of tasks replicated, but only on the sum of their
weights.

Then the lemma is obvious by convexity of the functions, and because X-OPT
returns the optimal value of w(Vr), the weight of the replicated tasks. Therefore, the
closest the weight of the set of replicated tasks is to the optimal weight, the better the
solution is.

We are now ready to prove Theorem 2. Let X1 = maxV1∈Iinf w(V1), and X2 =
minV2∈Isup

w(V2). Thanks to Lemma 5, the optimal set of replicated tasks Vo is such
that Xo = w(Vo) = X1 or Xo = X2. The corresponding energy consumption is
(Corollary 1):

Eopt=

{
(S −Xo)f

2
rel+ (2Xo)

3

(Dfrel−S+Xo)2
f2rel if p = 1

(S −Xo)f
2
rel+

2X3
o

(Dfrel−S+Xo)2
f2rel if p ≥ 2

The solution returned by APPROX-CHAIN corresponds either to Y1 or to Y2, where
Y1 and Y2 are the two largest elements of the trimmed list. We first prove that at least
one of these two elements, denoted Xa, is such that Xa ≤ Xo ≤ (1 + ε′)Xa, where
ε′ = ε

28 .

Existence of Xa such that Xa ≤ Xo ≤ (1 + ε′)Xa.

(a) If Y2 > X , then Y1 is the value obtained by the FPTAS for SUBSET-SUM (Cor-
men et al, 2009) with the approximation ratio ε′, since it is the largest value not
greater than X , and our algorithm is identical for such values. Moreover, note
that X1 is the optimal solution of SUBSET-SUM by definition, and therefore
Y1 ≤ X1 < (1 + ε′)Y1. If Xo = X1, the value Xa = Y1 satisfies the property.

If Xo = X2, we prove that the property remains valid, by considering the
SUBSET-SUM problem with a boundX2 instead ofX . Then, since Y2 > X , we
have Y2 ≥ X2 by definition of X2. Moreover, APPROX-CHAIN is not removing
any element of the list greater than Y2, and therefore all elements between X
and X2 are kept, similarly to the FPTAS for SUBSET-SUM. If Y2 = X2, then
Xa = Y2 satisfies the property. Otherwise, Y1 is the result of the FPTAS for
SUBSET-SUM with a bound X2, whose optimal solution is X2, and therefore
Y1 is such that Y1 ≤ X2 < (1 + ε′)Y1; Xa = Y1 satisfies the property.

(b) If Y2 ≤ X , no elements greater than X have been removed from the lists, and
APPROX-CHAIN has been identical to the FPTAS for SUBSET-SUM. Then,
Xa = Y2 is the solution, that is valid both for SUBSET-SUM applied with the
original bound X (optimal solution X1), and with the modified bound X2 (opti-
mal solutionX2). Therefore, Y2 ≤ X1 < (1+ε′)Y2 and Y2 ≤ X2 < (1+ε′)Y2,
which concludes the proof.

RR n° 8107



Approximation algorithms for energy/reliability/makespan optimization problems 16

We have shown that there always is Xa (either Y1 or Y2) such that Xa ≤ Xo <
(1 + ε′)Xa. Next, we show that the energy Ea obtained with this value Xa is such that
Eopt ≤ Ea ≤ (1 + ε)Eopt.

Approximation ratio on the energy: Ea ≤ (1 + ε)Eopt. Let us consider first that
p ≥ 2. Then we have

Ea = (S −Xa)f2rel +
2X3

a

(Dfrel − S +Xa)2
f2rel.

Re-using the previous inequalities on Xa, we obtain:

Ea
f2rel

≤ S − Xo

1 + ε′
+

2X3
o

(Dfrel − S + Xo

1+ε′ )
2
.

Then, this can be rewritten so that Eopt appears:

Ea
f2rel

≤
(

1

1 + ε′
(S −Xo) +

ε′

1 + ε′
S

)
+

(
(1 + ε′)2

2X3
o

((1 + ε′)(Dfrel − S) +Xo)2

)

Ea
f2rel

≤ ((S −Xo) + ε′S)

+

(
(1 + ε′)2

2X3
o

(Dfrel − S +Xo)2

)
≤ ((S −Xo) + ε′S)

+

(
(1 + ε′)2(

Eopt
f2rel

− (S −Xo))

)
≤ (1 + ε′)2

Eopt
f2rel

− ((1 + ε′)2 − 1)(S −Xo) + ε′S

≤ (1 + ε′)2
Eopt
f2rel

+ ε′S.

The case p = 1 leads to the same inequality; the only difference is in the energyEa,
where 2X3

a is replaced by (2Xa)3, and the same difference holds for Eopt (2X3
o is

replaced by (2Xo)
3).

Finally, note that with no reliability constraints, each task is executed only once at
speed S/D, and therefore the energy consumption is at least Eopt ≥ S S2

D2 . Moreover,
by hypothesis, D < 5S

frel
(for p ≥ 1). Therefore, S <

25Eopt

f2
rel

and Ea

f2
rel

< (1 +

ε′)2
Eopt

f2
rel

+ ε′
25Eopt

f2
rel

.

We conclude that
Ea
Eopt

< 1 + 27ε′ + ε′2 < 1 + 28ε′ = 1 + ε.
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Conclusion. The energy consumption returned by APPROX-CHAIN, denoted as
Ealgo, is such that Ealgo ≤ Ea, since we take the minimum out of the consump-
tion obtained for Y1 or Y2, and Xa is either Y1 or Y2. Therefore,

Ealgo ≤ (1 + ε)Eopt.

It is clear that the algorithm is polynomial both in the size of the instance and in 1
ε ,

given that the trimming function and APPROX-CHAIN have the same complexity as in
the original approximation scheme for SUBSET-SUM (see Cormen et al (2009)), and
all other operations are polynomial in the problem size (X-OPT, ENERGY).

4 Independent tasks
In this section, we focus on the problem of scheduling independent tasks, TRI-CRIT-
INDEP. Similarly to TRI-CRIT-CHAIN, we know that TRI-CRIT-INDEP is NP-hard,
even on a single processor. We first prove in Section 4.1 that there exists no constant
factor approximation algorithm for this problem, unless P=NP. We discuss and char-
acterize solutions to TRI-CRIT-INDEP in Section 4.2, while highlighting the intrinsic
difficulty of the problem. The core result is a constant factor approximation algorithm
with a relaxation on the constraint on the makespan (Section 4.3).

It is more difficult to characterize the feasibility of the problem with independent
tasks when p ≥ 2 than for TRI-CRIT-CHAIN. Indeed, deciding whether there is a
solution or not is NP-hard (trivial reduction from 2-PARTITION with p = 2 and a tight
deadline: S/2fmax = D).

4.1 Inapproximability of TRI-CRIT-INDEP

For TRI-CRIT-INDEP, a λ-approximation algorithm is a polynomial-time algorithm
that returns a solution of energy consumptionEalgo ≤ λEopt, whereEopt is the energy
consumption of the optimal solution, if there is a solution to the problem. Because the
feasibility problem is NP-hard, we prove that there is no λ-approximation algorithm,
unless P=NP, because such an algorithm would allow us to decide on the feasibility of
the problem, and hence to solve in polynomial time an NP-complete problem.

Lemma 6. For all λ > 1, there does not exist any λ-approximation algorithm for
TRI-CRIT-INDEP, unless P=NP.

Proof. Let us assume that there is a λ-approximation algorithm for TRI-CRIT-IN-
DEP. We consider an instance I1 of 2-PARTITION: given n strictly positive integers
a1, . . . , an, does there exist a subset I of {1,. . . ,n} such that

∑
i∈I ai =

∑
i/∈I ai? Let

S =
∑n
i=1 ai.

We build the following instance I2 of our problem. We have n independent tasks Ti
to be mapped on p = 2 processors, and:

• task Ti has a weight wi = ai;
• fmin = frel = fmax = S/2;
• D = 1.

We use the λ-approximation algorithm to solve I2, and the solution of the algorithm
Ealgo is such that Ealgo ≤ λEopt, where Eopt is the optimal solution. We consider the
two following cases.
(i) If the λ-approximation algorithm returns a solution, then necessarily all tasks are
executed exactly once at speed fmax, since

∑n
i=1 wi/fmax = 2 and there are two

processors. Moreover, because of the makespan constraint, the load on each processor
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is equal. Let I be the indices of the tasks executed on the first processor. We have∑
i∈I ai =

∑
i/∈I ai, and therefore I is also a solution to I1.

(ii) If the λ-approximation algorithm does not return a solution, then there is no solution
to I1. Otherwise, if I is a solution to I1, there is a solution to I2 such that tasks of I
are executed on the first processor, and the other tasks are executed on the second
processor. Since Ealgo ≤ λEopt, the approximation algorithm should have returned a
valid solution.

Therefore, the result of the algorithm for I2 allows us to conclude in polynomial
time whether there is a solution to the instance I1 of 2-PARTITION or not. Since 2-
PARTITION is NP-complete (Garey and Johnson, 1990), the inapproximability result is
true unless P=NP.

4.2 Characterization
As discussed in Section 1, the problem of scheduling independent tasks is usually
close to a problem of load balancing, and can be efficiently approximated for vari-
ous mono-criterion versions of the problem (minimizing the makespan or the energy,
for instance). However, the tri-criteria problem turns out to be much harder, and cannot
be approximated, as seen in Section 4.1, even when reliability is not a constraint.

Adding reliability further complicates the problem, since we no longer have the
property that on each processor, there is a constant execution speed for the tasks exe-
cuted on this processor. Indeed, some processors may process both tasks that are not
replicated (or re-executed), hence at speed frel, and replicated tasks at a slower speed.
Similarly to Section 3.2, we use the term replication for either re-execution or replica-
tion; if a task is replicated, it means it is executed two times, and it appears two times
in the load of processors, be it the same processor or two distinct processors.

Furthermore, contrary to the TRI-CRIT-CHAIN problem, we do not always have
the same execution speed for both executions of a task, as in Lemma 3:

Lemma 7. In an optimal solution of TRI-CRIT-INDEP, if a task Ti is executed twice:
• if both executions are on the same processor, then both are executed at the same

speed that is at most 1√
2
frel;

• however, when the two executions of this task are on distinct processors, then
they are not necessarily executed at the same speed. Furthermore, one of the two
speeds can be greater than 1√

2
frel.

Moreover, we have wi < 1√
2
Dfrel.

Proof. We start by proving the properties on the speeds. When both executions oc-
cur on the same processor, this property was shown by Aupy et al (2012b): a single
execution at speed frel leads to a better energy consumption (and a lower execution
time).

In the case of distinct processors, we give below an example in which the optimal
solution uses different speeds for a replicated task, with one speed greater than 1√

2
frel.

Note that one of the speeds is necessarily at most 1√
2
frel, otherwise a solution with

only one execution of this task at speed frel would be better, similarly to the case with
re-execution.

Consider a problem instance with two processors, frel = fmax, D = 6.4
fmax

, and
three tasks such that w1 = 5, w2 = 3, and w3 = 1. Because of the time constraints, T1
and T2 are necessarily executed on two distinct processors, and neither of them can be
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re-executed on its processor. The problem consists in scheduling task T3 to minimize
the energy consumption. There are three possibilities:

• T3 is executed only once on any of the processors, at speed frel = fmax;
• T3 is executed twice on the same processor; it is executed on the same processor

as T2, hence having an execution time of D − w2

fmax
= 3.4

fmax
, and therefore both

executions are done at a speed 2
3.4fmax;

• T3 is executed once on the same processor as T1 at a speed 1
1.4fmax, and once

on the other processor at a speed 1
3.4fmax.

It is easy to see that the minimum energy consumption is obtained with the last solution,
and that 1

1.4fmax >
1√
2
frel, hence the result.

Finally, note that since at least one of the executions of the task should be at a
speed lower than 1√

2
frel, and since the deadline is D, in order to match the deadline,

the weight of the replicated task has to be strictly lower than 1√
2
Dfrel.

Because of this lemma, usual load balancing algorithms are likely to fail, since
processors handling only non-replicated tasks should have a much higher load, and
speeds of replicated tasks may be very different from one processor to another in the
optimal solution.

We now derive lower bounds on the energy consumption, that will be useful to
design an approximation algorithm in the next section.

Lemma 8 (Lower bound without reliability). The optimal solution of TRI-CRIT-IN-
DEP cannot have an energy lower than S3

(pD)2 .

Proof. Let us consider the problem of minimizing the energy consumption, with a
deadline constraint D, but without accounting for the constraint on reliability. A lower
bound is obtained if the load on each processor is exactly equal to S

p , and the speed of
each processor is constant and equal to S

pD . The corresponding energy consumption is

S ×
(
S
pD

)2
, hence the bound.

However, if the speed S
pD is small compared to frel, the bound is very optimistic

since reliability constraints are not matched at all. Indeed, replication must be used in
such a case. We investigate bounds that account for replication in the following, using
the optimal solution of the TRI-CRIT-CHAIN problem.

Lemma 9 (Lower bound using linear chains). For the TRI-CRIT-INDEP problem, the
optimal solution cannot have an energy lower than the optimal solution to the TRI-
CRIT-CHAIN problem on a single processor with a deadline pD, where the weight of
the re-executed tasks is lower than 1√

2
Dfrel.

Proof. We can transform any solution to the TRI-CRIT-INDEP problem into a solution
to the TRI-CRIT-CHAIN problem with deadline pD and a single processor. Tasks are
arbitrarily ordered as a linear chain, and the solution uses the same number of execu-
tions and the same speed(s) for each task. It is easy to see that the TRI-CRIT-INDEP
problem is more constrained, since the deadline on each processor must be enforced.
The constraint on the weights of the re-executed tasks comes from Lemma 7. There-
fore, the solution to the TRI-CRIT-CHAIN problem is a lower bound for TRI-CRIT-IN-
DEP.
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The optimal solution may however be far from this bound, since we do not know if
the tasks that are re-executed on a chain with a long deadline pD can be executed at the
same speed when the deadline is D. The constraint on the weight of the re-executed
tasks allows us to improve slightly the bound, and this lower bound is the basis of the
approximation algorithm that we design for TRI-CRIT-INDEP.

4.3 Approximation algorithm for TRI-CRIT-INDEP

We have seen in Section 4.1 that there exists no constant factor approximation algo-
rithm for TRI-CRIT-INDEP, unless P=NP, even without accounting for the reliability
constraint. This is due to the constraint on the makespan and the maximum speed fmax.
Therefore, in order to provide a constant factor approximation algorithm, we relax the
constraint on the makespan and propose an (α, β)-approximation algorithm. The so-
lution Ealgo is such that Ealgo ≤ α × Eopt, where Eopt is the optimal solution with
the deadline constraint D, and the makespan of the solution returned by the algorithm,
Malgo, is such that Malgo ≤ β ×D.

If the original problem with deadline D has no solution, because of the deadline
relaxation, the (α, β)-approximation algorithm may or may not return a solution (con-
trarily to λ-approximation algorithms as in the proof of Lemma 6), but then there is no
guarantee to ensure because there is no optimal solution. Therefore, we do not consider
such cases for proving the correctness and guarantee of the algorithm. In particular, we
assume that for all i, wi/fmax ≤ D, and that S/pfmax ≤ D, otherwise we know that
there is no solution.

The result of Section 4.1 means that for all α>1, there is no (α, 1)-approximation
algorithm for TRI-CRIT-INDEP, unless P=NP. Therefore, we present an algorithm that
realizes a (1 + 1

β2 , β)-approximation, where β can be slightly smaller than 2 and can

take any arbitrarily large value: β ≥ max
(
2− 3

2p+1 , 2−
p+2
4p+2

)
.

Algorithm. In the first step of the algorithm, we schedule each task with a big weight
alone on one processor, with no replication. A task Ti is considered as big if wi ≥
max(Sp , Dfrel). This step is done in polynomial time: we sort the tasks by non-
increasing weights, and then we check whether the current task is such that wi ≥
max(Sp , Dfrel). If it is the case, we schedule the task alone on an unused processor
and we let S = S − wi and p = p − 1. The procedure ends when the current task
is small enough, i.e., all remaining tasks are such that wi < max(Sp , Dfrel), with
the updated values of S and p. Note that there are always enough unused processors
because selected big tasks are such that wi ≥ S

p , and therefore there cannot be more
than p such tasks (and this is true at each step). When p = 1, either there is only one
remaining task of size S, or there are only small tasks left.

These big tasks can be safely ignored in the remainder of the algorithm, hence the
abuse of notations S and p for the remaining load and the remaining processors. Indeed,
we will prove that this first step of the algorithm takes decisions that are identical to
the optimal solution, and therefore these tasks that are executed once, alone on their
processor, have the same energy consumption and the same deadline as in the optimal
solution. The next step depends on the remaining load S:

• If S > pDfrel, i.e., the remaining load is large enough, we do not use replica-
tion, but we schedule the tasks at speed S

pD , using a simple scheduling heuristic,
DECREASING-FIRST-FIT (Graham, 1969). Tasks are numbered by non increas-
ing weights, and at each time step, we schedule the current task on the least
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Figure 2 –
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1 + 1
β2 , β

)
-approximation algorithm for independent tasks
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loaded processor. Thanks to the lower bound of Lemma 8, the energy consump-
tion is not greater than the optimal energy consumption, and we determine β
such that the deadline is enforced.

• If S ≤ pDfrel, the previous bound is not good enough, and therefore we use the
FPTAS on a linear chain of tasks with deadline pD for TRI-CRIT-CHAIN (see
Theorem 2). The FPTAS is called with

ε = min

(
2wmin

3S

(
fmin

frel

)2

,
1

3β2

)
, (3)

where wmin = min1≤i≤n wi. Note that it is slightly modified so that only tasks
of weight w < 1√

2
Dfrel can be replicated, and that we enforce a minimum

speed fmin. The FPTAS therefore determines which tasks should be executed
twice, and it fixes all execution speeds.
We then use DECREASING-FIRST-FIT in order to map the tasks onto the p pro-
cessors, at the speeds determined earlier. The new set of tasks includes both ex-
ecutions in case of replication, and tasks are sorted by non increasing execution
times (since all speeds are fixed). At each time step, we schedule the current task
on the least loaded processor. If some tasks cannot fit in one processor within the
deadline βD, we re-execute them at speed wi

βD on two processors. Thanks to the
lower bound of Lemma 9, we can bound the energy consumption in this case.

We illustrate the algorithm on an example in Figure 2, where eleven tasks must be
mapped on six processors. For each task, we represent its execution speed as its height,
and its execution time as its width. There are two big tasks, of weights w1 and w2,
that are each mapped on a distinct processor. Then, we have p = 4 and we call
APPROX-CHAIN with deadline 4D; tasks T8 and T9 are replicated. Finally, DEC-
REASING-FIRST-FIT greedily maps all instances of the tasks, slightly exceeding the
original bound D, but all tasks fit within the extended deadline.

This algorithm leads to the following theorem:

Theorem 3. For the problem TRI-CRIT-INDEP, there are
(

1 + 1
β2 , β

)
-approximation

algorithms, for all β ≥ max
(
2− 3

2p+1 , 2−
p+2
4p+2

)
, that run in polynomial time.

Before proving Theorem 3, we give some preliminary results: we prove below the
optimality of the first step of the algorithm, i.e., the optimal solution would schedule
tasks of weight greater than max(Sp , Dfrel) alone on a processor:

Lemma 10. In any optimal solution to TRI-CRIT-INDEP, each task Ti such that wi ≥
max(Sp , Dfrel) is executed only once, and it is alone on its processor.

Sketch of proof. Let us prove the result by contradiction. Suppose that there exists a
task Ti such that wi ≥ max(Sp , Dfrel), and that this task is executed on processor p1.
Suppose also that there is another task Tj executed on p1, with wj ≤ wi. Necessarily,
there exists a processor, say p2, whose load is smaller than S

p , since the load of p1 is
strictly greater than S

p . Consider the energy of the tasks executed on processors p1
and p2. It is strictly better to execute task Tj on processor p2, and then Ti is executed
alone on processor p1, at a speed wi

D ≥ frel. The detailed proof can be found in
Appendix B.

Next, we prove a lemma that will allow us to tackle the case where the load is large
enough (S > pDfrel), and we obtain a minimum on the approximation ratio of the
deadline β.
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Lemma 11. For the problem TRI-CRIT-INDEP where each task Ti is such that wi <
max(Sp , Dfrel), scheduling each task only once at speed max(frel,

S
pD ) with the

DECREASING-FIRST-FIT heuristic leads to a makespan of at most βD, with β =

max
(
2− 3

2p+1 , 2− p+2
4p+2

)
.

Note that we introduce max(Sp , Dfrel) since the lemma is also used in the case
S ≤ pDfrel. Also, since β is increasing with p and the bound is computed in fact for
a number of processors smaller than the original one (some processors are dedicated to
big tasks), the value of β computed with the total number of processors p is not smaller
and it is possible to achieve a makespan of at most βD.

Proof. Let llpt be the maximal load of the processors after applying DECREASING-
FIRST-FIT on the weights of the tasks. Let us find β such that llpt

pD
S ≤ βD: this

means that within a time βD, we can schedule all tasks at speed S
pD , and therefore

at speed max(frel,
S
pD ), since the most loaded processor succeeds to be within the

deadline βD.
Let lopt be the maximal load of the processors in an optimal solution, and let Ti be

the last task executed on the processor with the maximal load llpt by DECREASING-
FIRST-FIT. We have either wi ≤ lopt/3 or wi > lopt/3.

• If wi ≤ lopt/3, we know that lopt≤ llpt≤
(
4
3−

1
3p

)
lopt, since DECREASING-FIRST-

FIT is a
(

4
3 −

1
3p

)
-approximation (Graham, 1969). We want to compare lopt to S/p

(average load). We consider the solution of DECREASING-FIRST-FIT. At the time
when Ti was scheduled, all the processors were at least as loaded as the one on which
Ti was scheduled, and hence we obtain a lower bound on S: S ≥ (p−1)(llpt−wi)+llpt.
Furthermore, llpt − wi ≥ 2

3 lopt (because llpt ≥ lopt and wi ≤ lopt/3). Finally, S ≥
(p − 1) 2

3 lopt + lopt, which means that lopt ≤ S
p

3p
2p+1 , and llpt ≤

(
4
3 −

1
3p

)
3p

2p+1
S
p =(

2− 3
2p+1

)
S
p .

In this case, with β = 2− 3
2p+1 , we can execute all the tasks at speed max(frel,

S
pD )

within the deadline βD.

• If wi > lopt/3, it is known that DECREASING-FIRST-FIT is optimal for the execu-
tion time (Graham, 1969), i.e., lopt = llpt, and we aim at finding an upper bound on lopt.
We assume in the following that tasks are numbered by non increasing weights.

If wi ≥ S
p , then we show that Ti is the only task executed on its processor (re-

call that Ti is the last task executed on the processor with the maximal load by DEC-
REASING-FIRST-FIT). Indeed, there cannot be p tasks of weight at least S

p , hence
i < p, and Ti is the first task scheduled on its processor. Moreover, if DECREASING-
FIRST-FIT were to schedule another task on the processor of Ti, then this would mean
that the p− 1 other processors all have a load greater than wi, and hence the total load
would be greater than S. Then, since wi < max(Sp , Dfrel) and wi ≥ S

p , we have
wi < Dfrel and we can execute each task at speed frel = max(frel,

S
pD ) within a

deadline D. Indeed, the maximal load is then wi, by definition of Ti. Therefore, the
result holds (with β = 1).

Now suppose that wi < S
p . In that case, if Ti was the only task executed on

its processor, then we would have lopt = llpt <
S
p , which is impossible since S =
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∑p
k=1 lk ≤ plopt. Therefore, Ti is not the only task executed on its processor. A direct

consequence of this fact is that p+ 1 ≤ i. Indeed, DECREASING-FIRST-FIT schedules
the p largest tasks on p distinct processors; since Ti is the last task scheduled on its
processor, but not the only one, then Ti is not among the p first scheduled tasks. Also,
there are only two tasks on the processor executing Ti, since wi > lopt/3 and the tasks
scheduled before Ti have a weight at least equal to wi. Finally, p+ 1 ≤ i ≤ 2p.

After scheduling task Tj on processor j for 1 ≤ j ≤ p, DECREASING-FIRST-
FIT schedules task Tp+j on processor p − j + 1 for 1 ≤ j ≤ i − p, and Ti is
therefore scheduled on processor p2p−i+1, together with task T2p−i+1, and we have
wi + w2p−i+1 = lopt. Note that because the wj are sorted, S ≥

∑
j≤i wj ≥ iwi. We

also have w2p−i+1 <
S
p : indeed, when Ti was scheduled, the load of the p processors

was at least equal to the load of the processor where T2p−i+1 was scheduled. Hence,
w2p−i+1 cannot be greater than S

p . Then, since w2p−i+1 = lopt − wi, wi > lopt − S
p ,

and finally lopt − S
p < wi ≤ S

i .
In order to find an upper bound on lopt, we provide a lower bound to S, as a function

of wi:

S =

n∑
j=1

wj ≥
i∑

j=1

wj =

2p−i+1∑
j=1

wj +

i∑
j=2p−i+2

wj

≥ (2p− i+ 1)w2p−i+1 + (2(i− p)− 1)wi

= (2p− i+ 1)(lopt − wi) + (2(i− p)− 1)wi

= (2p− i+ 1)lopt + (3i− 4p− 2)wi = f(wi).

We then have f ′(wi) = 3i− 4p− 2, and we consider two cases.
If f ′(wi) ≥ 0, then we have i ≥ 4p+2

3 , and finally S ≥ iwi >
4p+2

3

(
lopt − S

p

)
.

We can conclude that lopt <
S
p

(
1 + 3p

4p+2

)
= S

p

(
2− p+2

4p+2

)
.

Otherwise, f ′(wi) < 0 and f is a decreasing function of wi, i.e., its minimum is
reached when wi is maximal, and S ≥ f(Si ). Hence, S ≥ (2p − i + 1)lopt + (3i −
4p− 2)Si . Since i ≤ 2p, 2p− i+ 1 > 0 and

lopt ≤
S

i

(
i− 3i+ 4p+ 2

2p− i+ 1

)
=

2S

i
.

Finally, since i ≥ p+ 1, lopt ≤ 2S
p+1 = S

p

(
2− 2

p+1

)
.

Overall, if wi > lopt/3, we have the bound

lopt ≤
S

p
×max

(
2− p+ 2

4p+ 2
, 2− 2

p+ 1

)
.

Therefore, for β ≥ max
(

2− p+2
4p+2 , 2−

2
p+1

)
, we can execute all the tasks on the

processor of maximal load (and hence all the tasks) at speed max(frel,
S
pD ) within the

deadline βD in the case wi > lopt/3.

We can now conclude the proof of Lemma 11 by saying that for β = max
(

2− 3
2p+1 , 2−

p+2
4p+2 , 2−

2
p+1

)
,

i.e., β = max
(

2− 3
2p+1 , 2−

p+2
4p+2

)
, scheduling each task only once at speed max(frel,

S
pD )

with the DECREASING-FIRST-FIT heuristic leads to a makespan of at most βD.
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We are now ready to prove Theorem 3.

Proof of Theorem 3. First, thanks to Lemma 10, we know that the first step of the
algorithm takes decisions that are identical to the optimal solution, and therefore these
tasks that are executed once, alone on their processor, have the same energy consump-
tion as the optimal solution and the same deadline. We can therefore safely ignore them
in the remainder of the proof, and consider that for each task Ti, wi < max(Sp , Dfrel).

In the case where S > pDfrel, we use the fact that S( S
pD )2 is a lower bound on

the energy (Lemma 8). Each task is executed once at speed max(frel,
S
pD ) = S

pD , and
therefore the energy consumption is equal to the lower bound S( S

pD )2. The bound on
the deadline is obtained by applying Lemma 11.

We now focus on the case S ≤ pDfrel. Therefore, in the following, max( S
pD , frel) =

frel. The algorithm runs the FPTAS on a linear chain of tasks with deadline pD, and
ε as defined in Equation (3). The FPTAS returns a solution on the linear chain with
an energy consumption EFPTAS such that EFPTAS ≤ (1 + ε)

2
Echain, where Echain is the

optimal energy consumption for TRI-CRIT-CHAIN with deadline pD on a single pro-
cessor. According to Lemma 9, since the solution for the linear chain is a lower bound,
the optimal solution of TRI-CRIT-INDEP is such that Eopt ≥ Echain.

For each task Ti, let f chain
i be the speed of its execution returned by the FPTAS for

TRI-CRIT-CHAIN. Note that in case of re-execution, then both executions occur at the
same speed (Lemma 3). We now consider the TRI-CRIT-INDEP problem with the set
of tasks Ṽ : for each task Ti, T̃i ∈ Ṽ and its weight is w̃i = wi

frel
f chain
i

; moreover, if Ti is

re-executed, we add two copies of T̃i in Ṽ . Then,
∑
T̃i∈Ṽ

w̃i

frel
= pD by definition of

the solution of TRI-CRIT-CHAIN.
Let β = max(2 − 3

2p+1 , 2 −
p+2
4p+2 ) be the relaxation on the deadline that we have

from Lemma 11. The goal is to map all the tasks of Ṽ at speed frel within the dead-
line βD, which amounts to mapping the original tasks at the speeds assigned by the
FPTAS:

• If there are tasks T̃i such that w̃i

frel
> βD, we execute them at speed w̃i

βD alone
on an unused processor, so that they reach exactly the deadline βD. Note that in
this case, the energy consumption of the algorithm becomes greater than EFPTAS,
since we execute these tasks faster than the FPTAS to fit on the processor.

• Tasks T̃i such that D ≤ w̃i

frel
≤ βD are executed alone on an unused processor

at speed frel.

• For the remaining tasks and processors, we use DECREASING-FIRST-FIT as in
Lemma 11. Since the previous tasks take a time of at least D in the solution of
the FPTAS, and they are mapped alone on a processor, we can safely remove
them and apply the lemma. Note that the number of processors may now be
smaller than p, hence leading to a smaller bound β.

In the end, all tasks are mapped within the deadline βD (where β is computed with
the original number of processors). There remains to check the energy consumption of
the solution returned by this algorithm.

If all tasks are such that w̃i ≤ βDfrel,
Ealgo = EFPTAS ≤ (1 + ε)

2
Echain ≤ (1 + ε)

2
Eopt.
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According to Equation (3), ε ≤ 1
3β2 , and therefore

Ealgo ≤
(

1 +
2

3β2
+

1

9β4

)
Eopt ≤

(
1 +

1

β2

)
Eopt.

Otherwise, let Ṽ ′ be the set of tasks T̃i such that w̃i > βDfrel. For T̃i ∈ Ṽ ′,
wi > βDf chain

i . Since wi < Dfrel (larger tasks have been processed in the first step
of the algorithm), we have f chain

i < frel. This means that Ti belongs to the set of
the tasks that are re-executed by the FPTAS. Hence, since we enforced an additional
constraint, we have wi < 1√

2
Dfrel. The least energy consumed for this task by any

solution to TRI-CRIT-INDEP is therefore obtained when re-executing task Ti on two
distinct processors at speed wi

D , in order to fit within the deadline D. Task Ti appears
two times in Ṽ ′, and we let Ẽ be the minimum energy consumption required in the
optimal solution for tasks of Ṽ ′: Ẽ =

∑
T̃i∈Ṽ ′ wi

(
wi

D

)2
.

The algorithm leads to the same energy consumption as the FPTAS except for the
tasks of Ṽ ′ that are removed from the set X of replicated tasks, and that are executed
at speed wi

βD :

Ealgo = (S −X)f2rel + (2X −
∑
T̃i∈Ṽ ′ wi)f

2
re-ex

+
∑
T̃i∈Ṽ ′ wi

(
wi

βD

)2
.

Since EFPTAS = (S −X)f2rel + 2Xf2re-ex, we obtain

Ealgo = EFPTAS + 1
β2 Ẽ −

∑
T̃i∈Ṽ ′ wif

2
re-ex.

Furthermore, Ẽ ≤ Eopt since it considers only the optimal energy consumption of
a subset of tasks. We have EFPTAS ≤ (1 + ε)2Eopt, and from Lemma 4, it is easy to
see that EFPTAS ≤ Sf2rel, i.e., EFPTAS is smaller than the energy of every task executed
once at speed frel. Hence, EFPTAS ≤ (1+ε)2 min(Eopt, Sf

2
rel), and since ε < 1,

(1 + ε)2 ≤ 1 + 3ε. Finally, EFPTAS ≤ Eopt + 3εSf2rel. Thanks to Equation (3),
3εSf2rel ≤ 2wminf

2
min ≤

∑
T̃i∈Ṽ ′ wif

2
re-ex (note that there are at least two tasks

in Ṽ ′, because tasks are duplicated), and finally

Ealgo ≤ Eopt+ 3εSf2rel+ 1
β2Eopt −

∑
T̃i∈Ṽ ′ wif

2
re-ex

≤
(

1 + 1
β2

)
Eopt.

To conclude, we point out that this algorithm is polynomial in the size of the input
and in 1

ε .

We can improve the approximation ratio on the energy for large values of p. The
idea is to avoid the case in which tasks are replicated by the chain but are not fitting
within βD because the speed at which they are re-executed is too small. To do so, we
fix a value ε∗ = Θ

(
1
p

)
, such that 0 < ε∗ < 1 for p ≥ 24. The variant of the algorithm

is used only when p ≥ 24 (after scheduling the big tasks). The algorithm decides
that the load is large enough when S > pDfrel

1
1+ε∗ , leading to a ((1 + ε∗)2, β)-

approximation in this case. In the other case (S ≤ pDfrel
1

1+ε∗ ), it is possible to
prove that when there are tasks such that w̃i

frel
> βD, then necessarily all tasks are

re-executed. Next we apply Theorem 1 while fixing values for the finf,i’s, so as to
obtain in polynomial time the optimal solution with new execution speeds, that can all
be scheduled within βD using Lemma 11. Details can be found in Appendix C.
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5 Conclusion
In this paper, we have designed efficient approximation algorithms for the tri-criteria
energy/reliability/makespan problem, using replication and re-execution to increase the
reliability, and dynamic voltage and frequency scaling to decrease the energy consump-
tion. Because of the antagonistic relationship between energy and reliability, this tri-
criteria problem is much more challenging than the standard bi-criteria problem, which
aims at minimizing the energy consumption with a bound on the makespan, without ac-
counting for a constraint on the reliability of tasks.

We have tackled two classes of applications. For linear chains of tasks, we propose
a fully polynomial-time approximation scheme. However, we show that there exists no
constant factor approximation algorithm for independent tasks, unless P=NP, and we
are able in this case to propose an approximation algorithm with a relaxation on the
makespan constraint.

As future work, it may be possible to improve the deadline relaxation by using an
FPTAS to schedule independent tasks (Ausiello et al, 1999) rather than DECREASING-
FIRST-FIT (Graham, 1969). Also, an open problem is to find approximation algorithms
for the tri-criteria problem with an arbitrary graph of tasks. Even though efficient
heuristics have been designed with re-execution of tasks (but no replication) by Aupy
et al (2012b), it is not clear how to derive approximation ratios from these heuristics. It
would be interesting to design efficient algorithms using replication and re-execution
for the general case, and to prove approximation ratios on these algorithms. A first
step would be to tackle fork and fork-join graphs, inspired by the study on indepen-
dent tasks. Finally, more sophisticated models for reliability could also be considered,
for instance to guarantee a global reliability constraint or to authorize more than one
backup task.
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Appendices

A Theorem 1 by Aupy et al (2012a)
When the application is a fork (resp. join) execution graph with n+1 tasks T0, T1, . . . , Tn,
the solution that minimizes the energy consumption given a deadline D is the follow-
ing:
• the execution speed of the source (resp. sink) T0 is

f0 =

(∑n
i=1 w

3
i

) 1
3 + w0

D
;

• for the other tasks Ti, 1 ≤ i ≤ n, if f0 ≤ fmax, we have

fi = f0 ×
wi

(
∑n
i=1 w

3
i )

1
3

.

B Proof of Lemma 10
Lemma 10. In any optimal solution to TRI-CRIT-INDEP, each task Ti such that wi ≥
max(Sp , Dfrel) is executed only once, and it is alone on its processor.

Proof. Let us prove the result by contradiction. Suppose that there exists a task T ∗1
such that w∗1 ≥ max(Sp , Dfrel), and that this task is executed on processor p1. Sup-
pose also that there is another task T ∗2 executed on p1, with w∗2 ≤ w∗1 , in an optimal
solution. Necessarily, there exists a processor, say p2, whose load is smaller than S

p ,
since the load of p1 is greater than S

p . Let w1, . . . , wk be the weights of the tasks al-

ready scheduled on p2, at speeds f1, . . . , fk. We have Sk =
∑k
i=1 wi <

S
p ≤ w∗1 . Let

f∗ =
w∗1+w

∗
2

D be the speed at which processor p1 is executing tasks T ∗1 and T ∗2 (because
the load of processor p1 is greater than Dfrel, then with an argument similar to the
one used in Theorem 1, all tasks should be executed at the same speed and the deadline
is tight).
• If Sk + w∗2 ≥ Dfrel, then a lower bound to the optimal solution is E(opt) ≥

(w∗1+w∗2)f2∗+S3
k/D

2, andD2E(opt) ≥ (w∗1+w∗2)3+S3
k (this is the lower bound from

Lemma 8 when we consider each processor independently). A new solution would be
to execute T ∗2 on p2, obtaining an energy E such that D2E = (w∗1)3 + (Sk + w∗2)3
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(the load of each processor is greater than Dfrel), and finally E < E(opt) because
Sk < w∗1 , and hence the contradiction.
• If Sk + w∗2 < Dfrel, all tasks on p2 can be executed at a speed lower than w∗1

D
(since w1 ≥ Dfrel), even when T ∗2 is executed on p2. On the one hand, we increase
the speed of some tasks w1, . . . , wk that were lower than frel in order to gain a time
w∗2/f∗, that is the time required to fit task T ∗2 on p2, while running at the same speed
as in the optimal solution. On the other hand, we decrease the speed of task T ∗1 to use
the time w∗2/f∗ that is now available.

We now prove that if tasks Ta and Tb are executed at speeds fa > fb, then it is
strictly better to decrease fa to ga = fa − ε (with ε > 0), and increase fb to gb, while
keeping the same total execution time, as long as ga ≥ gb. The constraint on execution
time writes

wa
fa

+
wb
fb

= t =
wa

fa − ε
+
wb
gb
,

and therefore gb = wbfa−wbε
tfa−wa−Tε . The difference of energy between the two solutions

can be expressed as a function of ε:

h(ε) = waf
2
a + wbf

2
b − wa(fa − ε)2 − wbg2b ,

and we have h(0) = 0. The derivative is

h′(ε) = 2wa(fa − ε)
(

1− w3
b

(tfa − wa − tε)3

)
.

h(ε) is increasing when h′(ε) ≥ 0, that is as long as wb ≤ tfa−wa− tε, i.e., fa− ε ≥
wa+wb

t . This corresponds to the case where fa − ε = gb, i.e., both tasks are executed
at the same speed. For any value of ε such that 0 < ε ≤ fa − wa+wb

t , h(ε) > 0 and
there is a strict gain in energy by decreasing the speed of Ta to fa − ε, and increasing
the speed of Tb accordingly.

To conclude, we state that the new speeds of tasks w1, . . . , wk (that have been in-
creased) remain always lower than the new speed of T ∗1 , w

∗
1

D (that has been decreased),
and therefore there is a strict gain in energy because the total execution time of T ∗1 and
the tasks of weights w1, . . . , wk remains constant. We can iteratively gain some time
on p2 by increasing the speed of a task with fi < frel up to frel (1 ≤ i ≤ k), until
task T ∗2 fits on the processor, and at each step there is a strict gain in energy, hence the
contradiction.

Finally, we have shown that it is strictly better to execute task T ∗2 on processor p2,
and therefore T ∗1 is executed alone on processor p1, at a speed w∗1

D ≥ frel.

C (1 + Θ(1
p), 2 − Θ(1

p))-approximation algorithm for
TRI-CRIT-INDEP

This algorithm is used only for p ≥ 24, and we define:

K = 1− 1

c(2β
√

2− 1)
;

ε∗ =
1√

2cpK − 1
.
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Recall that β = max(2 − 3
2p+1 , 2 −

p+2
4p+2 ). The value β is therefore increasing

with p, and for p ≥ 24, we have β ≥ 1.9. Furthermore, c ≈ 0.2838 and K ≥ 0.2.
Finally, since p ≥ 24, 0 < ε∗ < 1.

Modifications to the original algorithm.
The handling of big tasks is identical. However, we do not use replication when S >
pDfrel

1
1+ε∗ : we schedule tasks at speed max(frel,

S
pS ) using DECREASING-FIRST-

FIT. Lemma 12 below shows that we obtain the desired guarantee in this case. In the
other case (S ≤ pDfrel

1
1+ε∗ ), we apply the FPTAS with the parameter ε∗. It is now

possible to show that (i) either we can schedule all tasks with the speeds returned by
the FPTAS within the deadline βD; (ii) or there is at least one task that does not fit, but
then all tasks are re-executed and we can find an optimal solution that can be scheduled
thanks to Theorem 1. The correction of this case is proven in Lemma 13.

Lemma 12. For the problem TRI-CRIT-INDEP where each task Ti is such that wi <
max(Sp , Dfrel), if (1+ε∗) S

pD > frel, then scheduling each task only once at speed

max(frel,
S
pD ) with DECREASING-FIRST-FIT is a

(
(1 + ε∗)

2
, β
)

-approximation al-

gorithm, with β=max
(
2− 3

2p+1 , 2−
p+2
4p+2

)
.

Proof. We use the fact that S( S
pD )2 is a lower bound on the energy (Lemma 8). If

each task is executed once at speed max(frel,
S
pD ), since frel < (1 + ε) S

pD , then the

energy consumption is at most at a ratio (1+ε∗)
2 of the value of the optimal energy

consumption. The bound on the deadline is obtained by applying Lemma 11.

Lemma 13. For the problem TRI-CRIT-INDEP where each task Ti is such that wi <
max(Sp , Dfrel), if S ≤ pDfrel

1
1+ε∗ , then there is a

(
(1 + ε∗)

2
, β
)

-approximation

algorithm, with β=max
(
2− 3

2p+1 , 2−
p+2
4p+2

)
.

Proof. Similarly to the original algorithm, we use the FPTAS and we obtain a
(

(1 + ε∗)
2
, β
)

-

approximation algorithm unless there is a task Ti such that w̃i

frel
> βD, and hence

wi

f chain
i

> βD. Since wi < Dfrel (larger tasks have been processed in the first step of

the algorithm), we have f chain
i < frel. This means that Ti belongs to the set of the

tasks that are re-executed by APPROX-CHAIN. Hence, since we enforced an additional
constraint, we have wi < 1√

2
Dfrel. Finally,

f chain
i = fre-ex <

wi
βD

<
1√
2β
frel. (4)

Let Xchain be the total weight of the re-executed tasks (X1 or X2 in APPROX-
CHAIN), and let Xopt = c(pDfrel − S) be the optimal weight to solve TRI-CRIT-
CHAIN with one processor. We compute Xopt−Xchain. By definition of fre-ex (Corol-
lary 1), the optimal speed at which each re-execution should occur, we have:

pD =
S −Xchain

frel
+

2Xchain

fre-ex
=
S −Xopt

frel
+

2Xopt

fopt
,

where fopt = 2c
1+cfrel (Corollary 1 applied to Xopt). We now express Xopt −Xchain:(

2

fre-ex
− 1

frel

)
Xchain =

(
2

1 + c

2c

1

frel
− 1

frel

)
Xopt,
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and thereforeXchain = fre-ex
c(2frel−fre-ex)Xopt, and finallyXopt−Xchain =

(
1− fre-ex

c(2frel−fre-ex)

)
Xopt,

that is minimized when fre-ex is maximized. Applying the upper bound on fre-ex
from Equation (4), we obtain:

Xopt −Xchain >

(
1− 1

c(2β
√

2− 1)

)
Xopt = K ×Xopt .

Since S
pD ≤

1
1+ε∗ frel, we have S

pD ≤
(

1− 1√
2cpK

)
frel, and frel − S

pD ≥
frel√
2cpK

. Since Xopt = c(pDfrel − S) and K > 0, we obtain K ×Xopt ≥ 1√
2
Dfrel,

and therefore we haveXopt−Xchain >
1√
2
Dfrel. This means that each task that can be

re-executed in any solution to TRI-CRIT-INDEP is indeed re-executed in the solution
given by APPROX-CHAIN, since all these tasks have a weight lower than 1√

2
Dfrel.

Since Xopt is greater than the total weight of the tasks that can be re-executed, we can
use Theorem 1 in the case p = 1, on the subset of tasks Ti such that wi ≤ 1√

2
Dfrel.

The other tasks are executed once at speed frel. We define finf,i = wi

1.9D , so that
finf,i <

1
1.9
√
2
frel < 2c

1+cfrel and we can apply Theorem 1. Then, in polynomial

time, we have the optimal solution with new execution speeds: f̃i
chain

. Furthermore for
each task Ti, necessarily

wi

f̃i
chain ≤

wi
finf,i

= 1.9D.

Note that since p ≥ 24, we have β ≥ 1.9, and wi

f̃i
chain ≤ βD. We can therefore

schedule the new tasks T̃i within the deadline relaxation using DECREASING-FIRST-
FIT, as a direct consequence of Lemma 11.

We can conclude by stating that thanks to Lemmas 12 and 13, since ε∗ is in Θ( 1
p )

and β is in 2−Θ( 1
p ), this algorithm is a (1 + Θ( 1

p ), 2−Θ( 1
p ))-approximation. Indeed,

ε∗ < 1 and therefore (1 + ε∗)2 < 1 + 3ε∗.
Furthermore, the algorithm is polynomial in the size of the input and in 1

ε∗ .
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