
IS
S

N
02

49
-6

39
9

IS
R

N
IN

R
IA

/R
R

--
85

19
--

FR
+E

N
G

RESEARCH
REPORT
N° 8519
April 2014

Project-Team ROMA

Scheduling the I/O of
HPC applications
under congestion
Ana Gainaru, Guillaume Aupy, Anne Benoit, Franck Cappelo, Yves
Robert, Marc Snirha

l-0
09

83
78

9,
 v

er
si

on
 2

 - 
29

 A
pr

 2
01

4

http://hal.inria.fr/hal-00983789
http://hal.archives-ouvertes.fr


ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Scheduling the I/O of HPC applications
under congestion

Ana Gainaru∗†, Guillaume Aupy‡§†, Anne Benoit¶‖, Franck
Cappelo∗∗§, Yves Robert‡§¶‖, Marc Snir∗∗∗

Project-Team ROMA

Research Report n° 8519 — April 2014 — 25 pages

Abstract: A significant percentage of the computing capacity of large-scale platforms is wasted
due to interferences incurred by multiple applications that access a shared parallel file system
concurrently. One solution to handling I/O bursts in large-scale HPC systems is to absorb them at
an intermediate storage layer consisting of burst buffers. However, our analysis of the Argonne’s
Mira system shows that burst buffers cannot prevent congestion at all times. As a consequence, I/O
performance is dramatically degraded, showing in some cases a decrease in I/O throughput of 67%.
In this paper, we analyze the effects of interference on application I/O bandwidth, and propose
several scheduling techniques to mitigate congestion. We show through extensive experiments that
our global I/O scheduler is able to reduce the effects of congestion, even on systems where burst
buffers are used, and can increase the overall system throughput up to 56%. We also show that it
outperforms current Mira I/O schedulers.

Key-words: IO, HPC, experiment, bandwidth, congestion, scheduling, online

∗ University of Illinois at Urbana Champaign, USA
† These authors contributed equally to this work
‡ LIP, École Normale Supérieure de Lyon, France
§ INRIA
¶ Institut Universitaire de France
‖ University of Tennessee Knoxville, USA
∗∗ Argonne National Laboratory, USA

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Ordonnancement d’I/O d’applications HPC sous
contrainte de congestion

Résumé : Dans ce travail, nous proposons des algorithmes efficaces pour
pallier aux problèmes de congestion lors des transferts des données de type I/O.
Nous les évaluons sur des machines haute performance.

Mots-clés : IO,HPC,bandwidth,congestion

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 3

1 Introduction

With the advent of computationally demanding applications, parallel computers
have continued to evolve towards post-petascale computing. At the same time,
storage systems struggle to match the data generated by the computation of
all running applications. According to Biswas et al. [1], when systems grow 10
times, memory bandwidth needs to grow by at least 20 times so that applications
can run efficiently. The challenge is particularly obvious when many applications
are executed concurrently. Indeed, while many I/O optimizations are available
within each application (application-side collective I/O, software such as MPI-
IO, and other network and disk-level optimizations [2, 3]), the interferences
produced by multiple applications accessing a shared parallel file system in a
concurrent manner frequently break these single-application optimizations.

The current server-side scheduling policies used by HPC systems at the file
system level range between simple “first-come first-served” strategies for each
storage server to more elaborated strategies. Recently, non-work-conserving
disk schedulers, like anticipatory scheduling [4] and the CFQ scheduler [5], were
designed to save the spatial locality with concurrent servicing of interleaved
requests issued by multiple processes. This strategy keeps the disk head idle
after serving a request of a process until either the next request from the same
process arrives or the wait threshold expires. All policies, ranging from simplest
to more advanced ones, deal with low-level requests, without any information
from the applications; they cannot take advantage of particular properties or
behaviors of each application. As a consequence, current I/O schedulers are not
able to address the global efficiency of the system. As system size continues to
increase, schedulers need to have a global view of the I/O requirements of all
applications in order to make appropriate decisions.

In this paper, we focus on scheduling applications under I/O bandwidth con-
straints. Congestion due to I/O interference depends on many factors, namely
each individual application size and computation-to-I/O ratio, but also when
they start performing I/O with regard to one another. An analysis of the In-
trepid system at Argonne shows that congestion can cause up to a 70% decrease
in the I/O efficiency seen by an application (Figure 1). We propose a global
high-level scheduler that is aware of application I/O past behaviors, and that
dynamically coordinates I/O accesses to the parallel file system. Our contri-
butions can be summarized as follows: (1) We design a global scheduler that
minimizes congestion caused by I/O interference by considering application past
behaviors and system characteristics when scheduling I/O requests. We show
that this scheduler reduces I/O delays incurred by each application, and in-
creases overall system throughput. (2) We build a simulator in order to test
our scheduler in a large variety of scenarios, and to assess its performance and
limitations. We simulate the Intrepid and Mira systems and show that our
heuristics obtain better system throughput and application dilation compared
to what happens when congestion occurs. Notably, we report that a simula-
tion of our scheduler without burst buffers achieves a better system throughput
than the one observed on Intrepid in congested moments. (3) We implement

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 4

Figure 1: I/O throughput decrease (percentage per application, over 400 appli-
cations).

the global scheduler on Argonne’s Vesta computer and test its results in the
IOR benchmark. We validate our simulation model and show that, besides a
small increase in the execution time of applications when congestion does not
occur, the results are much better when using our implementation than current
Vesta schedulers. (4) A striking result obtained on Vesta is the confirmation of
the simulations: in most scenarios, our scheduler outperforms the use of burst
buffers without having the incurred cost.

The rest of the paper is organized as follows. We introduce the application
model and optimization problems in Section 2. We derive online scheduling
heuristics in Section 3. Through a full set of simulations in Section 4, we thor-
oughly evaluate and compare these heuristics, before reporting actual execution
times on Vesta in Section 5. We give some background and related work in Sec-
tion 6. We provide concluding remarks and hints for future research directions
in Section 7.

2 Framework

In this section, we provide a formal description of the application and platform
model, and we state scheduling objectives. We target a parallel platform com-
posed of N identical unit-speed processors, each equipped with an I/O card
of bandwidth b (expressed in bytes per second). This corresponds to the I/O
network from the compute nodes to I/O servers on a typical cluster. We further
assume a centralized I/O system with a total bandwidth B (also expressed in
bytes per second) from these I/O servers to the disks. Figure 2 shows the model
projected over Argonne’s Intrepid architecture.

2.1 Application and platform model

We assume that K applications are running concurrently, each of them being
assigned to independent and dedicated computational resources, but competing
for I/O. For simplicity, we assume the I/O and communication network are

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 5

b=0.1Gb/s/Node

=B

Figure 2: Model instantiation for the Intrepid platform.

App(1)
w(1,1) w(1,2) w(1,3)

App(2) w(2,1) w(2,2) w(2,3)
App(3)

w(3,1) w(3,2) w(3,3)

bw

Time0
0

B

Figure 3: Scheduling three applications.

separated, so that network congestion caused by inter-node communications
does not interfere with I/O transfers.

Each application App(k) is released on the platform at time rk, executes on

β(k) dedicated processors, and consists of n
(k)
tot instances that repeat over time

until the last instance is executed. An instance is composed of some chunk of
computations followed by some I/O transfer. More precisely, the i-th instance

I(k)i of App(k) consists of w(k,i) units of computation (at unit-speed), followed

by the transfer of a volume vol
(k,i)
io of bytes to or from the I/O system. Finally,

let dk be the time when the last instance of App(k) is completed.
Because computational resources are dedicated, we can always assume w.l.o.g.

that the next computation chunk starts right after completion of the current
I/O transfers, and is executed at full (unit) speed. On the contrary, all appli-
cations compete for I/O, and congestion will likely occur. The simplest case is

that of an application App(k) using the I/O system in dedicated mode during a

time-interval of duration D. Assume that App(k) needs to transfer vol
(k,i)
io . In

that case, let γ be the I/O bandwidth used by each processor of App(k) during

this time-interval. We derive the condition β(k)γD = vol
(k,i)
io to express that

the entire I/O data volume is transferred. We must also enforce the constraints
that: (i) γ ≤ b (output capacity of each processor); and (ii) β(k)γ ≤ B (total

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 6

capacity of I/O system). Therefore, the minimum time to perform the I/O

transfers for the current instance of App(k) is

time
(k,i)
io =

vol
(k,i)
io

min(β(k)b, B)
.

However, in general, many applications will use the I/O system simultaneously,
and the bandwidth capacity B will be shared among all these applications. The
I/O of some applications may well take place during several non-consecutive
time-intervals, and use different bandwidths. In Figure 3, we show an example of
three applications competing for I/O bandwidth. On the top part of Figure 3, we
can see the applications doing computations without any constraint. However
at the end of their computations, all applications need to transfer some volume
of I/O and share the I/O total bandwidth B (bottom part of the figure). When
these three applications want to execute some I/O at the same time, congestion
occurs and the scheduler needs to choose which bandwidth fraction to assign
to each application. The model is very flexible, and only assumes that at any
instant, all processors assigned to a given application are assigned the same
bandwidth. This assumption is transparent for the I/O system and simplifies
the problem statement without being restrictive. Again, in the end, the total

volume of I/O transfers for each instance I(k)i of App(k) must be vol
(k,i)
io , and

the rules of the game are simple: never exceed the individual bandwidth b of
each processor, and never exceed the total bandwidth B of the I/O system.

Formally, if instance I(k)i of application App(k) does its computation from t1 to
t2 = t1 +w(k,i), and the computation of the next instance starts in t3, then the
volume of I/O transferred for App(k) during the interval [t2, t3] should be equal

to vol
(k,i)
io .

The richness of the model comes from its flexibility for scheduling all the I/O
transfers. It corresponds to a practical framework where the central scheduler
would assign different I/O bandwidths per time-interval to each application.
Depending on how many applications are trying to perform I/O, the scheduler
might also decide to prevent some applications from accessing the disk during
some time-intervals. This way, the scheduler controls the wait time for all
applications and can make sure that they do not exceeding the time-out existing
in the I/O system.

2.2 Objectives

We first define ρ̃(k)(t), the application efficiency achieved for each application

App(k) at time t, as

ρ̃(k)(t) =

∑
i≤n(k)(t) w

(k,i)

t− rk
,

where n(k)(t) ≤ n(k)tot is the number of instances of application App(k) that have

been executed at time t, since the release of App(k) at time rk. Because we exe-

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 7

cute w(k,i) units of computation followed by vol
(k,i)
io units of I/O operations on in-

stance I(k)i of App(k), we have t− rk ≥
∑
i≤n(k)(t)

(
w(k,i) + time

(k,i)
io

)
. Without

congestion, the schedule would achieve t− rk =
∑
i≤n(k)(t)

(
w(k,i) + time

(k,i)
io

)
,

and the optimal application efficiency, where all I/O resources are available in

dedicated mode for App(k), is

ρ(k)(t) =

∑
i≤n(k)(t) w

(k,i)∑
i≤n(k)(t)

(
w(k,i) + time

(k,i)
io

) .
Due to I/O congestion, ρ̃(k)(t) never exceeds ρ(k)(t). We are ready to present
the two optimization objectives, together with a rationale for each of them.

• SysEfficiency: Here we aim to maximize the performance of the platform,
i.e., the amount of CPU operations per time unit. This objective writes:

maximize
1

N

K∑
k=1

β(k)ρ̃(k)(dk).

Recall that N =
∑K
k=1 β

(k) is the total number of processors, and that dk is

the time-step where App(k) terminates its execution. An upper limit of the
system efficiency is 1

N

∑K
k=1 β

(k)ρ(k)(dk). The rationale is to squeeze the most
flops out of the platform’s aggregated computational power. This objective is
CPU-oriented, as the schedule will give priority to compute-intensive applica-

tions with large w(k,i) and small vol
(k,i)
io values.

• Dilation: We aim to minimize the largest slowdown imposed to each appli-
cation. This objective writes:

minimize max
k=1..K

ρ(k)(dk)

ρ̃(k)(dk)
.

The rationale is to provide fairness across applications, and it corresponds to
the stretch in classical scheduling: each application incurs a slowdown factor
due to I/O congestion, and we want the largest slowdown factor to be minimal.
This objective is user-oriented, as it gives each application a guarantee on its
relative progress rate.

3 Schedules

The scheduler monitors the stream of I/O calls and decides on the fly (as I/O
calls appear in the system) which applications are allowed to perform I/O. We
define an event as the start or the end of an I/O transfer by some application.
At each event, the scheduler looks at the current state of the system, which is
represented by the application efficiency and the amount of I/O already per-
formed by each application. Then, based on a given strategy, it chooses a subset
of applications and allows them to start or continue their I/O. This scheduler

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 8

does not require any knowledge of the applications running in the system. Ap-
plications pay a supplementary cost due to the need to call the scheduler each
time they need to perform their I/O. We show in Section 5 that this overhead
is well paid off by the benefits of minimizing congestion.

Depending on the strategy used by the online scheduler to select applications
at each event, the results might benefit either objective described in Section 2.2.
For each strategy, favoring application App(k) means that App(k) is executed
as fast as possible, with bandwidth min

(
bβ(k),bwavail

)
, where bwavail is the

available bandwidth at the moment the decision is taken. Here are the strategies
that we experiment with.

• The RoundRobin scheduler favors available applications in a round-robin
fashion similar to what the I/O scheduler is doing in HPC systems [6]. This
heuristic is useful for comparison. The general idea of scheduling applications is
“first-come first-served” (FCFS) with an additional constraint to ensure fairness.
More precisely, each time an application needs to transfer some I/O, if there is
no congestion, then this application is favored. Otherwise, the application that
finished the I/O transfer of its last instance the longest time ago is favored.

• The MinDilation scheduler favors applications with low values of ρ̃(k)(t)
ρ(k)(t)

.

• The MaxSysEff scheduler favors applications with low values of β(k)ρ̃(k)(t).

• The MinMax scheduler favors applications with low values of β(k)ρ̃(k)(t),

unless there exists an application with a value ρ̃(k)(t)
ρ(k)(t)

below a certain threshold,

γ, in which case it favors the application with the lower ρ̃(k)(t)
ρ(k)(t)

. This threshold

should be defined by the system administrator and depends on the Dilation
targeted for the platform.

Note that since 0 ≤ ρ̃(k)(t)
ρ(k)(t)

≤ 1, the MinMax heuristic is exactly MinDila-

tion if γ = 1, and MaxSysEff if γ = 0. For all these heuristics, we have also
implemented a Priority variant. In this version, the scheduler always chooses
applications that already started performing their I/O before favoring any other
application. The rationale behind this is that there may be an additional cost
incurred by restarting the I/O of an application after an interruption, due to
breaking disk locality. Breaking disk locality by alternating multiple applica-
tions accessing the device affects their performance and decreases the overall
efficiency of the system [6]. Solid-state drives do not present the problem de-
scribed above since they do not contain any moving mechanical components.
This means that future clusters that use only SSD can use the original heuris-
tics without paying the extra cost of not being able to choose the best possible
applications that avoid congestion.

4 Simulations

In this section, we report extensive simulations to assess the performance of the
heuristics presented in Section 3. In the first set of simulations, we thoroughly

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 9

study the impact of each heuristic on different scenarios and use multiple ap-
plications with similar properties to real applications that ran on the Intrepid
system. In the second set, we compare the heuristics to the I/O scheduler of
Intrepid and Mira, on traces of applications that run on these platforms when
congestion occurs.

4.1 Applications

Intrepid is a BlueGene/P supercomputer used by the Argonne National Lab-
oratory between 2008 and 2014 and was ranked number 3 on the June 2008
Top 500 list. Consisting of 48 racks, 786,432 processors, and 768 terabytes
of memory, Mira is a 10-petaflops IBM BlueGene/Q system, 20 times faster
than Intrepid and currently ranked number 5 on the November 2013 Top 500
list. A wide range of science and engineering applications have run on Blue-
Gene systems, including those used by the computational science community
for cutting-edge research in chemistry, combustion, astrophysics, genetics, ma-
terials science, and turbulence. The typical behavior of scientific simulations
is defined by alternating computation phases and I/O phases. The I/O phases
are in general used either for writing out intermediary results for visualization
purposes and/or for checkpointing. Intrepid uses separate networks for com-
munication and I/O, which makes it the perfect system to study the effects of
congestion on application and system efficiency.

We use Darshan [7], an application level I/O characterization tool developed
at Argonne, to capture the behavior of applications running on Intrepid. It
intercepts I/O function calls in user space and records access pattern information
before the I/O operations are interpreted by the operating system or file system.
We analyzed the traces provided by this tool and divided the applications into
the following categories [8]:

• small applications are applications that run on less than 1,284 nodes, that
is less than 20,544 FP cores, or, less than 41,088 integer cores;

• large applications are applications that run on more than 1,285 nodes, that
is more than 20,560 FP cores, or, more than 41,120 integer cores;

• very large applications are applications that run on more than 4,584 nodes,
that is more than 123,344 FP cores, or, more than 146,688 integer cores.

Figure 4 shows how many applications from each type ran on Intrepid during
one year from December 2012 to December 2013, how much time each spent
doing I/O, and their utilization of the platform. We use this information for
generating the simulation scenarios.

In this section, we mainly focus on scheduling periodic applications un-
der I/O bandwidth constraints. Periodic applications follow a pattern which

is repeated over time: for all instances of I(k)i , we have w(k,i) = w(k) and

vol
(k,i)
io = vol

(k)
io . There are many examples of periodic applications in the HPC

community. A simple example would be an application that does not perform
any I/O calls, but implements a periodic checkpoint for reliability constraints [9].
Carns et al. [7] use the Darshan I/O characterization tool to capture an accu-

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 10

(a) System usage per day for each application type

(b) Percentage spent doing I/O per application type

Figure 4: Characteristics of application running on Intrepid in 2013.

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 11

rate picture of I/O patterns in Petascale workloads. In particular, they show
that both the S3D application [10] (an application to simulate turbulent com-
bustion using direct numerical simulation of a compressible Navier-Stokes flow)
and the HOMME application [11] (an application to model atmosphere physics
using spectral element techniques), periodically write out restart files through
MPI-IO. Many other applications are periodic. For instance, we were able to
verify that the following applications that run on Intrepid, are in fact periodic:
the gyrokinetic toroidal code (GTC) [12], Enzo [13], HACC application [14] and
CM1 [15]. In Section 4.3 we discuss the impact of application periodicity and
show that results are the same for non-periodic applications.

4.2 Assessment of the heuristics

By inspecting the mix of applications that ran on Intrepid (Figure 4a), we ob-
served that two scenarios cover over 95% of the cases: a few large or very-large
applications running alone on the whole system, or a mix of small and large
applications dividing the machine un-uniformly. We compare the results of the
different heuristics over different sets of applications (I/O intensive, compu-
tationally intensive, or a mix between the two) following these two scenarios.
Figure 5 presents the corresponding results. Simulations were run 200 times on
different applications mixes that simulate real scientific applications running on
Intrepid, and only the mean values are reported.

We first observe that the Priority variants are, most of the time, less
efficient than the original versions, especially when the number of applications
running on the system increases. Adding the Priority constraint lessens the
flexibility in choosing the set of applications that would maximize the system
efficiency. However, the difference in system efficiency and application dilation
is small in all studied scenarios. This shows that the heuristics have good results
even under the Priority constraint, so that systems that use disks (which at
this point represent the large majority of supercomputers) can still benefit from
our scheduler.

Another (expected) observation is that MinDilation has better results than
MaxSysEff for the Dilation objective, but worse results for the SysEffi-
ciency objective. In particular, with 10 large applications and an average I/O
ratio over computation of 20% (Figure 5a), the SysEfficiency of MaxSysEff
can be up to 50% larger than that of MinDilation, with a Dilation also up to
50% larger (recall that we want a large SysEfficiency and a small Dilation).
The MinMax heuristic (run for γ = 3.7) is a good trade-off and achieves an
intermediate result for both objectives. These results are confirmed, although
less visible, in the second scenario (Figure 5b), with many small applications
and a few large ones. In Figure 5c, the average I/O ratio over computation is
35%, there are 50 small applications and 5 large ones. In that case, the Sy-
sEfficiency of MaxSysEff can be up to 25% that of MinDilation, for a
loss in Dilation of 33%. Again, in that case, the MinMax heuristic is a good
trade-off.

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 12

RoundRobin
Priority-RoundRobin

MinDilation
Priority-MinDilation

MaxSysEff
Priority-MaxSysEff

MinMax
Priority-MinMax

SysEfficiency

Dilation

20

40

60

2
4
6
8

(a) 10 large applications,

ratio of 20%

SysEfficiency

Dilation

20

40

60

2
4
6
8
10
12
14
16

(b) 50 small and 5 large

applications, ratio of 20%

SysEfficiency Dilation

20

40

2
4
6
8

(c) 50 small and 5 large

applications, ratio of 35%

Figure 5: Objectives for different mix of applications and IO/computation ra-
tios.

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 13

MinDilation MaxSysEff MinMax

0 5 10 15 20 25 30
1

1.5

2

2.5

Sensibility(%)

D
il
a
t
io
n

0 5 10 15 20 25 30
20

40

60

Sensibility(%)

S
y
sE

f
f
ic
ie
n
c
y

Figure 6: Impact of the sensibility of the computations over SysEfficiency
and Dilation of all heuristics.

4.3 Impact of periodicity

As mentioned, based upon the literature and our own verifications on Intrepid,
we have assumed so far that applications are periodic. We now discuss the im-
pact of having non-periodic applications in the system. We define the sensibility

of an application as Sens(k)w = maxi w
(k,i)−mini w

(k,i)

maxk w(k,i) and Sens
(k)
io =

maxi vol
(k,i)
io −mini vol

(k,i)
io

maxk vol
(k,i)
io

.

For example, for a given application App(k), if the amount of work between two
instances varies from 65 to 102 time units, then Sens(k)w = 1− 65

102 ≈ 36%.

In Figure 6, we study the impact of the sensibility of w(k) for the three
heuristics without the Priority constraint. We see that this parameter has
almost no impact on the results obtained with periodic applications. This can
be explained as follows: the heuristics have no global information about the
applications that are being processed, they simply make scheduling decisions
according to the information available at each event. We point out that the
conclusion is similar when studying the sensibility of the I/O volume.

4.4 Intrepid and Mira simulations

In this section, we focus on comparing the MinMax heuristic and its Priority
variant, called Priority for short, with the Intrepid and Mira schedulers as
congestion occurs. Due to lack of space, we do not report results for MaxSy-
sEff and MinDilation, but MinMax results always lie between them. Since
Intrepid and Mira use burst buffers to improve the behavior of applications
with large bursts of I/O, we compare the results on a simulated system that

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 14

Intrepid MinMax Priority Upper Limit

2 4 6 8 10 12 14 16 18 20 22 24 26 28

2

4

6

8

10

12

D
il
a
t
io
n

2 4 6 8 10 12 14 16 18 20 22 24 26 28
40

60

80

100

S
y
sE

f
f
ic
ie
n
c
y

Figure 7: Comparison of the heuristics over the current Dilation and SysEf-
ficiency of Intrepid.

uses MinMax (without burst buffers) with that of a system using burst buffers.
Figure 1 presents the congested moments on Intrepid and the induced overhead
on I/O throughput seen at the application level. This I/O throughput can be
used in the formulas of Section 3 in order to compute SysEfficiency and Di-
lation on Intrepid. The threshold value γ used for MinMax corresponds to
the minimum dilation observed during Intrepid’s history for congested moments
and it is equal to 3.7.

We have Darshan logs for every congested moment, describing the applica-
tions that were running at a given time. We use this information to create the
simulation scenario used by our heuristics. The main limitation of the Darshan
logs is that they only give information about the total execution time and the
total amount of I/O performed by the applications, but do not say anything
about their actual behavior. Because most of the applications that run on In-
trepid are periodic, we choose to enforce application periodicity by considering
that these applications have a random number of iterations, each of a constant
execution time and I/O volume. Recall that Section 4.3 has shown that the
sensibility does not impact the results, so this hypothesis is not binding. An-
other limitation with Darshan logs is that they only record around 50% of all
the applications running in the system. In most cases when congestion occurs,
we did not have access to the information related to the other jobs running in
the system. However, we did have information about the coverage of Darshan,
so we replicated known applications in order to simulate similar conditions to
the usage of the system at the moment of congestion.

Figure 7 presents the SysEfficiency and Dilation obtained on 24 ran-
domly chosen congested moments from the Intrepid system when using the
MinMax heuristic. First, it is clear that MinMax behaves better than the
current Intrepid scheduler when congestion occurs in all scenarios. On average,

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 15

the increase in SysEfficiency compared to the congested system efficiency for
the MinMax heuristic is 12.58%, slightly higher than the 11.67% obtained for
the Priority variant. The gain in Dilation over the current Intrepid sched-
uler when congestion occurs is on average 35.44% with a peak (in the 20th case)
of 348.3%. For the Priority variant, the average gain is 10.53% with a peak of
145.01%. Note that contrary to the SysEfficiency objective, there are cases
where the Dilation of the Priority heuristic is worse than the current result
of the Intrepid scheduler. Individually, each scenario has different increase val-
ues due to different application mixes running in the system at the time. In
general, if the volume of I/O done by the application scenario increases, then
the difference between our heuristic and the Intrepid scheduler is higher. This is
particularly true for the SysEfficiency objective. The aggregated amount of
I/O done by the applications running in the system is given by the upper limit
curve, which represents the maximum system efficiency achieved when each ap-
plication can use the maximal bandwidth offered by the system both in the
network and for I/O as if it were running alone in the system (see Section 2.2).

The model for our global scheduler does not include burst buffers while
Intrepid and Mira use them. Therefore, we extended the model to include
virtual burst buffers. The difference compared to what was previously used
is the fact that as long as the burst buffers are not full, the applications can
resume their execution right after they transferred their I/O volume to the
burst buffers. The bandwidth used between the applications and the burst
buffers is b while the buffers transfer I/O with a rate of B. Figure 8 presents
the SysEfficiency and Dilation obtained on 11 randomly chosen congested
moments from the Mira system, using MinMax, Priority, and Priority
with burst buffers (called BurstBuffers in the figure). Depending on the I/O
behavior of the applications running in the scenario, the advantage of having
burst buffers can increase the system efficiency over the classic online scheduler
by over 17%. Using our heuristics has similar results to using the the Mira
scheduler with burst buffers. However, when using BurstBuffers, the results
are much better in all scenarios, having an average gain of 12% and a peak gain
of 23.24% over the Mira I/O scheduler.

Because Darshan is not covering all applications running in the system, and
also because our model does not include any overhead induced by synchronizing
the applications each time they perform I/O, we further validated the results
by implementing our heuristics and running them on a real machine. We show
in Section 5 that the results obtained in simulation accurately describe what
would be obtained if Intrepid or Mira was using our heuristics.

5 Experiments

The study of cross-application interference requires reserving a full machine in
order not to be impacted by other applications running in the system at the
same time. We have chosen the Vesta machine at Argonne for this purpose.
Vesta [16] is a developmental platform for Mira. Its architecture is the same

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 16

Mira MinMax Priority BurstBuffers Upper Limit

2 4 6 8 10

2

4

D
il
a
t
io
n

2 4 6 8 10
40

60

80

100

S
y
sE

f
f
ic
ie
n
c
y

Figure 8: Comparison of the heuristics over the current Dilation and SysEf-
ficiency of Mira.

as Mira’s except that it has two compute racks (Mira has 48). A rack has
32 node boards, each of which holds 32 compute cards. Each compute card
comprises 16 compute cores of 1600 MHz PowerPC A2 processors with 16GB
RAM (1GB/core). In total, Vesta has 2,048 nodes (32,768 compute cores).
Applications running on this machine are electrically isolated from each other.
This means that even if there are other applications running on the system, their
communications will not impact our experiments. Our focus in this section is
directed towards write/write interference between multiple applications.

5.1 Setup and measurements

The experiments require a way to control the exact moment when all applica-
tions perform I/O. Therefore, we modified the IOR benchmark [17] by splitting
its set of processes into groups running independently on different nodes, where
each group represents a different application. This way, our implementation
of the IOR benchmark allows us to control the access patterns of each ap-
plication. In addition, because IOR applications are communication-free, we
modified them to include some inter-processor communications at each step, in
order to make them more similar to typical HPC applications. The added com-
munication is an MPI Reduce that adds the number of bytes written in the last
iteration by each process and simulates the synchronization between different
phases of a HPC application.

We made experiments on the modified IOR benchmark and compared the
results with the performance of the original IOR benchmark with and without
using the option of bypassing I/O buffers. One group of one single process
is representing the scheduler and it is responsible for receiving online requests
from the rest of the application processes each time they perform an I/O, and
confirmations each time the I/O accesses are finished. Since Vesta is using
hard disks and it is influenced by the locality of disk access, we implement the
Priority variants of the heuristics. Since we have no natural choice for γ in
MinMax, we report results for its two extreme cases, namely MaxSysEff (γ =

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 17

Figure 9: Execution time overhead of our implementation of the IOR bench-
mark.

0) and MinDilation (γ = 1). We implement the heuristics as an additional
layer on top of the Vesta I/O scheduler.

In the modified implementation of the IOR benchmark, each application
process sends a request to the scheduler thread each time it needs to write some
I/O volume. Figure 9 presents the overhead of adding the scheduling thread
when no congestion occurs for different scenarios. This overhead was computed
by comparing the execution time of one application running the original IOR
benchmark with the execution time of our modified version of the IOR bench-
mark that includes the scheduler. In order to fairly compare the execution time
of adding the scheduler without accounting for its benefit in terms of schedul-
ing decisions, in our comparisons, the scheduler always allows all requests to
I/O. Depending on the frequency and amount of I/O for each application, the
overhead in execution time varies between 1% to 5.3%. In general, for a larger
number of applications, the execution time overhead remains under 3%. We
account for this idle time as well as the I/O throughput and application delays
when computing the system efficiency and application dilation in Section 5.2.

5.2 Results

Figure 10 shows the system efficiency and maximum dilation as seen by all
applications running in the system for different scenarios. The horizontal axes
present these scenarios in the form x/y/z, where x,y, and z represent the number
of nodes used by each application in the system. For example 512/32 means
there are two applications running, one on 512 nodes and the other on 32. We
made experiments without having any heuristic (results for IOR and IOR BB)
and with the modified IOR benchmark using either MaxSysEff or MinDila-
tion. For each case, we ran the application mix either bypassing or using the
burst buffers (BB in the name).

The results are very similar to what was seen simulating Mira and confirm
what we have observed with the simulations: our heuristics perform very well,

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 18

(a) SysEfficiency

(b) Dilation

Figure 10: System efficiency and dilation for different scenarios on Vesta.

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 19

better than Vesta’s I/O scheduler when congestion occurs. Furthermore, the
main result of this experimental setup is that with more than 3 applications,
our heuristics without burst buffers perform similarly to, and sometimes better
than, Vesta’s current I/O scheduler with burst buffers when congestion occurs.
This superiority of our algorithms over architecture optimizations has benefits
from the platform/user perspective (for either objective), but it has an even
more important concrete application: if the platform can replace burst buffers
with a software scheduler policy, this will most certainly lead to a huge leap in
energy efficiency. This is of significant importance since energy consumption is
currently one of the main limitation of the race to Exascale.

In general, the MaxSysEff heuristic has larger maximum dilation values
than those obtained by letting congestion occur. With the MinDilation heuris-
tic, system efficiency values follow the same curves as with the MaxSysEff
heuristic but having, on average, values 5.65% lower. The maximum dila-
tion, however, decreases in all cases showing values smaller than the congested
contra-part in all studied scenarios. In general, the MinDilation heuristic has
a more significant decrease for the dilation values than it had in the perfor-
mance values in scenarios when there were more uneven applications (512/32
or 512/256/256/32). We study these scenarios further in the next paragraphs.

Figure 11 shows the dilation values for each of the four applications running
in one of the analyzed scenarios. The small applications are in general more
impacted by congestion than the big ones when using the MaxSysEff heuristic,
having an increase in their dilation value of 36% compared to the congested
dilation. The big applications see a decrease in their dilation of over 48%,
which is responsible for the good system performance values. When running the
same application mix with MinDilation, the results show an almost uniform
decrease in all application dilations compared to the ones obtained running the
benchmark without any heuristic, having on average a decrease of 8.4%, and a
maximum decrease of 14.5% for the small application.

We can use the MinMax heuristic to obtain the best possible system ef-
ficiency without decreasing the application dilation over what would happen
during congestion. Depending on the threshold set for this heuristic, a system
administrator could tune our heuristic to obtain results within the range of
values between the two extremes presented here.

6 Related work

Application performance variability can significantly detract from both the over-
all performance realized by parallel workloads and the suitability of a given
architecture for a workload. In distributed computing, the problem of hav-
ing performance variability due to sharing resources is well-known and studied.
There are numerous papers that analyze this problem for clouds [18, 19, 20].
[19] presents a study of interference specifically for I/O workloads in the cloud
in order to understand the performance factors that impact the efficiency and
effectiveness of resource multiplexing and scheduling among VMs. In [20], the

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 20

(a) MaxSysEff heuristic

(b) MinDilation heuristic

Figure 11: Dilation values for the applications from 512/256/256/32 scenario.

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 21

authors investigate the sensitivity of measured performance in relation to consol-
idated server specification of virtual machine resource availability, and burstiness
of n-tier application workload. Their results show that an increasingly bursty
workload also increases the performance loss among the consolidated servers,
however, without being able to offer a solution.

For the HPC community, while many works suggest that I/O congestion is
one of the main problems for future scale platforms [1, 21], few paper focus on
finding solutions at the platform level. Some papers consider application-side
I/O scheduling [2, 3]. In particular, recently, several works focused on using
machine learning for auto-tuning and performance studies [22, 23]. However,
these solutions do not have a global view of the I/O requirements of the sys-
tem, and they need to be supported by a platform level I/O management for
better results. Cross-application contention has been recently studied in several
articles [24, 25, 26]. The study in [24] evaluates the performance degradation
in each application program when VMs are executing two application programs
concurrently in a physical computing server. The experimental results indicate
that the interference among VMs executing two HPC application programs with
high memory usage and high network I/O in the physical computing server, sig-
nificantly degrades application performance. An earlier study in 2005 [25] cites
application interference as one of the main problems facing the HPC commu-
nity. While it proposes ways of gaining performance by reducing variability,
minimizing application interference is still left open. [27] is a more general
study that analyzes the behavior of the center-wide shared Lustre parallel file
system on the Jaguar supercomputer and its performance variability. One of
the performance degradations seen on Jaguar was caused by concurrent applica-
tions sharing the filesystem. All of these studies highlight the impact of having
application interference on HPC systems without, however, offering a solution.

[6] studies the access to disks by multiple applications running in the system
by focusing on cases when I/O requests from multiple applications might break
the spatial locality of individual programs; this can seriously degrade I/O per-
formance when the data servers concurrently serve synchronous requests from
multiple I/O-intensive programs. The authors propose a scheme called IOrches-
trator, to improve I/O performance of multi-node storage systems by orches-
trating I/O services among programs when such inter-data-server coordination
is dynamically determined to be cost effective. Their tool has a global overview
of applications in the system and decides which request to perform and in which
order, but they simply choose an FCFS ordering. Our implementation focuses
on avoiding application interference and provides a variety of heuristics that
take into account application history and system properties.

The research closest to our study is [28]. The authors investigate the inter-
ference of two applications and analyze the benefits of interrupting or delaying
either one in order to avoid congestion. Our study is much more general. It looks
at different application mixes and offers a range of options that give good results
for two distinct objectives. These results can be used by a system administrator
to configure the best solution for their particular machine.

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 22

7 Conclusion and future work

I/O interference of multiple applications running concurrently in the system is
one of the main sources of performance variability in HPC systems. We have
studied the effects of congestion on application performance and on total sys-
tem efficiency, and we propose several solutions that minimize the performance
degradation. Our global scheduler has a global view of the system and on the
past behavior of all applications running at a given time, and dynamically sched-
ules I/O accesses so as to minimize the maximum application dilation and/or
to increase the system-wide efficiency.

We show through extensive experiments that our scheduler performs better
than current solutions for HPC systems. Moreover, our software scheduler gives
very similar results to current architectural enhancements (burst buffers). This
is of significant interest since these burst buffers come at an energy price that is
important for future exascale platforms. A small limitation of our work is the
special case when no I/O congestion occurs on the platform, since our scheduler
assumes an extra communication step taken by applications each time they
need to perform I/O. There are two directions that we plan to investigate to
improve the execution time in this case. First, if the applications were aware
of the existence of the scheduler, one thread from each application could be
dedicated to communicating with the scheduler process. Another direction is to
use a tool to predict the I/O accesses of each application running in the system.
Depending on the accuracy of such a tool, the scheduler could be used only
when a congestion situation has been predicted.

HPC applications in general are periodic and their behavior is in most cases
well known in advance. A periodic scheduler might give even better results
than the one proposed in this paper. Periodic schedules would have to be
implemented inside the system’s job scheduler. It would have a more accurate
global view and would be able to compute a complete schedule over a period
of given length in advance for all applications, which in return would give a
more flexible way of controlling the behavior of the applications. We expect
periodic schedulers to be an interesting complement to the online schedulers
presented in this paper. Future work will be devoted to assessing the additional
gain that periodic schedulers may bring in comparison to online schedulers, and
their robustness with respect to the periodicity hypothesis.

Acknowledgments: This research was done in the context of the INRIA-Illinois

Joint Laboratory for Petascale Computing. The work was also supported by the U.S.

Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357,

and the ANR Rescue project. A. Benoit and Y. Robert are with Institut Universitaire

de France.

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 23

References

[1] R. Biswas, M. Aftosmis, C. Kiris, and B.-W. Shen, “Petascale computing:
Impact on future nasa missions,” Petascale Computing: Architectures and
Algorithms, pp. 29–46, 2007.

[2] X. Zhang, K. Davis, and S. Jiang, “Opportunistic data-driven execution
of parallel programs for efficient i/o services,” in Parallel & Distributed
Processing Symposium (IPDPS), 2012 IEEE 26th International. IEEE,
2012, pp. 330–341.

[3] J. Lofstead, F. Zheng, Q. Liu, S. Klasky, R. Oldfield, T. Kordenbrock,
K. Schwan, and M. Wolf, “Managing variability in the io performance of
petascale storage systems,” in Proceedings of the 2010 ACM/IEEE Interna-
tional Conference for High Performance Computing, Networking, Storage
and Analysis. IEEE Computer Society, 2010, pp. 1–12.

[4] S. Iyer and P. Druschel, “Anticipatory scheduling: A disk scheduling frame-
work to overcome deceptive idleness in synchronous i/o,” in ACM Sympo-
sium on Operating Systems Principles (SOSP’01), 2001.

[5] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. Ganger, “Argon: Per-
formance insulation for shared storage servers,” in 5th USENIX Conference
on File and Storage Technologies (FAST’07), 2007.

[6] X. Zhang, K. Davis, and S. Jiang, “Iorchestrator: improving the per-
formance of multi-node i/o systems via inter-server coordination,” in In
ACM/IEEE International Conference for High Performance Computing,
Networking, Storage, and Analysis. IEEE, 2010.

[7] P. Carns, R. Latham, R. Ross, K. Iskra, S. Lang, and K. Riley, “24/7 char-
acterization of petascale i/o workloads,” in Cluster Computing and Work-
shops, 2009. CLUSTER’09. IEEE International Conference on. IEEE,
2009, pp. 1–10.

[8] W. Kramer, “Blue waters and the future of scale computing and analysis,”
in The forth AICS International Symposium, 2013.

[9] J. T. Daly, “A higher order estimate of the optimum checkpoint interval
for restart dumps,” FGCS, vol. 22, no. 3, pp. 303–312, 2004.

[10] R. Sankaran, E. R. Hawkes, J. H. Chen, T. Lu, and C. K. Law, “Direct
numerical simulations of turbulent lean premixed combustion,” in Journal
of Physics: conference series, vol. 46, no. 1. IOP Publishing, 2006, p. 38.

[11] R. Nair and H. Tufo, “Petascale atmospheric general circulation models,”
in Journal of Physics: Conference Series, vol. 78, no. 1. IOP Publishing,
2007, p. 012078.

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



Scheduling the I/O of HPC applications under congestion 24

[12] S. Ethier, M. Adams, J. Carter, and L. Oliker, “Petascale parallelization
of the gyrokinetic toroidal code,” VECPAR: High Performance Computing
for Computational Science, 2012.

[13] G. L. Bryan, M. L. Norman, B. W. O’Shea, T. Abel, J. H. Wise, M. J.
Turk, D. R. Reynolds, D. C. Collins, P. Wang, S. W. Skillman et al.,
“Enzo: An adaptive mesh refinement code for astrophysics,” arXiv preprint
arXiv:1307.2265, 2013.

[14] S. Habib, V. Morozov, H. Finkel, A. Pope, K. Heitmann, K. Kumaran,
T. Peterka, J. Insley, D. Daniel, P. Fasel et al., “The universe at extreme
scale: multi-petaflop sky simulation on the bg/q,” in Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012, p. 4.

[15] G. H. Bryan and J. M. Fritsch, “A benchmark simulation for moist non-
hydrostatic numerical models.” Monthly Weather Review, vol. 130, no. 12,
2002.

[16] “Cetus and Vesta: Test and Development systems.” https://www.alcf.anl.
gov/cetus-and-vesta.

[17] H. Shan and J. Shalf, “Using ior to analyze the i/o performance for hpc
platforms,” Cray User Group Conference, 2007.

[18] H. Chiang, R.C.and Huang, “Tracon: Interference-aware schedulingfor
data-intensive applicationsin virtualized environments,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, pp. 1349–1358, 2014.

[19] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu, and Y. Cao, “Who
is your neighbor: Net i/o performance interference in virtualized clouds,”
IEEE Transactions on Services Computing, vol. 6, pp. 314–329, 2013.

[20] Y. Kanemasa, Q. Wang, J. Li, M. Matsubara, and C. Pu, “Revisiting per-
formance interference among consolidated n-tier applications: Sharing is
better than isolation,” IEEE International Conference on Services Com-
puting (SCC), pp. 136–143, 2013.

[21] J. Lofstead and R. Ross, “Insights for exascale io apis from building a
petascale io api,” in Proceedings of SC13: International Conference for
High Performance Computing, Networking, Storage and Analysis. ACM,
2013, p. 87.

[22] B. Behzad, L. H. V. Thanh, J. Huchette, S. Byna, R. A. Prabhat, Q. Koziol,
and M. Snir, “Taming parallel i/o complexity with auto-tuning,” in Pro-
ceedings of 2013 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis (SC 2013), 2013.

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4

https://www.alcf.anl.gov/cetus-and-vesta
https://www.alcf.anl.gov/cetus-and-vesta


Scheduling the I/O of HPC applications under congestion 25

[23] S. Kumar, A. Saha, V. Vishwanath, P. Carns, J. A. Schmidt, G. Scorzelli,
H. Kolla, R. Grout, R. Latham, R. Ross et al., “Characterization and mod-
eling of pidx parallel i/o for performance optimization,” in Proceedings of
SC13: International Conference for High Performance Computing, Net-
working, Storage and Analysis. ACM, 2013, p. 67.

[24] Y. Hashimoto and K. Aida, “Evaluation of performance degradation in
hpc applications with vm consolidation,” IEEE International Conference
on Networking and Computing (ICNC), pp. 273–277, 2012.

[25] D. Skinner and W. Kramer, “Understanding the causes of performance vari-
ability in hpc workloads,” IEEE Workload Characterization Symposium,
pp. 137–149, 2005.

[26] A. Uselton, M. Howison, N. Wright, D. Skinner, N. Keen, J. Shalf, K. Kar-
avanic, , and L. Oliker, “Parallel i/o performance: From events to ensem-
bles,” IEEE IPDPS, pp. 1–11, 2010.

[27] B. Xie, J. Chase, D. Dillow, O. Drokin, S. Klasky, S. Oral, and N. Pod-
horszki, “Characterizing output bottlenecks in a supercomputer,” High
Performance Computing, Networking, Storage and Analysis (SC), pp. 1–11,
2012.

[28] M. Dorier, G. Antoniu, R. Ross, D. Kimpe, and S. Ibrahim, “Calciom:
Mitigating i/o interference in hpc systems through cross-application co-
ordination,” in IPDPS-International Parallel and Distributed Processing
Symposium, 2014.

RR n° 8519

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4



RESEARCH CENTRE
GRENOBLE – RHÔNE-ALPES

Inovallée
655 avenue de l’Europe Montbonnot
38334 Saint Ismier Cedex

Publisher
Inria
Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

ha
l-0

09
83

78
9,

 v
er

si
on

 2
 - 

29
 A

pr
 2

01
4


	Introduction
	Framework
	Application and platform model
	Objectives

	Schedules
	Simulations
	Applications
	Assessment of the heuristics
	Impact of periodicity
	Intrepid and Mira simulations

	Experiments
	Setup and measurements
	Results

	Related work
	Conclusion and future work

