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Abstract: This work focuses on resilience techniques at extreme scale. Many papers
deal with fail-stop errors. Many others deal with silent errors (or silent data corruptions).
But very few papers deal with fail-stop and silent errors simultaneously. However, HPC
applications will obviously have to cope with both error sources. This paper presents
a unified framework and optimal algorithmic solutions to this double challenge. Silent
errors are handled via verification mechanisms (either partially or fully accurate) and in-
memory checkpoints. Fail-stop errors are processed via disk checkpoints. All verification
and checkpoint types are combined into computational patterns. We provide a unified
model, and a full characterization of the optimal pattern. Our results nicely extend several
published solutions and demonstrate how to make use of different techniques to solve the
double threat of fail-stop and silent errors. Extensive simulations based on real data
confirm the accuracy of the model, and show that patterns that combine all resilience
mechanisms are required to provide acceptable overheads.
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Schémas de résilience optimaux pour traiter les erreurs fatales
et les erreurs silencieuses

Résumé : Ce travail s’intéresse aux techniques de résilience à très grande échelle. De nom-
breux articles considèrent les erreurs fatales, et d’autres considèrent les erreurs silencieuses.
Mais peu considèrent que les deux types d’erreurs peuvent co-exister. Cependant, les ap-
plications de calcul haute performance devront nécessairement faire face aux deux sources
d’erreurs. Ce travail présente un modèle et des solutions algorithmiques à ce double défi.
Les erreurs silencieuses sont traitées grâce à des mécanismes de vérification (partiellement ou
complètement précis) et des checkpoints en mémoire. Des checkpoints sur disques protègent
des erreurs fatales. Tous les types de vérification et checkpoints sont combinés dans un
schéma de calcul. Nous donnons un modèle et une caractérisation complète du schéma op-
timal. Nos résultats étendent de nombreuses solutions déjà publiées, et montrent comment
utiliser différentes techniques pour faire face à la double menace des fautes fatales et silen-
cieuses. Des simulations complètes, basées sur des données réelles, confirment la précision
du modèle, et montrent que les schémas combinant tous les mécanismes de résilience sont
nécessaires pour obtenir des surcoûts acceptables.

Mots-clés : résilience, erreurs fatales, erreurs silencieuses, checkpoint multi-niveaux,
vérification, schéma optimal.
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1 Introduction

Fault-tolerance techniques are mandatory at extreme scale [20, 13, 14]. The first source of
problems is the frequent striking of fail-stop (unrecoverable) errors. This phenomenon is
well understood: regardless of the robustness of each individual resource, aggregating too
many resources will cause trouble at some point. Specifically, if the MTBF (Mean Time
Between Failures) of each resource is ten years (a pretty optimistic figure for, say, a socket
or a processor node), then the MTBF of a platform comprising one million of such resources
is only five minutes1. The standard approach to cope with fail-stop errors is checkpoint and
rollback recovery [16, 22], and many protocols are available (see [27] for a survey, as well as
Section 7 on related work).

The second source of problems is the frequent striking of silent errors (or SDCs, for
Silent Data Corruptions). This phenomenon is not so well understood, but has been recently
identified as one of the major challenges for Exascale [31, 38, 29, 14]. There are several causes
of silent errors, such as cosmic radiation, packaging pollution, among others. In contrast
to a fail-stop error whose detection is immediate, a silent error is identified only when the
corrupted data leads to an unusual application behavior. Such a detection latency raises
a new challenge: if the error struck before the last checkpoint, and is detected after that
checkpoint, then the checkpoint is corrupted and cannot be used for rollback. In order to
avoid corrupted checkpoints, an effective approach consists in employing some verification
mechanism and combining it with checkpointing [17, 33, 7]. This verification mechanism can
be general-purpose (e.g., based on replication [24] or even triplication [28]) or application-
specific (e.g., based on Algorithm-based fault tolerance (ABFT) [26, 10, 34], on approximate
re-execution for ODE and PDE solvers [8], or on orthogonality checks for Krylov-based sparse
solvers [17, 33]).

Verification mechanisms are typically costly; in fact, replication is the only alternative
in an application-agnostic framework. Guaranteeing accurate and efficient detection of silent
errors for scientific applications is one of the hardest challenges in extreme-scale computing [3,
14]. For many parallel applications, alternative techniques exist that are capable of detecting
some but not all errors. We call these techniques partial verifications, while a guaranteed
verification is capable of detecting all silent errors. One example is the lightweight SDC
detector based on data dynamic monitoring [3], designed to recognize anomalies in HPC
datasets based on physical laws and spatial interpolation. Similar fault filters have also been
designed to detect silent errors based on time series predictions [9]. Although not completely
accurate, these partial verification techniques nevertheless cover a substantial amount of silent
errors, and more importantly, they incur low overhead. These properties make them attractive
candidates for designing more efficient resilient protocols.

Altogether, the detection of silent errors seriously complicates the design of resilience
protocols. What is the best type of verification, either guaranteed or partial? And what
is the best combination with checkpoints? To further complicate the story, silent errors
naturally call for in-memory checkpointing, because a local copy of the data can be used after
corruption has been detected. On the contrary, fail-stop errors require to store the checkpoints
on remote stable storage (disks) because the whole memory content can be lost when such
a failure strikes. Granted, multi-level checkpointing protocols have been designed for several

1The MTBF µp with p resources is µp = µind/p, where µind is the MTBF of each resource, see [27,
Proposition 1.2].
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years, but we face two major difficulties when combining fail-stop and silent errors.
First, and to the best of our knowledge, the interplay of verification mechanisms with two

types of checkpoints, in-memory and disk-based, has never been investigated. Second, the
inherent detection latency of silent errors renders the problem quite different from traditional
multi-level checkpointing, where each failure, regardless of its level, is detected immediately
upon striking. In this work, after some quite technically involved derivations, we provide the
optimal solution to the problem, either with guaranteed or with partial verifications. This
was somewhat unexpected, because no optimal solution is known for two-level checkpointing
with two levels of fail-stop errors; state-of-the-art protocols in that latter context rely on
sophisticated heuristics [19].

Our approach to solving the double problem of fail-stop and silent errors is to partition
the execution of the application into periodic patterns, i.e., computational units that repeat
over time. Each pattern ends with a guaranteed verification, an in-memory checkpoint and a
disk checkpoint, so that errors do not propagate from a given pattern to the next one. Inside
each pattern, there are several segments, each ending with a guaranteed verification and
an in-memory checkpoint. In turn, each segment is partitioned into work chunks (possibly
of different size) that are separated by partial verifications. See Figure 2 for an example
with three segments and a total of six chunks. Several parameters should be given to fully
characterize a pattern, namely the number of segments, and the number and size of each
chunk inside each segment. The shape of a pattern is quite flexible, which enables us to
provide the first model including two levels of checkpoints.

The main objective is to design an optimal pattern. Informally, consider a pattern P
that includes W units of work (the cumulated size of all the chunks within the pattern).
Without loss of generality, assume unit speed computation, so that we can speak of time or
work interchangeably. In the presence of fail-stop or silent errors, the expected execution
time of the pattern will be E(P): we have to take expectations, as the computation time is no
longer deterministic. Note that E(P) > W for two reasons: the time spent in checkpoints and
verifications, even if there is no error, and the time lost due to recovery and re-execution after
an error. An optimal pattern is defined as the one minimizing the ratio E(P)

W , or equivalently

the ratio E(P)−W
W = E(P)

W − 1. This latter ratio is the relative overhead paid for executing the
pattern. The smaller this overhead, the faster the progress of the execution.

The main contributions of this work are the following:
• The design of a detailed model based upon the computational patterns described above

(see Section 2).
• The determination of the optimal pattern, first in some particular cases (one-chunk

segments, one segment with multiple chunks), and then in the general case. The com-
prehensive list of results summarized in Table 1 extends and unifies many results from
the literature (see the discussion in Section 7).

• An extensive set of simulations that use data collected on real platforms, and extrapolate
them to exascale platforms. The results confirm the accuracy of the model, as long
as the MTBF is large enough in front of the resilience parameters. They also help
assess the impact of each resilience mechanism, and show that patterns that combine
all mechanisms (partial and guaranteed verifications and two checkpoint types) are
required to provide acceptable overheads.

The rest of the paper is organized as follows. Section 2 introduces the model and notation.
The following sections show how to determine the optimal pattern. We start with the simplest
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pattern (a single one-chunk segment) in Section 3, extending Young and Daly’s formula to
two error sources. We discuss patterns with multiple one-chunk segments in Section 4.1,
patterns with one multiple-chunk segment in Section 4.2, and finally the most general pattern
in Section 4.3. Section 5 deals with errors during checkpoints and recoveries. Simulation
results are presented in Section 6. Section 7 surveys related work. Finally, Section 8 provides
concluding remarks and hints for future directions.

2 Model

2.1 Failure model

We consider a realistic scenario in large-scale systems, where hardware faults and silent data
corruptions coexist. They are commonly referred to as fail-stop errors and silent errors in
the literature. Since these two types of errors are caused by different sources, we assume that
they are independent and that both occurrences follow a Poisson process with arrival rates
λf and λs, respectively. Hence, the probability of having at least a fail-stop error during a
computation of length w is given by pf = 1− e−λfw and the probability of having at least a
silent error during the same computation is ps = 1− e−λsw. We also assume that both error
rates are in the same order, i.e., λf = Θ(λ), and λs = Θ(λ), where λ = λf +λs = 1/µ denotes
the reciprocal of the platform MTBF µ while accounting for both types of failures.

2.2 Two-level checkpointing

To deal with both fail-stop and silent errors, resilience is provided through the use of a two-
level checkpointing scheme coupled with an error detection (or verification) mechanism. The
protocol is enforced by a periodic computing pattern as discussed in Section 1. When a
fail-stop error strikes inside a pattern, the computation is interrupted immediately due to
a hardware fault, so all the memory content is destroyed. In this case, we roll back to the
beginning of the pattern and recover from the last disk checkpoint (taken at the end of the
previous pattern, or the initial data for the first pattern). On the contrary, when a silent
error is detected inside a pattern, either by a partial verification or by a guaranteed one, we
roll back to the nearest memory checkpoint in the pattern and recover from the memory copy
there, which is much cheaper than recovering from the last disk checkpoint.

We enforce the following two properties for a pattern:

• A memory checkpoint is always taken immediately before each disk checkpoint. Since
performing an I/O operation requires first flushing the data to a memory buffer, this
process incurs little extra overhead and hence has a natural justification. Indeed, such
a property has been enforced in some practical multi-level checkpointing systems [5].
Similarly, when we recover from a disk checkpoint, we also restore the corresponding
memory copy, which was destroyed due to the last fail-stop error.

• A guaranteed verification is always executed immediately before each memory checkpoint.
Since storing a checkpoint can be expensive even for the memory, this property guar-
antees that all (memory and disk) checkpoints are valid, and hence avoids the need of
maintaining multiple checkpoints, which is known to be difficult to recover from (one has
to decide which checkpoint is valid, etc.). With this property, only one memory check-
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point and one disk checkpoint need to be maintained at any time during the execution
of the application.

To simplify the analysis, we assume in Sections 3 and 4 that errors only strike the com-
putations, while verifications, memory copies, and I/O transfers are protected from failures.
In Section 5, we show how this assumption can be relaxed in the analysis.

2.3 Notation

Let CD denote the cost of disk checkpointing, CM the cost of memory checkpointing, RD the
cost of disk recovery, and RM the cost of memory recovery. Recall that when a disk recovery
is done, we also need to restore the memory state, hence a cost RD +RM is paid.

Also, let V ∗ denote the cost of guaranteed verification and V the cost of a partial verifi-
cation. The partial verification is also characterized by its recall, which is denoted by r and
represents the proportion of detected errors over all silent errors that have occurred during
the execution. If multiple partial verifications are available, our previous work [15, 2] has sug-
gested to use the one with the largest accuracy-to-cost ratio, which is defined as r

2−r/
V

V ∗+CM
.

Note that the guaranteed verification can be considered as one with recall r∗ = 1 and hence
an accuracy-to-cost ratio CM

V ∗ + 1. Since a partial verification usually incurs a much smaller
cost yet has a reasonable recall, its accuracy-to-cost ratio can be orders of magnitude (e.g.,
100x) better than that of the guaranteed verification [3, 9]. This characteristic makes partial
verification a highly attractive technique for detecting silent errors. Hence, we make use of
partial verifications between memory checkpoints in the pattern.

For clarity, we refer to the computation between any two consecutive memory checkpoints
as a segment, and refer to the computation between two consecutive verifications as a chunk.
Formally, a pattern P(W,n,α,m, 〈β1, . . . ,βn〉) is defined by the following parameters:

• W : total amount of computation (or work) of the pattern.

• n: number of memory checkpoints inside the pattern (also number of computational
segments within the pattern).

• α = [α1, α2, . . . , αn]: proportion of the segment sizes, i.e., αi = wi/W , where wi denotes
the amount of work in the i-th segment of the pattern. Hence, we have

∑n
i=1 αi = 1.

• m = [m1,m2, . . . ,mn]: number of verifications inside each segment of the pattern (also
number of chunks in that segment).

• βi = [βi,1, βi,2, . . . , βi,mi ] ∀i = 1, 2, . . . , n: proportion of the chunk sizes in the segments,
i.e., βi,j = wi,j/wi, where wi,j denotes the amount of work in the j-th chunk of the i-th
segment of the pattern. Hence, we have

∑mi
j=1 βi,j = 1 for all i = 1, 2, . . . , n.

The simplest pattern is illustrated in Figure 1, and consists of a single segment (n = 1,
W = w1) , which comprises a single chunk (m = [1]). By construction, this chunk is
followed by a guaranteed verification, followed immediately by a memory checkpoint and a
disk checkpoint. With our notations, this pattern is denoted as P(W, 1, [1], [1], 〈[1]〉), or PD
(only disk checkpoints, which are always preceded by a guaranteed verification and a memory
checkpoint).

Figure 2 shows a more complicated pattern, with three segments. The first segment has
three chunks, the second segment has one chunk, and the third segment has two chunks.
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TimeW

V ∗CM CD V ∗CM CD

Figure 1: Pattern PD = P(W, 1, [1], [1], 〈[1]〉).

Therefore, if a silent error is detected by the guaranteed verification at the end of the second
segment, it is possible to recover from the memory checkpoint preceding it, rather than
starting the whole pattern again. Additionally, silent errors may be detected earlier in the
first and third segment thanks to the additional partial verifications.

Time1st segment 2nd segment 3rd segment

W

V ∗CM CD V V V ∗CM V ∗CM V V ∗CM CD

Figure 2: Pattern with three segments and six chunks.

2.4 Objective

The objective is to find a pattern that minimizes the expected execution time of the applica-
tion. Let Wbase denote the base execution time of an application without any overhead due
to resilience techniques (without loss of generality, we assume unit-speed execution). Suppose
the execution is divided into periodic patterns, defined by P(W,n,α,m, 〈β1, . . . ,βn〉). Let
E(P) be the expected execution time of the pattern. For large jobs, the expected makespan
Wfinal of the application when taking failures into account can then be approximated by:

Wfinal ≈
E(P)

W
×Wbase.

Now, define H(P) = E(P)
W − 1 to be the expected overhead of the pattern. We obtain Wfinal ≈

Wbase +H(P)×Wbase. Thus, minimizing the expected makespan is equivalent to minimizing
the pattern overhead H(P). Hence, we will focus on minimizing the pattern overhead in this
paper.

3 Revisiting Young and Daly

In this section, we revisit Young [37] and Daly [18] on computing the best periodic check-
pointing interval, and extend their formula to include both fail-stop and silent errors. The
result on the order of the optimal interval and the observations established in this case will
pave the way for the subsequent analysis on more advanced patterns.

3.1 Optimal disk checkpointing interval

The classical formula by Young and Daly gives the optimal disk checkpointing interval
without considering silent errors, thus does not include verification and memory check-
points in the pattern. To cope with both fail-stop and silent errors, we analyze the pattern

RR n° 8786
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PD = P(W, 1, [1], [1], 〈[1]〉), which contains one single segment with a unique chunk followed
by a guaranteed verification, a memory checkpoint and a disk checkpoint (see Figure 1).

Obviously, the only parameter to determine is the work length W , which is also referred
to as the checkpointing period by Young/Daly [37, 18]. The following proposition shows the
expected execution time of a pattern with a fixed work length.

Proposition 1. The expected execution time of a given pattern P(W, 1, [1], [1], 〈[1]〉) is

E(P) = W + V ∗ + CM + CD +

(
λs +

λf
2

)
W 2

+ λsW (V ∗ +RM ) + λfW (RM +RD) +O(λ2W 3) . (1)

Proof. Let pf = 1 − e−λfW and ps = 1 − e−λsW denote the probabilities of having at least
one fail-stop error and at least one silent error, respectively, in the pattern. The expected
execution time can be expressed using the following recursive formula:

E(P) = pf
(
E(T lost) +RD +RM + E(P)

)
+ (1− pf )

(
W + V ∗ + ps(RM + E(P))

+ (1− ps)(CM + CD)
)
, (2)

where E(T lost) denotes the expected time loss during the execution of the pattern if a fail-
stop error strikes. Equation (2) can be interpreted as follows: if a fail-stop error occurs, we
lose E(T lost) time, perform a recovery from both disk and memory, and then re-execute the
pattern (Line 1). If no fail-stop error strikes during the execution, we run the guaranteed
verification to detect silent errors, which if indeed occurred involves a memory recovery only
followed by a re-execution (Line 2). Otherwise, if no silent error strikes either, we can proceed
with the memory and disk checkpointing (Line 3).

To derive the expected execution time, we need to compute E(T lost), which can be ex-
pressed as follows:

E(T lost) =

∫ ∞
0

xP(X = x|X < W )dx

=
1

P(X < W )

∫ W

0
xP(X = x)dx ,

where P(X = x) denotes the probability that a fail-stop error strikes at time x. By definition,
we have P(X = x) = λfe

−λfx and P(X < W ) = 1− e−λfW . Integrating by parts, we get

E(T lost) =
1

λf
− W

eλfW − 1
. (3)

Now, substituting Equation (3) into Equation (2) and simplifying, we obtain

E(P) =
e(λf+λs)W − eλsW

λf
−WeλsW

+ eλsW (W + V ∗) + CD + CM

+
(
e(λf+λs)W − eλsW

)
RD +

(
e(λf+λs)W − 1

)
RM .

By approximating eλx = 1 + λx+ λ2x2

2 up to the second-order term, we can further simplify
the expected execution time, which turns out to be given by Equation (1).
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Theorem 1. A first-order approximation to the optimal work length in pattern P(W, 1, [1], [1], 〈[1]〉)
is given by

W ∗ =

√
V ∗ + CM + CD

λs +
λf
2

. (4)

The optimal expected overhead is

H∗(P) = 2

√(
λs +

λf
2

)
(V ∗ + CM + CD) +O(λ) . (5)

Proof. From the result of Proposition 1, the expected overhead of the pattern can be computed
as

H(P) =
V ∗ + CM + CD

W
+

(
λs +

λf
2

)
W

+ λs(V
∗ +RM ) + λf (RM +RD) +O(λ2W 2) . (6)

Assume that the platform MTBF µ = 1/λ is large in front of the resilience parameters. Then
consider the first two terms of H(P) (Line 1 of Equation (6)): the overhead is minimal when
the pattern has length W = Θ(λ−1/2), and in that case both terms are of order Θ(λ1/2), so
that we have

H(P) = Θ(λ1/2) +O(λ).

Indeed, the last term O(λ2W 2) becomes also negligible compared to Θ(λ1/2). Hence, the
optimal pattern length W ∗ can be obtained by balancing the first two terms in the above
expression, which gives Equation (4). Then, by substituting W ∗ back into H(P), we get the
optimal expected overhead as shown by Equation (5).

Remarks. When only fail-stop errors exist, there is no need to perform verification and
memory checkpointing: we retrieve the classical formula by Young [37] and Daly[18], which
is given by W ∗ =

√
2CD/λf . When there are only silent errors, we do not need to perform

disk checkpointing, and the optimal work length is given by W ∗ =
√

(V ∗ + CM )/λs.

3.2 Observations

First, we observe from Theorem 1 that the optimal work length W ∗ of a pattern is in the
order of Θ

(
λ−1/2

)
and the optimal overhead H∗(P) is in the order of Θ(λ1/2). This allows

us to express the expected execution overhead of a pattern in the following general form:

H(P) =
oef

W
+ orwW +O(λ) , (7)

where oef and orw are two key parameters that characterize two different types of overheads
in the execution, and they are defined below.

Definition 1. For a given pattern, oef denotes the error-free overhead due to the resilience
operations (e.g., verification, checkpointing), and orw denotes the re-executed work overhead,
in terms of the fraction of re-executed work due to errors.
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In the simple pattern P(W, 1, [1], [1], 〈[1]〉) analyzed above, these two overheads are given

by oef = V ∗ + CM + CD and orw = λs +
λf
2 , respectively.

Therefore, from Equation (7), the optimal pattern length and the optimal expected over-
head can be expressed as

W ∗ =

√
oef

orw
, (8)

H∗(P) = 2
√
oef × orw +O(λ) . (9)

We can see that minimizing the expected execution overhead H(P) of a pattern becomes
equivalent to minimizing the product oef × orw up to the dominating term, which is coherent
with previous work [15, 2]. Intuitively, including more resilience operators reduces the re-
executed work overhead but adversely increases the error-free overhead, and vice versa. This
requires a resilience protocol that finds the optimal tradeoff between oef and orw. We will make
use of this observation in the next section to derive the optimal patterns in more complicated
protocols.

4 Optimal patterns

In this section, we derive the optimal pattern that involves two levels of checkpointing coupled
with verifications. We start with simpler patterns that do not contain any intermediate
verification nor memory checkpoint, and then move on to settle the complete full pattern.

4.1 Pattern PDM = P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉)

We first consider a pattern that contains multiple segments, but each segment has only one
chunk. In other words, the protocol performs multiple memory checkpoints between two disk
checkpoints but without any intermediate verification. Figure 3 depicts the pattern PDM in
this protocol.

Timew1 w2 wn

W

· · ·
· · ·

V ∗CM CD V ∗CM V ∗CM V ∗CM V ∗CM CD

Figure 3: Pattern PDM = P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉).

The goal is to determine the pattern work length W , the number of memory checkpoints
n, and the relative lengths of the segments α inside the pattern. The following proposition
shows the expected execution time of a pattern when these parameters are fixed.

Proposition 2. The expected execution time of a given pattern P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉)
is

E(P) = W + n(V ∗ + CM ) + CD

+

(
λs

n∑
i=1

α2
i +

λf
2

)
W 2 +O(

√
λ) . (10)
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Proof. Define Ei as the expected time to execute the i-th segment of the pattern up to the
memory checkpoint at the end of the segment. We first show the following result on Ei:

Ei = wi + V ∗ + CM + λsw
2
i + λf

(
w2
i

2
+

i−1∑
k=1

wkwi

)
+O(

√
λ) ,

where wi = αiW denotes the work length of the i-th segment.
We prove the above claim by induction on i. For the base case, the problem is reduced

to the simple pattern shown in Section 3.1, except that there is no disk checkpoint. Since we
know from Theorem 1 that the work length of a pattern is in the order of Θ

(
λ−1/2

)
, we get

the following result from Proposition 1:

E1 = w1 + V ∗ + CM + λsw
2
1 +

λf
2
w2

1 +O(
√
λ) .

Suppose the claim holds up to Ei−1. Then, Ei can be expressed recursively as follows:

Ei = pfi

(
E(T lost

i ) +RD +RM +
i−1∑
k=1

Ek + Ei

)
+ (1− pfi )

(
wi + V ∗ + psi (RM + Ei) + (1− psi )CM

)
,

where E(T lost
i ) denotes the expected time loss during the execution of segment i when a fail-

stop error strikes, which according to Equation (3) is given by E(T lost
i ) = 1

λf
− wi

e
λfwi−1

, and

pfi and psi denote the probabilities of having at least one fail-stop error and at least one silent
error in segment i, respectively. By following the reasoning of the proof of Proposition 1, we
obtain:

Ei = wi + V ∗ + CM + λsw
2
i +

λf
2
w2
i + λfwi

i−1∑
k=1

Ek +O(
√
λ)

= wi + V ∗ + CM + λsw
2
i +

λf
2
w2
i + λfwi

i−1∑
k=1

(wk +O(1)) +O(
√
λ)

= wi + V ∗ + CM + λsw
2
i + λf

(
w2
i

2
+ (

i−1∑
k=1

wk)wi

)
+O(

√
λ) .

Now, we compute the expected execution time of the pattern by summing up all the Ei’s
as follows:

RR n° 8786



Optimal resilience patterns to cope with fail-stop and silent errors 12

E(P) =

n∑
i=1

Ei + CD

=

n∑
i=1

wi + n(V ∗ + CM ) + CD

+ λs

n∑
i=1

w2
i + λf

n∑
i=1

(
w2
i

2
+ (

i−1∑
k=1

wk)wi

)
+O(

√
λ)

= W + n(V ∗ + CM ) + CD

+

(
λs

n∑
i=1

α2
i +

λf
2

)
W 2 +O(

√
λ) ,

since
∑n

i=1

(
w2
i + 2(

∑i−1
k=1wk)wi

)
= (
∑n

i=1wi)
2 = W 2.

Theorem 2. A first-order approximation to the optimal parameters in pattern
P(W,n,α, [1, . . . , 1], 〈[1], . . . , [1]〉) is given by

α∗i =
1

n∗
for 1 ≤ i ≤ n∗ , (11)

W ∗ =

√
n∗(V ∗ + CM ) + CD

λs
n∗ +

λf
2

, (12)

and n∗ is either max(1, bn̄∗c) or dn̄∗e, where

n̄∗ =

√
2λs
λf
· CD
V ∗ + CM

. (13)

The optimal expected overhead is

H∗(P) = 2
√
λs(V ∗ + CM ) +

√
2λfCD +O(λ) . (14)

Proof. Given the number of segments n and subject to
∑n

i=1 αi = 1, we know that
∑n

i=1 α
2
i

is minimized when αi = 1
n for all 1 ≤ i ≤ n. Hence, we can derive the two types of overheads

from Proposition 2 as follows:

oef = n(V ∗ + CM ) + CD ,

orw =
λs
n

+
λf
2
.

For a given n, the optimal work length W ∗ =
√

oef
orw

is therefore given by Equation (12).

Now, minimizing F (n) = oef × orw = (n(V ∗ + CM ) + CD)
(
λs
n +

λf
2

)
, we get the optimal

value of n̄∗ as shown in Equation (13). Since the number of segments can only be a positive
integer, and F (n) is a convex function of n, the optimal integer solution is either max(1, bn̄∗c)
or dn̄∗e, whichever one leads to a smaller value of F (n). Substituting Equation (13) back
into H∗(P) = 2

√
oef × orw, we obtain the optimal expected overhead as shown in Equation

(14).
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Remarks. We can see why the analysis conducted here is different from multi-level check-
pointing with two levels of fail-stop errors. In the latter case, one has to make a case study
depending on which error type strikes first, while in our case, silent errors do not interrupt
the execution and are detected at the end of the segments.

4.2 Pattern PDV = P(W, 1, [1], [m], 〈β〉)

We now consider a pattern that contains only one segment, which has multiple chunks in
it. Each chunk ends with a partial verification, except the last one, which ends with a
guaranteed verification followed by a memory checkpoint and a disk checkpoint. Figure 4
depicts the pattern PDV in this protocol.

For simplicity, let m (instead of m1) denote the number of chunks in the pattern, and let
wj (instead of w1,j) denote the length of the j-th chunk for 1 ≤ j ≤ m. We define βj = wj/W .
The goal is to determine the pattern work length W , the number of chunks m as well as their
relative lengths β.

Timew1 w2 wm

W

· · ·
· · ·

V ∗CM CD V V V V ∗CM CD

Figure 4: Pattern PDV = P(W, 1, [1], [m], 〈β〉).

Proposition 3. The expected execution time of a given pattern P(W, 1, [1], [m], 〈β〉) is

E(P) = W + (m− 1)V + V ∗ + CM + CD

+

(
λsβ

TAβ +
λf
2

)
W 2 +O(

√
λ) , (15)

where A is an m×m symmetric matrix defined by

Ai,j =
1

2

(
1 + (1− r)|i−j|

)
, (16)

for all 1 ≤ i, j ≤ m.

Proof. We first define some notations to be used in the proof. Let pfj = 1 − e−λfwj and

psj = 1 − e−λswj denote the probabilities of having at least one fail-stop error and at least
one silent error in chunk j, respectively. Let Vj denote the cost of the verification right after
chunk j, so we have Vj = V for 1 ≤ j ≤ m− 1 and Vm = V ∗. Finally, let E(T lost

j ) denote the
expected time loss during the execution of chunk j if a fail-stop error strikes in this chunk.
Based on Equation (3), we have E(T lost

j ) = 1
λf
− wj

e
λfwj−1

.

To derive the expected execution time of the pattern, we need to know the probability
that chunk j actually gets executed in the current attempt. Let qj denote this probability;
we compute it as follows. The first chunk is always executed, so we have q1 = 1. Consider
the second chunk, which is executed when there is no fail-stop error and no silent error in the
first chunk. However, for silent errors that did occur in the first chunk, the partial verification
V1 may have missed them with probability 1 − r. In this case, the second chunk also gets
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executed. Hence, we have q2 = (1− pf1)
(
(1− ps1) + ps1(1− r)

)
. In general, the probability that

the j-th chunk gets executed can be written as:

qj =

(
j−1∏
k=1

(1− pfk)

)(
j−1∏
k=1

(1− psk) + gj

)
,

where gj denotes the probability that silent errors actually occurred before chunk j, but have
been missed by all the partial verifications up to Vj−1, thus enabling chunk j to be executed.
By enumerating all possible locations where silent errors could strike, we can express gj as:

gj =

j−1∑
`=1

(
`−1∏
k=1

(1− psk)

)
ps`(1− r)j−` .

Now, we are ready to compute the expected execution time of the pattern. The following
gives the recursive expression:

E(P) =

(
m∏
k=1

(1− pfk)(1− psk)

)
(CM + CD)

+

(
1−

m∏
k=1

(1− pfk)(1− psk)

)
(RM + E(P))

+
m∑
j=1

qj

(
pfj

(
E(T lost

j ) +RD

)
+ (1− pfj )(wj + Vj)

)
. (17)

Specifically, Line 1 of Equation (17) shows that the memory and disk checkpoints at the end
of the pattern are performed only when neither fail-stop nor silent error has occurred in all
chunks. Under all the other cases, we need to re-execute the pattern as shown in Line 2.
Regardless of the type of error that triggered the re-execution, we always need to restore the
memory checkpoint. Finally, Line 3 shows the condition for each chunk j to be executed.
The execution of the chunk is either completed or interrupted by a fail-stop error, in which
case we lose E(T lost

j ) time and need to additionally restore the disk checkpoint.
By simplifying Equation (17) and approximating the expression up to the second-order

term, as in the proofs of Propositions 1 and 2, we obtain

E(P) = W + (m− 1)V + V ∗ + CM + CD

+ λsfW
2 +

λf
2
W 2 +O(

√
λ) ,

where f =
∑m

j=1 βj

(∑j−1
k=1 βk(1− r)

j−k +
∑m

k=j βk

)
, and it can be concisely written as f =

βTMβ, where M is the m×m matrix given by

Mi,j =

{
1 for i ≤ j
(1− r)i−j for i > j

.

By replacing M by A = M+MT

2 , which does not affect the value of f , we obtain the symmetric
matrix A in Equation (16) and the expected execution time in Equation (15).
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Theorem 3. A first-order approximation to the optimal parameters in pattern P(W, 1, [1], [m], 〈β〉)
is given by

β∗j =

{
1

(m∗−2)r+2 for j = 1,m∗

r
(m∗−2)r+2 for 2 ≤ j ≤ m∗ − 1

, (18)

W ∗ =

√√√√(m∗ − 1)V + V ∗ + CM + CD
1
2

(
1 + 2−r

(m∗−2)r+2

)
λs +

λf
2

, (19)

and m∗ is either max(1, bm̄∗c) or dm̄∗e, where

m̄∗ = 2− 2

r
+

√
λs

λs+λf

2−r
r

(
V ∗+CM+CD

V
− 2−r

r

)
. (20)

The optimal expected overhead is

H∗(P) =

√
2(λs + λf )

(
V ∗ − 2−r

r
V +CM+CD

)
+

√
2λs

2− r
r

V +O(λ) . (21)

Proof. Given the number of chunks m and subject to
∑m

j=1 βj = 1, it has been shown in

[15] that function f = βTAβ is minimized when β follows Equation (18), and its minimum

value is given by f∗ = 1
2

(
1 + 2−r

(m−2)r+2

)
. From Proposition 2, we can derive the two types of

overheads as follows:

oef = (m− 1)V + V ∗ + CM + CD ,

orw =
1

2

(
1 +

2− r
(m− 2)r + 2

)
λs +

λf
2
.

The optimal work length W ∗ =
√

oef
orw

for any fixed m is thus given by Equation (19). The

optimal number of chunks m̄∗ shown in Equation (20) is obtained by minimizing F (m) = oef×
orw = 1

2

(
(m−1)V +V ∗+CM +CD

) ((
1 + 2−r

(m−2)r+2

)
λs + λf

)
. Again, the number of chunks

in a pattern can only be a positive integer, so m∗ is either max(1, bm̄∗c) or dm̄∗e, since F (m)
is a convex function of m. Finally, substituting Equation (20) back into H∗(P) = 2

√
oef × orw

gives rise to the optimal expected overhead as shown in Equation (21).

Remarks. When only guaranteed verification is used, the optimal pattern contains equal-
length chunks, which matches the result in [6]. In this case, the pattern is denoted PDV ∗ ,
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and we have:

β∗j =
1

m∗
for 1 ≤ j ≤ m∗ ,

W ∗ =

√
m∗V ∗ + CM + CD
1
2

(
1 + 1

m∗

)
λs +

λf
2

,

m̄∗ =

√
λs

λs + λf
· CM + CD

V ∗
,

H∗(P) =
√

2(λs + λf ) (CM + CD) +
√

2λsV +O(λ) .

4.3 Pattern PDMV = P(W,n,α,m, 〈β1, . . . ,βn〉)

Finally, we consider the complete pattern that contains multiple segments, each of which has
multiple chunks. This represents the general two-level checkpointing protocol with interme-
diate verifications for silent error detection. Figure 4 depicts the pattern in this protocol.

Timew1,1 w1,m1 wn,1 wn,mn
w1 wn

W

· · ·
· · ·

· · ·
· · ·
· · ·

· · ·
· · ·

V ∗CM CD V V V ∗CM V ∗CM V V V ∗CM CD

Figure 5: Pattern PDMV = P(W,n,α,m, 〈β1, . . . ,βn〉).

The goal is to determine all the parameters of the pattern. Again, we first derive the
expected execution time of a pattern when all parameters are fixed.

Proposition 4. The expected execution time of a given pattern P(W,n,α,m, 〈β1, . . . ,βn〉)
is

E(P) = W +
n∑
i=1

(mi − 1)V + n(V ∗ + CM ) + CD

+

(
λs

n∑
i=1

βTi A
(mi)βi · α2

i +
λf
2

)
W 2 +O(

√
λ) , (22)

where A(m) denotes an m ×m symmetric matrix2 defined by A
(m)
i,j = 1

2

(
1 + (1− r)|i−j|

)
for

all 1 ≤ i, j ≤ m.

Proof. Define Ei to be the expected execution time of the i-th segment up to the memory
checkpoint at the end of the segment. We first show the following result:

Ei = wi + (mi − 1)V + V ∗ + CM + λsβ
T
i A

(mi)β · w2
i

+ λf

(
w2
i

2
+

i−1∑
k=1

wkwi

)
+O(

√
λ) .

2Matrices A(m) only differ in their dimensions; they have the same components.
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The proof combines the techniques from those of Propositions 2 and 3. Specifically, as
in the proof of Proposition 2, we go by induction on i. The base case is equivalent to the
pattern P(W, 1, [1], [m], 〈β〉) analyzed in Section 4.2, except that there is no disk checkpoint
at the end of the segment. Hence, from Proposition 3, we get

E1 = w1 + (m1 − 1)V + V ∗ + CM

+ λsβ
T
1 A

(m1)β1 · w2
1 +

λf
2
w2

1 +O(
√
λ) .

Suppose the claim holds up to Ei−1. Then, by following the proof of Proposition 3, in
particular, Equation (17), we can express Ei recursively as follows:

Ei =

mi∏
j=1

(1− pfi,j)(1− p
s
i,j)

CM

+

1−
mi∏
j=1

(1− pfi,j)(1− p
s
i,j)

 (RM + Ei)

+

mi∑
j=1

qi,j

(
pfi,j

(
E(T lost

i,j )+RD+

i−1∑
k=1

Ek

)
+(1−pfi,j)(wi,j+Vi,j)

)
, (23)

where qi,j denotes the probability that the j-th chunk of the i-th segment gets executed, and
it is given by

qi,j =

(
j−1∏
k=1

(1− pfi,k)

)(
j−1∏
k=1

(1− psi,k) + gi,j

)
,

with

gi,j =

j−1∑
`=1

(
`−1∏
k=1

(1− psi,k)

)
psi,`(1− r)j−` .

We point out two differences between Equations (17) and (23). First, we do not need to
perform a disk checkpoint when there is no error in segment i (Line 1). Second, if a fail-stop
error occurred in the j-th chunk, we need to additionally re-execute all the segments before i
(Line 3). Simplifying and approximating Equation (23) as in the proof of Proposition 3, we
get:
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Ei = wi + (mi − 1)V + V ∗ + CM + λsβ
T
i A

(mi)β · w2
i

+
λf
2
w2
i + λfwi

i−1∑
k=1

Ek +O(
√
λ)

= wi + (mi − 1)V + V ∗ + CM + λsβ
T
i A

(mi)β · w2
i

+
λf
2
w2
i + λfwi

i−1∑
k=1

(wk +O(1)) +O(
√
λ)

= wi + (mi − 1)V + V ∗ + CM + λsβ
T
i A

(mi)β · w2
i

+ λf

(
w2
i

2
+

i−1∑
k=1

wkwi

)
+O(

√
λ) .

Now, we can compute the expected execution time of the pattern by summing up all the
Ei’s as follows:

E(P) =

n∑
i=1

Ei + CD

=

n∑
i=1

wi +

n∑
i=1

(mi − 1)V + n(V ∗ + CM ) + CD

+ λs

n∑
i=1

βTi A
(mi)β · w2

i + λf

n∑
i=1

(
w2
i

2
+

i−1∑
k=1

wkwi

)
+O(

√
λ)

= W +
n∑
i=1

(mi − 1)V + n(V ∗ + CM ) + CD

+

(
λs

n∑
i=1

βTi A
(mi)β · α2

i +
λf
2

)
W 2 +O(

√
λ) .

This completes the proof of the proposition.

Theorem 4. A first-order approximation to the optimal parameters in pattern
P(W,n,α,m, 〈β1, . . . ,βn〉) is given by

α∗i =
1

n∗
for i = 1 . . . n∗ , (24)

β∗i,j =

{
1

(m∗i−2)r+2 for 1 ≤ i ≤ n∗, j = 1,m∗i
r

(m∗i−2)r+2 for 1 ≤ i ≤ n∗, 2 ≤ j ≤ m∗i − 1
, (25)

W ∗ =

√√√√n∗(m∗ − 1)V + n∗(V ∗ + CM ) + CD
1
2

(
1 + 2−r

(m∗−2)r+2

)
λs
n∗ +

λf
2

, (26)

and n∗ is either max(1, bn̄∗c) or dn̄∗e, and m∗i is either max(1, bm̄∗c) or dm̄∗e for all 1 ≤ i ≤
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n∗, where

n̄∗ =

√
λs
λf
· CD

V ∗ − 2−r
r V + CM

, (27)

m̄∗ = 2− 2

r
+

√
2− r
r

(
V ∗ + CM

V
− 2− r

r

)
. (28)

The optimal expected overhead is

H∗(P) =
√

2λfCD +

√
2λs

(
V ∗ − 2− r

r
V + CM

)
+

√
2λs

2− r
r

V +O(λ) . (29)

Proof. For any given n and m, we perform a series of optimizations on the expected exe-
cution time shown in Equation (22). First, minimizing function fi = βTi A

(mi)βi subject to∑mi
j=1 βi,j = 1 (as in the proof of Theorem 3), we get f∗i = 1

2

(
1 + 2−r

(mi−2)r+2

)
, obtained when

β∗i satisfies Equation (25). Next, minimizing h =
∑n

i=1 f
∗
i α

2
i subject to

∑n
i=1 αi = 1, we

get h∗ = 1∑n
i=1 1/f∗i

, which is obtained at α∗i =
1/f∗i∑n
k=1 1/f∗k

. Finally, subject to
∑n

i=1mi = nm,

where m is the average number of chunks per segment,
∑n

i=1 1/f∗i is maximized when mi = m
for all 1 ≤ i ≤ n. This means that α∗ satisfies Equation (24) and the minimum value of h∗

is given by h∗ = 1
2n

(
1 + 2−r

(m−2)r+2

)
.

Hence, we can write the two types of overheads as follows:

oef = n(m− 1)V + n(V ∗ + CM ) + CD ,

orw =
1

2

(
1 +

2− r
(m− 2)r + 2

)
λs
n

+
λf
2
.

The optimal work length W ∗ =
√

oef
orw

for any fixed n and m is thus given by Equation (26).

Now, we need to find values for n and m that minimize the function F (n,m) = oef×orw =
1
2

(
n(m−1)V +n(V ∗+CM )+CD

) ((
1 + 2−r

(m−2)r+2

)
λs
n + λf

)
. For the solution (n̄∗, m̄∗) given

in Equations (27) and (28), we can verify that

∂F (n̄∗, m̄∗)

∂n
= 0 ,

∂F (n̄∗, m̄∗)

∂m
= 0 ,

and moreover

∂2F (n̄∗, m̄∗)

∂n2
> 0 ,

∂2F (n̄∗, m̄∗)

∂n2
· ∂

2F (n̄∗, m̄∗)

∂n2
−
(
∂2F (n̄∗, m̄∗)

∂n∂m

)2

> 0 ,

which shows that (n̄∗, m̄∗) is indeed a global minimum of F (n,m). Since the number of
segments and number of chunks per segment can only be positive integers, and F (n,m) is a
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convex function, the optimal integer solution is one of the four integer combinations around
the optimal rational solution.

Finally, substituting Equations (27) and (28) into H∗(P) = 2
√
oef × orw and simplifying,

we get the optimal expected overhead as shown in Equation (29).

Remarks Theorem 4 shows that the optimal pattern has identical segments (same size
and identical number and sizes of chunks). However, inside each segment, chunks do not
necessarily have the same size. With partial verifications, the first and last chunk in each
segment are larger than the other ones.

When only guaranteed verifications are used, all chunks in a segment (and hence in the
whole pattern) have the same length. In this case, the pattern is denoted PDMV ∗ and we
have:

α∗i =
1

n∗
for 1 ≤ i ≤ n∗ ,

β∗i,j =
1

m∗
for 1 ≤ i ≤ n∗, 1 ≤ j ≤ m∗ ,

W ∗ =

√
n∗m∗V ∗ + n∗CM + CD

1
2

(
1 + 1

m∗

)
λs
n∗ +

λf
2

,

n̄∗ =

√
λs
λf

CD
CM

,

m̄∗ =

√
CM
V ∗

,

H∗(P) =
√

2λfCD +
√

2λsCM +
√

2λsV ∗ +O(λ) .

4.4 Summary of results

Table 1 summarizes the results. PD, PDV ∗ and PDV are patterns with only one level of
checkpointing, i.e., we always perform the memory checkpoint just before the disk check-
point. PDV ∗ adds extra guaranteed verifications between two disk checkpoints, while PDV
adds partial verifications. Similarly, PDM , PDMV ∗ and PDMV correspond to two-levels check-
pointing patterns, with extra guaranteed verifications for PDMV ∗ and partial verifications for
PDMV .

We report in each case the optimal pattern length W ∗, the optimal overhead H(P), the
optimal number of memory checkpoints n∗ for the two-level checkpointing patterns, and the
optimal number of verifications m∗ within a segment when additional verifications are added.

5 Errors in verifications, checkpoints and recoveries

So far, we have assumed error-free execution during verifications, checkpoints and recoveries.
In this section, we show how to handle fail-stop errors during these operations3, and that

3Checkpoints and recoveries do not suffer from silent errors, since silent errors typically do not strike I/O
and protected memory space, where memory checkpoints are assumed to be stored. Verifications can be
protected from silent errors by using redundancy techniques to ensure correct results.
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Table 1: Summary of results

Pattern W∗ n∗ m∗ H∗(P)

PD

√
V ∗+CM+CD

λs+
λf
2

– – 2

√(
λs +

λf
2

)
(V ∗ + CM + CD)

PDV ∗

√√√√ m∗V ∗+CM+CD

1
2

(
1+ 1

m∗
)
λs+

λf
2

–

√
λs

λs+λf
· CM+CD

V ∗
√

2(λs + λf )CM + CD +
√
2λsV ∗

PDV √√√√ (m∗−1)V+V ∗+CM+CD

1
2

(
1+ 2−r

(m∗−2)r+2

)
λs+

λf
2

–

2− 2
r

+

√
λs

λs+λf

√
2(λs + λf )

(
V ∗ − 2−r

r
V + CM + CD

)

×
√

2−r
r

(
V ∗+CM+CD

V
− 2−r

r

)
+
√

2λs
2−r
r
V

PDM

√
n∗(V ∗+CM )+CD

λs
n∗ +

λf
2

√
2λs
λf
· CD
V ∗+CM

– 2
√
λs(V ∗ + CM ) +

√
2λfCD

PDMV ∗

√√√√n∗m∗V ∗+n∗CM+CD

1
2

(
1+ 1

m∗
)
λs
n∗ +

λf
2

√
λs
λf
· CD
CM

√
CM
V ∗

√
2λfCD +

√
2λsCM +

√
2λsV ∗

PDMV √√√√n∗(m∗−1)V+n∗(V ∗+CM )+CD

1
2

(
1+ 2−r

(m∗−2)r+2

)
λs
n∗ +

λf
2

√
λs
λf
· CD

V ∗− 2−r
r
V+CM

2− 2
r

√
2λfCD +

√
2λs

(
V ∗ − 2−r

r
V + CM

)

+

√
2−r
r

(
V ∗+CM

V
− 2−r

r

)
+
√

2λs
2−r
r
V

the first-order approximations derived in the preceding section remain valid as long as the
platform MTBF µ = 1/λ is large in front of the resilience parameters.

First, we handle errors during checkpoints and recoveries. The probability of experiencing
at least one error during a (checkpoint or recovery) process of length L is given by pfL = 1−
e−λfL and, according to Equation (3), the expected time loss in executing this process is given
by E(T lost

L ) = 1
λf
− L

e
λfL−1

. Let E(CD), E(CM ), E(RD) and E(RM ) denote the expected time

to perform disk checkpointing, memory checkpointing, disk recovery and memory recovery,
respectively. Since each disk checkpoint is always preceded by a memory checkpoint, and each
disk recovery is immediately followed by a memory recovery, we can express these expected
execution times recursively as follows:

E(RD) = pfRD

(
E(T lost

RD
) + E(RD)

)
+
(

1− pfRD
)
RD , (30)

E(RM ) = pfRM

(
E(T lost

RM
) + E(RD) + E(RM ) + E(T rec)

)
+
(

1− pfRM
)
RM , (31)

E(CD) = pfCD

(
E(T lost

CD
) + E(RD) + E(RM ) + E(T rec) + E(CM ) + E(CD)

)
+
(

1− pfCD
)
CD , (32)

E(CM ) = pfCM

(
E(T lost

CM
) + E(RD) + E(RM ) + E(T rec) + E(CM )

)
+
(

1− pfCM
)
CM , (33)

where E(T rec) denotes the expected time to re-execute the whole pattern, or part of it, depend-
ing on when the fault strikes. If the fault strikes during disk checkpointing (Equation (32)),
the entire pattern needs to be re-executed. But if the fault strikes during memory check-
pointing (Equation (33)), then only part of the pattern up to the given memory checkpoint
needs to be re-executed. In all cases, E(T rec) is upper bounded by the expected execution
time of the whole pattern. Recall from our previous analysis that the optimal pattern length
satisfies W ∗ = Θ

(
λ−1/2

)
and the optimal overhead satisfies H∗(P) = Θ

(
λ1/2

)
. Hence, in an
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optimized pattern, we will have E(T rec) ≤ E(P) = W ∗ + H∗(P) ×W ∗ = Θ
(
λ−1/2

)
. Solving

Equations (30) to (33), we can then derive the following results:

E(RD) = RD +O(λ) ,

E(RM ) = RM +O(
√
λ) ,

E(CD) = CD +O(
√
λ) ,

E(CM ) = CM +O(
√
λ) ,

which suggest that the expected costs to perform checkpoints and recoveries are dominated by
their original costs under the assumption of a large platform MTBF. Intuitively, this is due to
the small probability of encountering an error during these operations. Thus, in Propositions
1 to 4, replacing CD, CM , RD and RM by their expected values does not affect the expected
execution times of the patterns in the first-order approximation.

Now, we briefly discuss the impact of having errors during verifications. Basically, as
far as fail-stop errors are concerned, we can consider any (partial or guaranteed) verification
together with the work segment (or chunk) immediately preceding it. Two expressions need
to be modified in the analysis. First, the probability of experiencing at least one error during
the execution of any segment (or chunk) of length w becomes pf = 1 − e−λf (w+V ), where V
denotes the cost of the verification at the end of the work length w. Second, the expected
time loss in executing this segment (or chunk) becomes E(T lost) = 1

λf
− w+V

e
λf (w+V )−1

. It turns

out that both changes do not affect the first-order approximation, because the extra terms
(involving V ) contribute O(

√
λ) to the expected execution time of a pattern, which again is

negligible compared to the dominant terms under a large platform MTBF.

6 Performance evaluation

In this section, we conduct a set of simulations whose goal is twofold: (i) corroborate the
theoretical study, and (ii) assess the relative efficiency of each checkpoint and verification
type under realistic scenarios. We rely on simulations to evaluate the performance of the
computing patterns at extreme scale, and we instantiate the model with three scenarios. In
the first scenario, we evaluate the performance of each pattern using real parameters from the
literature. The second scenario is a weak scaling experiment, whose purpose is to assess the
scalability of the approach on increasingly large platforms. In the last scenario, we study the
impact of varying error rates on the overhead of the method. The simulator code is publicly
available at http://graal.ens-lyon.fr/~yrobert/two-level, so interested readers can
experiment with it and build relevant scenarios of their choice.

6.1 Simulation setup

We make several assumptions on the input parameters. First, we assume that the recovery
cost is equivalent to the corresponding checkpointing cost, i.e., RD = CD and RM = CM .
This is reasonable because writing a checkpoint and reading one typically takes the same
amount of time. Then, we assume that a guaranteed verification must check all the data in
memory, making its cost in the same order as that of a memory checkpoint, i.e., V ∗ = CM .
Furthermore, we assume partial verifications similar to those proposed in [9, 3, 4], with very
low cost while offering good recalls. In the following, we set V = V ∗

100 and r = 0.8. All these
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Table 2: Platform parameters

platform #nodes λf λs CD CM
Hera 256 9.46e-7 3.38e-6 300s 15.4s
Atlas 512 5.19e-7 7.78e-6 439s 9.1s

Coastal 1024 4.02e-7 2.01e-6 1051s 4.5s
Coastal SSD 1024 4.02e-7 2.01e-6 2500s 180.0s

choices are somewhat arbitrary and can easily be modified in the simulator; we believe they
represent reasonable values for current and next-generation HPC applications.

The simulator generates errors following an exponential distribution of parameter λf for
fail-stop errors and λs for silent errors. The simulator allows fail-stop errors to occur during
computations, verifications, checkpoints and recoveries, while silent errors are only allowed
during actual computations, which is in accordance with our model.

An experiment goes as follows. We feed the simulator with the description of the platform,
consisting of the parameters λf , λs, CD and CM (since the other parameters can be deduced
from the above assumptions). For each pattern, we compute the optimal length W ∗, the
optimal overhead H∗(P), as well as the optimal number of memory checkpoints n∗ and the
optimal number of verifications m∗ (when applicable), using the formulas from Table 1.
The total amount of work for the application is set to that of 1000 optimal patterns, and
the simulator runs each experiment 1000 times. For each pattern, it outputs the simulated
overhead, the simulated number of disk checkpoints, memory checkpoints, verifications, disk
recoveries and memory recoveries by averaging the values from the 1000 runs.

6.2 Assessing resilience mechanisms on real platforms

In the first scenario, we assess the performance of the optimal patterns on four different
platforms with real parameter settings. We compare the results for the six optimal patterns
of Table 1.

6.2.1 Platform settings

Table 2 presents the four platforms used in this experiment and their main parameters.
These platforms have been used to evaluate the Scalable Checkpoint/Restart (SCR) library
by Moody et al. [29], who provide accurate measurements for λf , λs, CD and CM using real
applications. Note that the Hera platform has the worst error rates, with a platform MTBF
of 12.2 days for fail-stop errors and 3.4 days for silent errors. In comparison, and despite
its higher number of nodes, the Coastal platform features a platform MTBF of 28.8 days
for fail-stop errors and 5.8 days for silent errors. In addition, the last platform uses SSD
technology for memory checkpointing, which provides more data space, at the cost of higher
checkpointing costs.

6.2.2 Pattern overhead

Figure 6a presents, for each pattern, the predicted overhead H∗(P) (in blue) versus the
simulated one (in yellow) on each platform. Remember that the formula used to compute the
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expected overhead is the result of a first-order approximation, meaning that we are ignoring
some low-order terms in the computation. The consequence is that the predicted overhead,
being a little optimistic, is always slightly inferior compared to the simulated one. However,
the difference between both overheads is very small (less than 1%), which validates the model
quite satisfactorily.

Overall, the overhead oscillates between 4% and 7% on Hera, where checkpoints are rel-
atively cheaper, to just over 15% on Coastal SSD, where checkpoints are more expensive.
Regardless of the platform, the more advanced patterns always result in smaller overheads.
In particular, we observe a significant difference between the first three patterns (PD, PDV ∗ ,
PDV ), which use single-level checkpointing, and the last three patterns (PDM , PDMV ∗ ,
PDMV ), which use two-level checkpointing. The gap is more visible for Atlas (5%) and
Coastal (4%), where the difference between the costs of a disk checkpoint and a memory
checkpoint is larger, thus making memory checkpoints more valuable.

6.2.3 Pattern periods

Figure 6b shows the work lengths (periods) of the patterns on each platform. We observe
that single-level patterns are associated with shorter periods (around 3 hours on Hera and 10
hours on Coastal), as opposed to the longer periods shown by the two-level patterns (around
8 hours on Hera and 20 hours on Coastal). Indeed, when a fail-stop error strikes, the only
choice is to recover from the last disk checkpoint, losing all the work done so far. In that
case, a short period helps to mitigate the amount of time lost.

Nevertheless, silent errors are more prominent on these platforms and when one occurs,
two-level patterns can recover from an intermediate memory checkpoint instead. Not only
does that provide a faster recovery, but also it does not require the application to restart from
the very beginning of the pattern. As a result, disk checkpoints are only used for fail-stop
errors, and a longer period is favored in order to accommodate more but cheaper intermediate
memory checkpoints.

6.2.4 Pattern checkpoints

Figure 6c presents the average number of disk checkpoints, memory checkpoints and verifi-
cations taken each day by each pattern. We take all checkpoints and verifications from the
simulations into account, including the ones performed in recoveries and re-executions. Since
a partial verification is much cheaper than a guaranteed one, the two patterns that are al-
lowed to use them (PDV and PDMV ) tend to take full advantage of this mechanism. On Hera,
PDV generates an average of 13 verifications per hour (including the guaranteed ones), which
is slightly more than its two-level counterpart (PDMV ), which generates 12 verifications per
hour. On Coastal, there are more than 20 verifications per hour for PDV and 19 for PDMV .
Note that the verifications before each memory checkpoint are included.

In order to have a closer look at the number of checkpoints, which is dwarfed by the
number of verifications, Figure 6d presents the checkpointing frequencies alone. Naturally,
for the two-level patterns, whose periods are longer, the disk checkpointing frequencies are
smaller. However, their memory checkpointing frequencies are higher, because the cheaper
memory checkpoints are favored in these two-level schemes, in order to better protect the
application from silent errors. Note that the memory checkpoints before each disk checkpoint
are also taken into account. Lastly, we observe that the Coastal SSD platform requires very
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few verifications and memory checkpoints. This is because the cost of a memory checkpoint
is much higher on this platform (180s) as opposed to the costs on other platforms (15.4s on
Hera and 4.5s on Coastal).

6.2.5 Pattern recoveries

Finally, Figure 6e shows the number of recoveries per day for each pattern on each platform.
We can see that the number of disk recoveries follows closely the fail-stop error rate of a
given platform, and it is not affected by the patterns. Indeed, when a fail-stop error strikes,
a disk recovery is performed regardless of the pattern used. On Hera, we observe 0.083 disk
recovery per day on average, translating to approximately one recovery every 12 days, which
is in accordance with the platform MTBF of 12.2 days for fail-stop errors. The same applies
to Atlas and Coastal, which show respectively 0.044 and 0.034 disk recoveries per day on
average (equivalent to a platform MTBF of 22 days for Atlas and 29 days for Coastal).

The number of memory recoveries may be influenced by several factors. This is because a
memory recovery is not performed immediately after the occurrence of a silent error. Instead,
it is performed only when an alarm is raised by a verification, or when a fail-stop error strikes.
In both cases, more than one silent error could have occurred before the memory recovery. In
the latter case, a memory recovery is triggered right after a disk recovery, possibly without
any silent error. In general, the memory recovery frequency could well depend on whether
partial verifications are used in a pattern and the length of the pattern. This also explains the
slight difference under different patterns. Nevertheless, the simulation results show that the
silent error rate is a good indicator of the memory recovery frequency. For instance, on Hera,
we observe 0.285 memory recovery per day on average, which is approximately one memory
recovery every 3.5 days. This is very close to the MTBF of 3.4 days for silent errors.

6.3 Weak scaling experiment

In order to assess the scalability of the model, we now present the results of a weak scaling
experiment. This experiment is based on the Hera platform, whose disk checkpoint cost is
the closest to state-of-the-art platforms (5 minutes).

6.3.1 Platform settings

We first calculate the MTBF of one computing node, namely 8.57 years for fail-stop errors
and 2.4 years for silent errors. The platform MTBF is obtained by dividing the per-node
MTBF by the number of nodes used in the simulation. For example, when 217 nodes are
used, the MTBF decreases to about 2064s for fail-stop errors and 577s for silent errors.

Under weak scaling, the problem size grows linearly with the number of nodes, so the time
needed to perform a memory checkpoint CM remains constant. In addition, we make the
optimistic assumption that the cost of a disk checkpoint CD also remains constant by scaling
the I/O bandwidth of the file system4. We explore two scenarios. In the first scenario, we set
the cost of a disk checkpoint to be the same as on Hera, i.e., 300s. In the second scenario, we
reduce the cost of a disk checkpoint to 90s to account for improved disk technology.

4In actual systems, the I/O bandwidth could become a bottleneck, resulting in increased disk checkpointing
cost. This would further widen the performance gap between single-level and two-level patterns.
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6.3.2 Results

Figure 7a presents the impact of the number of nodes on the overheads for the simplest
pattern PD and the most advanced pattern PDMV . From the simulation results, we can
see that the performance remains acceptable up to 215 = 32768 nodes, with an overhead of
100% for PD and 64% for PDMV . Beyond that number, the overhead increases drastically
for both patterns, eventually exceeding 500% for 218 = 262144 nodes. However, compared to
the simple pattern PD, the two-level pattern PDMV improves the overhead by a few percent
on 256 nodes up to over 150% on 218 nodes.

We also observe the difference between the simulated overhead and the predicted one,
which starts negligible for a small number of nodes but reaches more than a factor of three
for 218 nodes. The reason is the use of first-order approximation to compute the predicted
overhead, which is only accurate when the platform MTBF is large in front of the other
parameters. Obviously, this is no longer the case for a large number of nodes. For instance,
when the number of nodes reaches 105 (almost 217 nodes), the MTBF of the whole platform
reduces down to less than 10 minutes, which is in the same order as the period of a pattern
(Figure 7b). At this point, the application experiences a few errors per pattern (Figure 7c)
and nearly a dozen errors per hour (Figure 7f). In order to minimize the impact of the errors,
the pattern PDMV places more than 200 verifications and more than 10 memory checkpoints
per hour (Figures 7e and 7d). As a result, a lot of time is wasted on resilience operations,
and the model starts to show its limits. However, when the error rate is this high, there
is not much flexibility left in the optimization, and no pattern is able to offer satisfactory
performance.

Finally, Figure 8 presents the results when we repeat the weak scaling experiment with
a disk checkpointing cost of 90s instead of 300s. Since writing a disk checkpoint is cheaper
now, the period is reduced and checkpointing frequency is increased. Overall, the overheads
become much better, around 200% at 218 nodes, as opposed to 500% observed in Figure 7a.
The behavior of other parameters is similar to the ones presented in Figure 7.

6.4 Impact of error rates

We assess the impact of the error rates on the performance of the computing patterns. Again,
we focus on the Hera platform but scale its number of nodes to 105. We vary the error rates
λf and λs with respect to their nominal values while keeping the other parameters fixed.

Figures 9a and 9b present the impact of λf and λs on the simulated overheads of the two
patterns PD and PDMV . For the PDMV pattern, we observe that the overhead is affected
more by the fail-stop errors than by the silent errors. This is because the intermediate
memory checkpoints better protect the application from silent errors. On the other hand, the
overhead of the single-level pattern PD is affected more by the silent errors, simply because
silent errors have a much higher rate. Figure 9c shows the difference between the overheads
of both patterns. We observe a similar performance when most errors are fail-stop, due to
their relatively small rate. However, when the silent error rate increases, the two-level pattern
achieves a much better performance than the single-level pattern, by saving up to 200% on
the execution overhead.

We now study the impact of error rates on the checkpointing period and frequency. Fig-
ure 9d presents the impact of fail-stop errors on the period of both patterns when the silent
error rate is fixed at its nominal value. We can see that the period for PD remains constant,
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while the period for PDMV decreases with increased λf . This is because the high silent error
rate has already driven the PD pattern period very low (< 10 minutes), so increasing the
fail-stop error rate has a limited impact. On the other hand, the period for the PDMV pat-
tern is primarily driven by the fail-stop error rate, so it decreases quickly, allowing more disk
checkpoints to be taken. In addition, Figures 9e and 9f show that the number of checkpoints
successfully taken in each hour remain stable for both patterns. Since the period of PDMV

decreases while the period of PD remains constant, it implies degraded performance for the
two-level pattern and stable performance for the single-level one, corroborating the previous
analysis. Figure 9g shows the corresponding number of recoveries, which is again in accor-
dance with the MTBF of the platform. Note that the number of memory recoveries decreases
slightly, as some silent errors are masked by fail-stop errors.

Figure 9h shows the impact of silent errors on the performance of both patterns when the
fail-stop error rate is fixed at the nominal value. Now, the role is reversed. Since the PDMV

pattern is equipped with more memory checkpoints and verifications, silent errors have no
impact on the period. On the contrary, the period of the PD pattern decreases in order to
detect silent errors earlier, which is the only way to protect the application from increased
silent error rate. As shown by Figures 9i and 9j, the number of verifications and memory
checkpoints performed by PDMV increases with the silent error rate in order to compensate
for the fixed number of disk checkpoints. For the PD pattern, the checkpointing frequency
remains the same, implying degraded performance with decreased period. Finally, Figure 9k
shows the corresponding number of recoveries. When silent errors are more prominent, two-
level checkpointing helps to detect them before the end of the pattern, as shown by the higher
number of memory recoveries. This results in faster recoveries and overall better performance.

6.5 Summary

Through the simulation results of this section, we conclude that the first-order approximation
for the resilience patterns provides an accurate performance model for systems with up to tens
of thousands of nodes. Overall, the complex pattern that combines all resilience mechanisms
offers significantly better performance, improving the base pattern by up to 150% in the
execution overhead. The findings are consistent on different platforms and with varying error
rates. The results nicely corroborate the analytical study, and demonstrate the benefit of
using two-level patterns for dealing with both fail-stop and silent errors.

7 Related work

7.1 Checkpointing

The most commonly deployed strategy to cope with fail-stop errors is checkpointing, in which
processes periodically save their state, so that computation can be resumed from that point
when some failure disrupts the execution. Checkpointing strategies are numerous, ranging
from fully coordinated checkpointing [16] to uncoordinated checkpoint and recovery with
message logging [22]. Despite a very broad applicability, all these fault-tolerance methods
suffer from the intrinsic limitation that both protection and recovery generate an I/O workload
that grows with failure probability, and becomes unsustainable at large scale [23, 11] (even
when considering optimizations such as diskless or incremental checkpointing [32]).
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To reduce the checkpointing overhead, many authors have proposed multi-level check-
pointing protocols, which combine global disk checkpointing with local or in-memory check-
pointing (also known as diskless checkpointing). Most of these protocols handle fail-stop
errors only, and recover from different levels of checkpoints according to the severity of the
failures. Vaidya [36] proposed a two-level recovery scheme that tolerates a single node failure
using a local checkpoint stored on a parter node. If more than one failure occurs during
any local checkpointing interval, the scheme then resorts to the global checkpoint. Silva and
Silva [35] advocated a similar scheme by using memory to store the local checkpoints, which
is protected by XOR encoding. Moody et al. [29] generalized this idea to account for an
arbitrary number of levels with increasing failure handling capability, and implemented it
in a Scalable Checkpoint/Restart (SCR) library. Bautista-Gomez et al. [5] also designed a
multi-level checkpointing library, called Fault Tolerance Interface (FTI), but they employed
a more efficient Reed-Solomon encoding scheme to handle multiple failures without the need
to access the parallel file system.

Our work is along the same direction as multi-level checkpointing, but the two levels we
propose target different error sources, namely, fail-stop errors and silent errors. As mentioned
before, this dramatically changes the computation of the expected re-execution time, because
we do not have to distinguish which error type strikes first. Moreover, as in Young [37] and
Daly [18], we provide explicit formulas on the optimal checkpointing intervals for both levels
(up to a first-order approximation), while previous work relies on numerical methods to find
the optimal solution [19].

7.2 Silent error detection

Considerable efforts have been directed at verification techniques to reveal silent errors. A
guaranteed verification is often only achievable with expensive techniques, such as process
replication [24, 30] or redundancy [28, 21]. Application-specific information can be very useful
in decreasing the verification cost. Algorithm-based fault tolerance (ABFT) [26, 10, 34] is
a well-known technique to detect errors in linear algebra kernels using checksums. Various
techniques have been proposed in other application domains. Benson et al. [8] compared
a higher-order scheme with a lower-order one to detect errors in the numerical analysis of
ODEs. Sao and Vuduc [33] investigated self-stabilizing corrections after error detection in
the conjugate gradient method. Heroux and Hoemmen [25] designed a fault-tolerant GMRES
capable of converging despite silent errors. Bronevetsky and de Supinski [12] provided a
comparative study of detection costs for iterative methods. Recently, detectors based on data
analytics have been proposed to serve as partial verifications [9, 3, 4]. These detectors use
interpolation techniques, such as time series prediction and spatial multivariate interpolation,
on scientific dataset to offer large error coverage for a negligible overhead. Although not
perfect, their accuracy-to-cost ratios tend to be very high, which makes them interesting
alternatives at large scale.

7.3 Optimization of computing patterns

Given the checkpointing cost and the platform MTBF, classical formulas due to Young [37]
and Daly [18] are well known to determine the optimal checkpointing intervals in the presence
of fail-stop errors. These formulas have been extended to account for silent errors in various
ways. By coupling checkpointing with guaranteed verification, Aupy et al. [1] analyzed two
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simple patterns: one with k checkpoints and one verification, and the other with k verifications
and one checkpoint. Benoit et al. [6] studied the latter pattern and gave explicit formulas to
accommodate both fail-stop and silent errors. The idea of interleaving p checkpoints and q
verifications has also been explored in [7] to achieve more optimized computing patterns. The
first analysis of a pattern that utilizes partial verification for silent error detection was given
by Cavelan et al. [15]. This analysis has been recently extended to the case with multiple
partial verifications [2]. All these results apply to a single level of checkpointing only. To
the best of our knowledge, this work is the first to investigate the combination of in-memory
checkpoints, disk checkpoints, partial verifications and guaranteed verifications.

8 Conclusion

When computing at extreme scale, both fail-stop errors and silent errors are major threats to
executing HPC applications with acceptable overhead. While several techniques have been
developed to cope with either threat, few approaches are devoted to addressing both of them
simultaneously. Although surprising –because dealing with both error sources is unavoidable
on large-scale platforms–, this lack of solutions may be explained by the new challenges
raised by silent errors, whose detection is not immediate and requires the use of verification
mechanisms, either partial or guaranteed. Also, the interplay of two levels of checkpoints and
of two types of verifications raises difficult optimization challenges. The major contribution
of this paper is the characterization of the optimal computational pattern. The derivation is
technically involved, but the results are easy to use in real-life scenarios: one has just to look
at Table 1 and pick the optimal pattern that fits their resilience needs.

The accuracy of our model as well as the analysis have been nicely corroborated by
extensive simulations. The results show acceptable difference in the predicted overhead and
the simulated one on systems with up to tens of thousands of nodes. Also, the complex pattern
that combines all resilience mechanisms provides up to 150% improvement in the execution
overhead compared to the base pattern dictated by the classical Young/Daly’s formula.

Finally, our approach is application-agnostic. Future work will be devoted to the study of
application-specific verification and checkpoint mechanisms, in particular for sparse iterative
solvers. It will be interesting to assess the impact of ad-hoc techniques (ABFT, orthogonality
checks, incremental checkpointing, etc) on the overhead of computational patterns in the
latter framework.
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Figure 6: Performance of different patterns on the four platforms. Each column represents one platform.
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Figure 7: Weak scaling experiment on the Hera platform.
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Figure 8: Weak scaling experiment on the Hera platform with reduced disk checkpointing cost.
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Figure 9: Impact of error rates λf and λs on the performance on the Hera platform with 105 nodes.
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