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Abstract: We provide a framework to analyze multi-level checkpointing protocols, by
formally defining a k-level checkpointing pattern. We provide a first-order approximation
to the optimal checkpointing pattern, and show that the corresponding overhead is of the
order of

∑k
`=1

√
2λ`C`, where λ` is the error rate at level `, and C` the checkpointing cost at

level `. This nicely extends the classical Young/Daly formula. Furthermore, we are able to
fully characterize the shape of the optimal pattern (number and positions of checkpoints),
and we provide a dynamic programming algorithm to determine which levels should be
used. Finally, we perform simulations to check the accuracy of the theoretical study and
to confirm the optimality of the subset of levels returned by the dynamic programming
algorithm. The results nicely corroborate the theoretical study, and demonstrate the
usefulness of multi-level checkpointing with the optimal subset of levels.
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Towards Optimal Multi-Level Checkpointing

Résumé : Ce travail analyse les techniques de checkpoint multi-niveaux. On étudie les
schémas de calcul périodiques, où les différents niveaux de checkpoint sont imbriqués, et on
caractérise le schéma optimal, i.e., celui dont le surcoût par unité de calcul est minimal. On
montre que ce surcoût minimal est de l’ordre de

∑k
`=1

√
2λ`C`, où λ` est le taux d’erreur au

niveau `, et C` le coût de checkpoint au niveau `. Cette formule étend la célèbre formule de
Young/Daly pour un seul niveau. On propose également un algorithme de programmation
dynamique pour déterminer le meilleur sous-ensemble de niveuax à utiliser pour minimiser
le surcoût global. Enfin, nous conduisons des simulations pour vérifier l’étude théorique, et
confirmer l’optimalité du sous-ensemble déterminé par l’algorithme de programmation dy-
namique. Les résultats corroborent bien l’étude théorique, et montrent toute l’utilité d’une
approche multi-niveaux basée sur le sous-ensemble de niveaux optimal.

Mots-clés : résilience, erreurs fatales, checkpoint multi-niveaux, schéma optimal.
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1 Introduction

Checkpointing is the de-facto standard resilience method for HPC platforms at extreme-scale.
However, the traditional single-level checkpointing method suffers from significant overhead,
and multi-level checkpointing protocols now represent the state-of-the-art technique. These
protocols allow for different levels of checkpoints to be set, each with a different checkpoint
overhead and recovery ability. Typically, each level corresponds to a specific fault1 type, and
is associated to a storage device that is resilient to that type. For instance, a two-level system
would deal with (i) transient memory errors (level 1) by storing key data in main memory;
and (ii) node failures (level 2) by storing key data in stable storage (remote redundant disks).

We consider a very general scenario, where the platform is subject to k levels of faults,
numbered from 1 to k. Level ` is associated with an error rate λ`, a checkpointing cost C`,
and a recovery cost R`. A fault at level ` destroys all the checkpoints of lower levels (from
1 to ` − 1 included) and implies a roll-back to a checkpoint of level ` or higher. Similarly, a
recovery of level ` will restore data from all lower levels. Typically, fault rates are decreasing
and checkpoint/recovery costs are increasing when we go to higher levels: λ1 ≥ λ2 ≥ · · · ≥ λk,
C1 ≤ C2 ≤ · · · ≤ Ck, and R1 ≤ R2 ≤ · · · ≤ Rk.

Time

Time

Time

C3 C3

C2 C2 C2

C1 C1 C1 C1 C1 C1 C1 C1

(level 3)

(level 2)

(level 1)

Figure 1: Independent checkpointing periods for three levels of faults: no synchronization
between checkpoint levels.

The idea of multi-level checkpointing is that checkpoints are taken for each level of faults,
but at different periods. Intuitively, the less frequent the faults, the longer the checkpointing
period: this is because the risk of a failure striking is lower when going to higher levels; hence
the expected re-execution time is lower too; one can safely checkpoint less frequently, thereby
reducing failure-free overhead (checkpointing is useless in the absence of a fault). There are
several natural approaches to implement multi-level checkpointing. The first option is to use
independent checkpointing periods for each level, as illustrated in Figure 1 with k = 3 levels.
This option raises several difficulties, the most prominent one being overlapping checkpoints.
Typically, we need to checkpoint different levels in sequence (e.g., writing into memory before
writing onto disk), so we would need to delay some checkpoints, which might be not possible
in some environments, and which would introduce irregular periods. The second option is
to synchronize all checkpoint levels by nesting them inside a periodic pattern that repeats
over time, as illustrated in Figure 2(c). In this figure, the pattern has five computational
segments, each followed by a level 1 checkpoint. The second and fifth level-1 checkpoints are
followed by a level-2 checkpoint. Finally, the pattern ends with a level-3 checkpoint. When
using patterns, a checkpoint at level ` is always preceded by checkpoints at all lower levels 1
to `−1, which makes good sense in practice (e.g., with two levels, main memory and disk, one
writes the data into memory before transferring it to disk). In this context, the checkpointing

1We use the terms fault, failure and error indifferently.
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Towards Optimal Multi-Level Checkpointing 4

cost C` at level ` is the additional cost paid to save data when going from level `− 1 to `.
Using patterns simplifies the orchestration of checkpoints at all levels. In addition, repeat-

edly using the same pattern is optimal for on-line scheduling problems, or for jobs running
a very long (even infinite) time on the platform. Indeed, in this scenario, we seek the best
pattern, namely, the one whose overhead is minimal. The overhead of a pattern is the price
to pay per work unit for resilience in the pattern; hence minimizing the overhead is equivalent
to optimizing the throughput of the platform. For a pattern P(W ) with W units of work
(the cumulated length of all its segments), the overhead H(P(W)) is defined as the ratio of
the pattern’s expected execution time E(P(W)) over its total work W minus 1:

H(P(W )) =
E(P(W ))

W
− 1. (1)

If there were neither checkpoint nor fault, the overhead would be zero. Determining the
optimal pattern (with minimal overhead), and then repeatedly using it until job completion,
is the optimal approach with exponential failure distributions and long-lasting jobs. Indeed,
once a pattern is successfully executed, the optimal strategy is to re-execute the same pattern.
This is because of the memoryless property of exponential distributions: the history of failures
has no impact on the solution, so if a pattern is optimal at some point in time, it stays optimal
later in the execution, because we have no further information about the amount of work still
to be executed.

The difficulty of characterizing the optimal pattern dramatically increases with the number
of levels. How many checkpoints of each level should be used, and at which locations inside
the pattern? What is the optimal length of each segment?

Time

C1 C1(a)

Time

C1 C2 C1 C1 C2 C1 C1 C2(b)

Time

C1 C2 C3 C1 C1 C2 C1 C1 C1 C2 C3(c)

Figure 2: Computational patterns (highlighted using red bars) with k = 1, 2 and 3 levels.

With one single level (see Figure 2(a)), there is a single segment of length W , and the

Young/Daly formula [16, 6] gives W opt =
√

2C1
λ1

. The minimal overhead is then Hopt =
√

2λ1C1 + o(
√
λ1) [4].

With two levels, the pattern still has a simple shape, with N segments followed by a level-1
checkpoints, and ended by a level-2 checkpoint (see Figure 2(b)). Recent work [8] shows that
all segments have same length in the optimal pattern, and provides mathematical equations
that can be solved numerically to compute both the optimal length W opt of the pattern and
its optimal number of chunks. However, no closed-form expression is available, neither for
W opt, nor for the minimal overhead Hopt.

With three levels, no optimal solution is known. The pattern shape becomes quite com-
plicated. Coming back to Figure 2(c), we identify two sub-patterns ending with a level-2
checkpoint. The first sub-pattern has 2 segments while the second one has 3. The mem-
oryless property does not imply that all sub-patterns are identical, because the state after

RR n° 8930



Towards Optimal Multi-Level Checkpointing 5

completing the first sub-pattern is not the same as the initial state when beginning the exe-
cution of the pattern. In the general case with k levels, the shape of the pattern will be even
more complicated, with different-shaped sub-patterns (each ended by a level k−1 checkpoint).
In turn, each sub-pattern may have different-shaped sub-sub-patterns (each ended by a level
k− 2 checkpoint), and so on. The major contribution of this work is to provide an analytical
characterization of the optimal pattern with an arbitrary number k of checkpoint levels, with
closed-form formulas for the pattern length W opt, the number of checkpoints at each level,
and the optimal overhead Hopt. In particular, we obtain the following beautiful result:

Hopt =

k∑
`=1

√
2λ`C` + Θ(Λ), (2)

where Λ =
∑k

`=1 λ`. However, we point out that this analytical characterization relies on a
first-order approximation, so it is valid only when resilience parameters C` and R` are small
in front of the platform MTBF µ = 1/Λ. Also, the optimal pattern has rational number of
chunks, and we use rounding to derive a practical solution. Still, Equation (2) provides a lower
bound of the optimal overhead, and this bound is met very closely in all our experimental
scenarios.

Finally, in many practical cases, there is no obligation to use all available checkpoint levels.
For instance with k = 3 levels, one may choose among four possibilities: level 3 only, levels
1 and 3, levels 2 and 3, and all levels 1, 2 and 3. Of course, we still have to account for all
failure types, which translates into the following:

• level 3: use λ3 ← λ1 + λ2 + λ3;
• levels 1 and 3: use λ1 and λ3 ← λ2 + λ3;
• levels 2 and 3: use λ2 ← λ1 + λ2 and λ3;
• all levels: use λ1, λ2 and λ3.

Our analytical characterization of the optimal pattern leads to a simple dynamic programming
algorithm to select the optimal subset of levels.

The rest of the paper is organized as follows. Section 2 is the heart of the paper and
shows how to compute the best pattern. To help the reader follow the derivation, we first
show how to compute the optimal pattern with k = 2 levels in Section 2.1, before proceeding
to the general case in Section 2.2. The algorithm to compute the optimal subset of levels is
described in Section 2.3. Section 3 is devoted to simulations assessing the accuracy of the
first-order approximation. We survey related work in Section 4. Finally, we give concluding
remarks and hints for future work in Section 5.

2 Computing the optimal pattern

In the analysis, we make use of the following observation when dealing with the interplay of
errors from different levels (recall that Λ = λ1 + λ2 + · · ·+ λk):

Observation 1. During the execution of a segment with length w, let X` denote the time
when the first level ` error strikes. Thus, X` is a random variable following an Exponential
distribution with parameter λ`, for all ` = 1, 2, . . . , k.

(1) Let X denote the time when the first error (of any level) strikes. We have X =
min{X1, X2, . . . , Xk}, which follows an Exponential distribution with parameter Λ =

RR n° 8930



Towards Optimal Multi-Level Checkpointing 6

∑k
`=1 λ`. The probability of having an error (from any level) in the segment is therefore

1− e−Λw.

(2) Given that an error (from any level) strikes during the execution of the segment, the
probability that the error belongs to a particular level is proportional to the error rate of
that level, i.e., P (X = X`|X ≤ w) = λ`

Λ , for all ` = 1, 2, . . . , k.

Throughout the paper, we assume that errors only strike the computations, while check-
pointing and recovery are error-free. It has been shown in [3] that removing this assumption
does not change the first-order approximation of the pattern overhead.

We start with the particular case with k = 2 levels in Section 2.1, before proceeding to
the general case in Section 2.2. Finally, the algorithm to compute the optimal subset of levels
is described in Section 2.3.

2.1 Optimal two-level pattern

We start by analyzing the two-level pattern as shown in Figure 2(b). The goal is to determine
a first-order approximation to the optimal pattern length W , the number n of level-1 check-
points in the pattern, as well as the length wi = αiW of the i-th segment, for all 1 ≤ i ≤ n,
where

∑n
i=1 αi = 1. The following proposition shows the expected time to execute a two-level

pattern when these parameters are fixed (recall that Λ = λ1 + λ2):

Proposition 1. The expected execution time of a given two-level pattern is

E(P )=W+nC1+C2 +
1

2

(
λ1

n∑
i=1

α2
i + λ2

)
W 2 +O(Λ2W 3).

Proof. We first prove the following result (by induction) on the expected time Ei to execute
the i-th segment of the pattern (without counting the checkpointing cost at the end of the
segment):

Ei = wi +
λ1

2
w2
i + λ2

(
w2
i

2
+

i−1∑
k=1

wkwi

)
+O(Λ2W 3). (3)

For ease of analysis, we assume that there is a hypothetical segment at the beginning of
the pattern with length w0 = 0 (hence no need to checkpoint). For this segment, we have
E0 = w0 = 0, satisfying Equation (3). Suppose the claim holds up to Ei−1. Then, Ei can be
computed as follows:

Ei = pi

(
Elost(wi, λ1 + λ2) +

λ1

λ1 + λ2
(R1 + Ei)

+
λ2

λ1 + λ2

(
R2 +R1 +

i−1∑
j=1

Ej + Ei
))

+ (1− pi)wi, (4)

where pi = 1−e−(λ1+λ2)wi denotes the probability of having a failure (either level-1 or level-2)
during the execution of the segment, and Elost(wi, λ1 + λ2) denotes the expected time lost
when such a failure occurs. In this case, if the failure belongs to level 1, which happens
with probability λ1

λ1+λ2
, we can recover from the latest level-1 checkpoint (R1) and re-execute

RR n° 8930



Towards Optimal Multi-Level Checkpointing 7

only segment i. Otherwise, if the failure belongs to level 2, with probability λ2
λ1+λ2

, we need
to recover from the last level-2 checkpoint (R2) before restoring the corresponding level-1
checkpoint (R1), and then re-execute all the segments (including segment i) that have been
executed so far. Finally, if no error (of any level) strikes during the execution, which happens
with probability 1− pi, the computation is done.

From [11, Equation (1.13)], we can get the following general formula on the expected time
lost when executing a segment of length w with error rate λ:

Elost(w, λ) =
1

λ
− w

eλw − 1
. (5)

Substituting Equation (5) into Equation (4), we get

Ei = wi+
1

2

(
λ1w

2
i + λ2w

2
i + 2λ2wi

i−1∑
k=1

Ek

)
+O(Λ2W 3)

= wi+
1

2

(
λ1w

2
i + λ2w

2
i + 2λ2wi

i−1∑
k=1

(
wk+O(1)

))
+O(Λ2W 3)

= wi+
1

2

(
λ1w

2
i + λ2

(
w2
i + 2

i−1∑
k=1

wiwk

))
+O(Λ2W 3). (6)

Since checkpointing is assumed to be error-free, we can compute the expected execution
time of the pattern as follows:

E =
n∑
i=1

Ei + nC1 + C2

=
n∑
i=1

wi + nC1 + C2

+
1

2

(
λ1

n∑
i=1

w2
i +λ2

( n∑
i=1

w2
i +2

n∑
i=1

i−1∑
k=1

wiwk

))
+O(Λ2W 3)

= W + nC1 + C2 +
1

2

(
λ1

n∑
i=1

α2
i + λ2

)
W 2 +O(Λ2W 3).

The last equation is because
∑n

i=1w
2
i + 2

∑n
i=1

∑i−1
k=1wiwk = (

∑n
i=1wi)

2 = W 2.

Theorem 1. A first-order approximation to the optimal two-level pattern is characterized by

nopt =

√
λ1

λ2
· C2

C1
, (7)

αopt
i =

1

nopt
∀i = 1, 2, . . . , nopt, (8)

W opt =

√√√√ noptC1 + C2

1
2

(
λ1
nopt + λ2

) , (9)

RR n° 8930
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where nopt is the number of segments, αopt
i W opt is the length of the i-th segment, and W opt

is the pattern length. The optimal pattern overhead is

Hopt =
√

2λ1C1 +
√

2λ2C2 +O(Λ). (10)

Proof. For a given pattern with a fixed number n of segments,
∑n

i=1 α
2
i is minimized subject

to
∑n

i=1 αi = 1 when αi = 1
n for all i = 1, 2, . . . , n. Hence, we can derive the expected

execution overhead from Proposition 1 as follows:

H =
nC1 + C2

W
+

1

2

(
λ1

n
+ λ2

)
W +O(Λ2W 2). (11)

For a given n, the optimal work length can then be computed from Equation (11), and it

is given by W opt =
√

nC1+C2
1
2

(
λ1
n

+λ2
) = Θ(Λ−1/2). In that case, the execution overhead becomes

H =

√
2

(
λ1

n
+ λ2

)
(nC1 + C2) +O(Λ), (12)

which is minimized as shown in Equation (10) when n satisfies Equation (7). Indeed,

2
(

λ1
nopt + λ2

) (
noptC1 + C2

)
= 2λ1C1 + 2λ2C2 + 4

√
λ1λ2C1C2 = (

√
2λ1C1 +

√
2λ1C1)2. In

practice, since the number of segments can only be a positive integer, the optimal solution is
either max(1, bnoptc) or dnopte, whichever leads to a smaller value of the convex function H
as shown in Equation (12).

Theorem 1 extends Young/Daly’s classical formula [16, 6] to the two-level checkpointing
scenario. When there is only one level, i.e., λ1 = 0 and C1 = 0, we retrieve their classical
result.

2.2 Optimal k-level pattern

From the analysis of the two-level pattern, we observe that the overall execution overhead of
a pattern comes from two distinct sources defined below:

Definition 1. There are two types of execution overheads for a pattern:

(1) Error-free overhead, denoted as oef, is the total cost of all the checkpoints placed in the
pattern. For a given set of checkpoints, the error-free overhead is completely determined
regardless of their positions in the pattern.

(2) Re-executed fraction overhead, denoted as ore, is the expected fraction of work that needs
to be re-executed due to errors. The re-executed fraction overhead depends on both the
set of checkpoints and their positions.

For example, in the two-level pattern with n level-1 checkpoints and given values of αi
for all i = 1, 2, . . . , n, the two types of overheads are given by oef = nC1 + C2 and ore =
1
2

(
f1
∑n

i=1 α
2
i + f2

)
, where f` = λ`

λ1+λ2
for ` = 1, 2. Assuming that checkpoints at all levels

have constant costs and that the error rates at all levels are in the same order, then both oef

and ore can be considered as constants, i.e., oef = O(1) and ore = O(1).

RR n° 8930
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s
(3)
1 s

(3)
2

c4
c3 c3

s
(2)
1,1 s

(2)
1,2 s

(2)
1,3 s

(2)
1,4

c2

s
(2)
2,1 s

(2)
2,2

c2 c2

c2 c2
c1 c1 c1

s
(1)
1,3,1 s

(1)
1,3,2 s

(1)
1,3,3

Figure 3: Pattern example with 4 levels. We let ci = C1|C2| . . . |Ci denote the succession of
checkpoints from level 1 to level i.

A trade-off exists between these two types of execution overheads, since placing more
checkpoints generally reduces the re-executed work fraction when an error strikes, but it can
adversely increase the overhead when the execution is error-free. Therefore, in order to achieve
the best overall overhead, a resilience algorithm must seek an optimal balance between oef

and ore.
For a given pattern with fixed overheads oef and ore, we can make the following observation,

which partially characterizes the optimal pattern.

Observation 2. For a given pattern (with fixed oef and ore), the expected execution time is
given by

E = W + oef︸ ︷︷ ︸
error-free

execution time

+ ΛW︸︷︷︸
expected
# errors

· oreW︸ ︷︷ ︸
re-executed work
in case of error

+ O(Λ2W 3), (13)

and the optimal pattern length and the resulting expected execution overhead of the pattern
are

W opt =

√
oef

Λ · ore
, (14)

Hopt = 2
√

Λ · oef · ore +O(Λ). (15)

In particular, Equation (15) shows that the trade-off between oef and ore is manifested as
the product of the two terms. Hence, in order to determine the optimal pattern, it suffices to
find the pattern parameters (e.g., n and αi) that minimize oef · ore. Furthermore, since both
oef and ore are constants, we obtain that W opt = Θ(Λ−1/2)and Hopt = Θ(Λ1/2).

We now extend the analysis to derive the optimal multi-level checkpointing patterns.

Generally, for a k-level pattern, each computational chunk or segment s
(`)
ik−1,...,i`

can be uniquely

identified by the level ` it is in as well as its position 〈ik−1, . . . , i`〉 within the hierarchy. For

instance, in a four-level pattern, the segment s
(2)
1,3 denotes the third level-2 segment inside the

first level-3 segment of the pattern (see Figure 2.2). Note that a segment can contain multiple
sub-segments at the lower levels (except for bottom-level segments) and is a sub-segment of
a larger segment at a higher level (except for top-level segments). The entire pattern can be
denoted as s(k), which is the only segment at level k.

RR n° 8930
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For any segment s
(`)
ik−1,...,i`

at level `, where 1 ≤ ` ≤ k, let w
(`)
ik−1,...,i`

denote its size

or amount of work. Hence, we have w
(`+1)
ik−1,...,i`+1

=
∑

i`
w

(`)
ik−1,...,i`

and w(k) = W . Also, let

n
(`)
ik−1,...,i`

denote the number of sub-segments contained by s
(`)
ik−1,...,i`

at the lower level ` − 1.

We have n
(1)
ik−1,...,i1

= 1 for all ik−1, . . . , i1. For convenience, we further define

α
(`)
ik−1,...,i`

=
w

(`)
ik−1,...,i`

W

as the fraction of the size of segment s
(`)
ik−1,...,i`

inside the pattern, and define N` to be the total

number of level-` segments in the entire pattern. Therefore, we have Nk = 1, Nk−1 = n(k),
and in general

N` =
∑

ik−1,...,i +̀1

n
( +̀1)
ik−1,...,i +̀1

.

The following proposition shows the expected time to execute a given k-level pattern.

Proposition 2. The expected execution time of a given k-level pattern is

E = W +
k−1∑
`=1

N`C` + Ck

+
W 2

2

 k∑
`=1

λ`
∑

ik−1,...,i`

(
α

(`)
ik−1,...,i`

)2

+O(Λ2W 3).

Proof. We show that the expected time to execute any segment s
(h)
ik−1,...,ih

at level h, where
1 ≤ h ≤ k, satisfies the following:

E(h)
ik−1,...,ih

= w
(h)
ik−1,...,ih

+
W 2

2

 h∑
`=1

λ`
∑

ih−1,...,i`

(
α

(`)
ik−1,...,i`

)2


+ λ[h+1,k]


(
w

(h)
ik−1,...,ih

)2

2
+ w

(h)
ik−1,...,ih

ih−1∑
jh=1

E
(h)
〈ik−1,...,jh〉


+ w

(h)
ik−1,...,ih

k∑
`=h+2

λ[`,k]

i −̀1−1∑
j −̀1=1

E( −̀1)
〈ik−1,...,j −̀1〉+O(Λ2W 3), (16)

where λ[x,y] =
∑y

`=x λ`. Then, the proposition can be proven by setting E = E(k) +∑k−1
`=1 N`C` + Ck, since checkpoints are assumed to be error-free.
We now prove Equation (16) by induction on the level h. For the base case, i.e., when

h = 1, consider a segment s
(1)
ik−1,...,i1

at the first level. Following the proof of Proposition 1 (in

RR n° 8930
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particular, Equation (4)), we can express its expected execution time as

E(1)
ik−1,...,i1

=p
(1)
ik−1,...,i1

(
Elost

(
w

(1)
ik−1,...,i1

,Λ
)

+
λ1

Λ

(
R1 + E(1)

ik−1,...,i1

)
+
λ2

Λ

( 2∑
j=1

Rj +

i1∑
j1=1

E(1)
ik−1,...,j1

)

+
λ3

Λ

( 3∑
j=1

Rj +

i2−1∑
j2=1

E(2)
ik−1,...,j2

+

i1∑
j1=1

E(1)
ik−1,...,j1

)
...

+
λk
Λ

( k∑
j=1

Rj +

ik−1−1∑
jk−1=1

E(k−1)
jk−1

+

ik−2−1∑
jk−2=1

E(k−2)
ik−1,jk−2

+ · · ·+
i1∑

j1=1

E(1)
ik−1,...,j1

))
+
(
1− p(1)

ik−1,...,i1

)
w

(1)
ik−1,...,i1

. (17)

where Λ =
∑k

`=1 λ` denotes the total rate of all error sources, and p
(1)
ik−1,...,i1

= 1− eΛ·w(1)
ik−1,...,i1

denote the probability of having an error (from any level) during the execution of the segment.

Simplifying Equation (17) and solving for E(1)
ik−1,...,i1

we get:

E(1)
ik−1,...,i1

= w
(1)
ik−1,...,i1

+
W 2

2
λ[1,k]

(
α

(1)
ik−1,...,i1

)2

+ w
(1)
ik−1,...,i1

k∑
`=2

λ[`,k]

i −̀1−1∑
j −̀1=1

E( −̀1)
ik−1,...,j −̀1

+O(
√
λ),

which satisfies Equation (16).

Suppose Equation (16) holds up to any segment s
(h)
ik−1,...,ih

at level h. Following the proof

of Proposition 1 (in particular, Equation (6)), we can show by induction that E(h)
ik−1,...,ih

=
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w
(h)
ik−1,...,ih

+O(1). Hence, for segment s
(h+1)
ik−1,...,ih+1

at level h+ 1, we have:

E(h+1)
ik−1,...,ih+1

=
∑
ih

E(h)
ik−1,...,ih

=
∑
ih

w
(h)
ik−1,...,ih

+
W 2

2

 h∑
`=1

λ`
∑
ih,...,i`

(
α

(`)
ik−1,...,i`

)2


+ λ[h+1,k]

∑
ih


(
w

(h)
ik−1,...,ih

)2

2
+w

(h)
ik−1,...,ih

ih−1∑
jh=1

w
(h)
ik−1,...,jh


+
∑
ih

w
(h)
ik−1,...,ih

k∑
`=h+2

λ[`,k]

i −̀1−1∑
j −̀1=1

E( −̀1)
ik−1,...,j −̀1

+O(
√
λ)

= w
(h+1)
ik−1,...,ih+1

+
W 2

2

 h∑
`=1

λ`
∑
ih,...,i`

(
α

(`)
ik−1,...,i`

)2


+ λ[h+1,k]

(
w

(h+1)
ik−1,...,ih+1

)2

2

+ w
(h+1)
ik−1,...,ih+1

k∑
`=h+2

λ[`,k]

i −̀1−1∑
j −̀1=1

E( −̀1)
ik−1,...,j −̀1

+O(Λ2W 3)

= w
(h+1)
ik−1,...,ih+1

+
W 2

2

h+1∑
`=1

λ`
∑
ih,...,i`

(
α

(`)
ik−1,...,i`

)2


+ λ[h+2,k]


(
w

(h+1)
ik−1,...,ih+1

)2

2
+w

(h+1)
ik−1,...,ih+1

ih+1−1∑
jh+1=1

E(h+1)
ik−1,...,jh+1


+ w

(h+1)
ik−1,...,ih+1

k∑
`=h+3

λ[`,k]

i −̀1−1∑
j −̀1=1

E( −̀1)
ik−1,...,j −̀1

+O(Λ2W 3).

Hence, Equation (16) also holds for any segment at level h+ 1. This completes the proof of
the proposition.

Proposition 2 shows that, for a given k-level checkpointing pattern, the error-free overhead
oef and the re-executed fraction overhead ore are given as follows:

oef =
k−1∑
`=1

N`C` + Ck, (18)

ore =
1

2

k∑
`=1

f`
∑

ik−1,...,i`

(
α

(`)
ik−1,...,i`

)2
, (19)

where f` = λ`
Λ . According to Observation 2, it remains to find parameters of the pattern such

that oef · ore is minimized.
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To derive the optimal pattern, we first consider the case where oef is fixed, that is, the set
of checkpoints is given. The following proposition shows the optimal value of ore.

Proposition 3. For a k-level checkpointing pattern, suppose the number N` of checkpoints
at each level ` is given, i.e., the error-free overhead oef is fixed (as in Equation (18)). Then,
the optimal value of the re-executed work overhead is given by

ooptre =
1

2

(
k−1∑
`=1

f`
N`

+ fk

)
, (20)

and it is obtained when all the checkpoints of each level are equally spaced in the pattern.

Proof. According to Equation (19), which shows the value of ore for the entire pattern, we can

define the corresponding overhead for each level-h segment s
(h)
ik−1,...,ih

recursively as follows:

ore

(
s

(h)
ik−1,...,ih

)
=
fh
2
·
(
α

(h)
ik−1,...,ih

)2
+
∑
ih−1

ore

(
s

(h−1)
ik−1,...,ih−1

)
,

with ore

(
s

(0)
ik−1,...,i0

)
= 0 by definition.

For each segment s
(h)
ik−1,...,ih

, we also define N`

(
s

(h)
ik−1,...,ih

)
to be the total number of level-`

segments it contains, with ` ≤ h. We will show that the optimal value oopt
re

(
s

(h)
ik−1,...,ih

)
for the

segment satisfies:

oopt
re

(
s

(h)
ik−1,...,ih

)
=

1

2

 h∑
`=1

f`

N`

(
s

(h)
ik−1,...,ih

)
(α(h)

ik−1,...,ih

)2
, (21)

and it is achieved when its level-` checkpoints are equally spaced, for all ` ≤ h − 1. The
proposition can then be proven by setting oopt

re = oopt
re

(
s(k)
)
, since N

(̀
s(k)
)

= N`, Nk = 1, and

α(k) = 1.
Now, we prove Equation (21) by induction on the level h. For the base case, i.e., when

h = 1, we have ore

(
s

(1)
ik−1,...,i1

)
= f1

2 ·
(
α

(1)
ik−1,...,i1

)2
by definition, and it satisfies Equation (21),

because N1

(
s

(1)
ik−1,...,i1

)
= 1. Suppose Equation (21) holds for any segment s

(h)
ik−1,...,ih

at level h.

Then, for segment s
(h+1)
ik−1,...,ih+1

at level h+ 1, we have:

ore

(
s

(h+1)
ik−1,...,ih+1

)
=
fh+1

2
·
(
α

(h+1)
ik−1,...,ih+1

)2
+
∑
ih

oopt
re

(
s

(h)
ik−1,...,ih

)
=
fh+1

2
·
(
α

(h+1)
ik−1,...,ih+1

)2
+

1

2
y, (22)

where y =
∑

ih
x

(h)
ik−1,...,ih

·
(
α

(h)
ik−1,...,ih

)2
, and x

(h)
ik−1,...,ih

=
∑h

`=1
f`

N
(̀
s
(h)
ik−1,...,ih

) . To minimize

ore

(
s

(h+1)
ik−1,...,ih+1

)
as shown in Equation (22), it suffices to solve the following minimization
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problem:

minimize y =
∑
ih

x
(h)
ik−1,...,ih

·
(
α

(h)
ik−1,...,ih

)2

subject to
∑
ih

α
(h)
ik−1,...,ih

= α
(h+1)
ik−1,...,ih+1

.

Since y is clearly a convex function of α
(h)
ik−1,...,ih

, we can readily get, using Lagrange multiplier,
the minimum value of y as follows:

ymin =
1∑

ih
1/x

(h)
ik−1,...,ih

·
(
α

(h+1)
ik−1,...,ih+1

)2
, (23)

which is obtained at

α̃
(h)
ik−1,...,ih

=
1/x

(h)
ik−1,...,ih∑

jh
1/x

(h)
ik−1,...,jh

· α(h+1)
ik−1,...,ih+1

. (24)

Let us define z =
∑

ih
1/x

(h)
ik−1,...,ih

. We now need to solve the following maximization
problem:

maximize z =
∑
ih

1∑h
`=1

f`

N
(̀
s
(h)
ik−1,...,ih

)
subject to

∑
ih

N`

(
s

(h)
ik−1,...,ih

)
= N`

(
s

(h+1)
ik−1,...,ih+1

)
for all ` = 1, . . . , h.

Again, z is a convex function of N`

(
s

(h)
ik−1,...,ih

)
, and it can be shown to be maximized when

N`

(
s

(h)
ik−1,...,ih

)
=
N`

(
s

(h+1)
ik−1,...,ih+1

)
n

(h+1)
ik−1,...,ih+1

, ∀` = 1, . . . , h,

which gives α̃
(h)
ik−1,...,ih

= 1

n
(h+1)
ik−1,...,ih+1

α
(h+1)
ik−1,...,ih+1

according to Equation (24). This implies that

all level-` checkpoints are also equally spaced inside segment s
(h+1)
ik−1,...,ih+1

, for all ` ≤ h. The
maximum value of z in this case is

zmax =
1∑h

`=1
f`

N
(̀
s
(h+1)
ik−1,...,ih+1

) ,

and the optimal value of ymin according to Equation (23) is then given by

yopt
min =

1

zmax

(
α

(h+1)
ik−1,...,ih+1

)2

=

 h∑
`=1

f`

N`

(
s

(h+1)
ik−1,...,ih+1

)
(α(h+1)

ik−1,...,ih+1

)2
.
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Substituting yopt
min into Equation (22), we get the optimal value of ore

(
s

(h+1)
ik−1,...,ih+1

)
as follows:

oopt
re

(
s

(h+1)
ik−1,...,ih+1

)
=
fh+1

2
·
(
α

(h+1)
ik−1,...,ih+1

)2
+

1

2
yopt

min

=
1

2

h+1∑
`=1

f`

N`

(
s

(h+1)
ik−1,...,ih

)
(α(h+1)

ik−1,...,ih+1

)2
.

This shows that Equation (21) also holds for segment s
(h+1)
ik−1,...,ih+1

at level h + 1 and, hence,
completes the proof of the proposition.

We are now ready to characterize the optimal k-level pattern. The result is stated in the
following theorem.

Theorem 2. A first-order approximation to the optimal k-level checkpointing pattern is char-
acterized by

W opt =

√√√√√2
(∑k−1

`=1 N
opt
` C` + Ck

)
∑k−1

`=1
λ`
Nopt
`

+ λk
, (25)

Nopt
` =

√
λ`
C`
· Ck
λk
, ∀` = 1, 2, . . . , k − 1. (26)

The optimal pattern overhead is given by

Hopt =
k∑
`=1

√
2λ`C` +O(Λ). (27)

Proof. From Observation 2, Equation (18) and Proposition 3, we know that the optimal
pattern can be obtained by minimizing the following function:

F = oef · oopt
re =

1

2

(
k−1∑
`=1

N`C` + Ck

)(
k−1∑
`=1

f`
N`

+ fk

)
. (28)

We first compute the optimal number of checkpoints at each level using a two-phase
iterative method. Towards this end, let us define

oef(h) =

k−1∑
`=h

N`C` + Ck,

oopt
re (h) =

1

2

(
k−1∑
`=h

f`
N`

+ fk

)
.

In the first phase, we set initially F (1) = oef(1) · oopt
re (1) as shown in Equation (28). The
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optimal value of N1 that minimizes F (1) can then be obtained by setting

∂F (1)

∂N1
= C1o

opt
re (1)− oef(1)

f1

2N2
1

= C1

(
f1

2N1
+ oopt

re (2)

)
− (N1C1 + oef(2))

f1

2N2
1

= C1o
opt
re (2)− oef(2)

f1

2N2
1

= 0,

which gives Nopt
1 =

√
f1
C1
· oef(2)

2ooptre (2)
. Substituting it into F (1) and simplifying, we can get the

value of F after the first iteration as

F (2) =
1

2

(√
f1C1 +

√
oef(2) · oopt

re (2)

)2

.

Repeating the above process, we can get the optimal value of F after k − 1 iterations as

F opt = F (k) =
1

2

(
k∑
`=1

√
f`C`

)2

, (29)

and the optimal value of N` as

Nopt
` =

√
f`
C`
· oef(`+ 1)

2oopt
re (`+ 1)

, ∀` = 1, 2, . . . , k − 1. (30)

In the second phase, we first get Nopt
k−1 =

√
fk−1

Ck−1
· Ckfk =

√
λk−1

Ck−1
· Ckλk from Equation (30).

Substituting it into Nopt
k−2 we obtain

Nopt
k−2 =

√
fk−2

Ck−2
· oef(k − 1)

2oopt
re (k − 1)

=

√√√√√ λk−2

Ck−2
·
Nopt
k−1Ck−1 + Ck
λk−1

Nopt
k−1

+ λk

=

√√√√√ λk−2

Ck−2
·

√
λk−1

λk
Ck−1Ck + Ck√

λk−1λk
Ck−1

Ck
+ λk

=

√
λk−2

Ck−2
· Ck
λk
.

Repeating the above process iteratively, we can compute the optimal values of Nopt
` , for

` = k − 3, . . . , 2, 1, as given in Equation (26) by using values of Nopt
k−1, . . . , N

opt
`+1.

The optimal pattern length, according to Equation (14), can be expressed as W opt =√
oef

Λ·ooptre
, which turns out to be Equation (25) with the optimal values of Nopt

` .

The optimal overhead, according to Equations (15) and (29), can be expressed as Hopt =
2
√

Λ · F opt+O(Λ), which gives rise to Equation (27). This completes the proof of the theorem.
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Corollary 1. In a k-level checkpointing pattern, the optimal number of level-` checkpoints
between any two consecutive level-(`+ 1) checkpoints is

nopt` =
Nopt
`

Nopt
`+1

=

√
λ`
λ`+1

· C`+1

C`
, (31)

for all ` = 1, . . . , k − 1.

2.3 Optimal subset of levels

While Theorem 2 characterizes the optimal pattern by using k levels of checkpoints, this
section addresses the problem of selecting the optimal subset of levels in order to minimize
the overall execution overhead.

First, we show that the optimal solution does not necessarily use all the levels available.
Consider the simple example with k = 2 levels. Define α = λ2

λ1
and β = C2

C1
. Equation (27)

suggests that the optimal solution uses both levels if and only if the following condition holds:√
2λ1C1 +

√
2λ2C2 <

√
2 (λ1 + λ2)C2,

⇔ 4αβ < (β − 1)2,

which is not true when α = 0.5 and β = 2. For a general k-level pattern, the optimal
subset of levels to use could well depend on the relative checkpointing costs and error rates of
different levels. The following theorem presents a dynamic programming algorithm to solve
this problem. The solution is particularly useful when the number k of levels is large.

Theorem 3. Suppose there are k levels of checkpoints available. Then, the optimal subset of
levels to use can be obtained by dynamic programming in O(k2) time.

Proof. Let Sopt(h) ⊆ {0, 1, . . . , h} denote the optimal subset of levels used by a pattern that
is capable of handling errors up to level h, and let Hopt(h) denote the corresponding optimal
overhead (ignoring lower-order terms) incurred by the pattern.

Define Sopt(0) = ∅ and Hopt(0) = 0. Recall that λ[x,y] =
∑y

`=x λ`. We can compute
Hopt(h) using the following dynamic programming formulation:

Hopt(h) = min
0≤`≤h−1

{
Hopt(`) +

√
2λ[`+1,h]Ch

}
, (32)

and the optimal subset is Sopt(h) = Sopt(`opt)
⋃
{h}, where `opt is the value of ` that yields

the minimum Hopt(h).
The optimal subset of levels to handle all k levels of errors is then given by Sopt(k) with

the optimal overhead Hopt(k). The complexity is clearly quadratic in the total number of
levels.

3 Simulations

In this section, we conduct a set of simulations whose goal is twofold: (i) to check the accuracy
of the theoretical study; and (ii) to confirm the optimality of the subset of levels found by
the dynamic programming algorithm. We instantiate the model with two scenarios. The
first scenario uses a set of real values measured on a medium-sized HPC system at Lawrence
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Set From Level 1 2 3 4

(A)
Moody C (s) 0.5 4.5 1051 -

et al. [12] MTBF (s) 5.00e6 5.56e5 2.50e6 -

(B)
Balaprakash C (s) 10 20 20 100

et al. [1] MTBF (s) 3.60e4 7.20e4 1.44e5 7.20e5

Table 1: Sets of parameters (A) and (B), used as input for simulations.

Livermore National Laboratory (LLNL). In the second scenario, we run simulations for a large
petascale HPC application based on a set of values that were used on the BG/Q platform Mira
at Argonne National Lab (ANL). The simulator code is publicly available at http: // graal.
ens-lyon. fr/ ~ yrobert/ multilevel. zip , so that interested readers can experiment with
it and build relevant scenarios of their choice.

3.1 Simulation setup

Checkpoint and recovery costs both depend on the volume of data to be saved, and are mostly
determined by the hardware resource used at each level. As such, we assume that recovery
cost for a given level is equivalent to the corresponding checkpointing cost, i.e. Ri = Ci for
1 ≤ i ≤ k. This a common assumption [12, 7], even though in practice the recovery cost can
be expected to be somewhat smaller than the checkpoint cost [7, 8].

The simulator is given a platform with k levels of errors and their MTBFs µi = 1/λi, and
the resilience parameters Ci and Ri. For each of the 2k−1 possible subsets of levels (the last
level is always included), we do the following:

• take the optimal pattern from Section 2;
• fix the total amount of work to 100W opt;
• try all possible roundings (floor and ceiling) of the (rational) optimal number of check-

points at each level. Each experiment is run 10000 times and results are averaged;
• return the two solutions with minimal and maximal overhead, and compare them with

the theoretical bound.

3.2 Medium HPC system

3.2.1 Platform settings

The target platform is Coastal, a medium-sized HPC system of 1104 compute nodes at LLNL,
whose parameters are given as set (A) in Table 1. The first row of Table 1 presents the
checkpoint costs, and the corresponding MTBF used in the first scenario.

The Coastal platform has been used to evaluate the Scalable Checkpoint/Restart (SCR)
library by Moody et al. [12], who provide accurate measurements for µ and C using real
applications. There are k = 3 levels of checkpoint. First level checkpoints are written to
the local RAM of the node, and this is the fastest method (0.5s). Second level checkpoints
are also written to local RAM, but small sets of nodes collectively compute and store parity
redundancy data, which takes a little while longer (4.5s). Lastly, Lustre is used to store
third-level checkpoints onto the parallel file system, which takes 1051s. Failures were analyzed
in [12], and the error rates at each level are those reported in Table 1. Note that the error
rate at level 2 is higher than that of level 1 and 3.
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Levels N1 N2 N3 W opt Sim. Ov. Th. Ov. L. b.

{3} - - 1 2.96e4 7.75e-2 7.11e-2 7.11e-2

{1,3} 14 - 1 3.09e4 7.44e-2 6.85e-2
6.85e-2

13 - 1 3.09e4 7.40e-2 6.85e-2

{2,3} - 35 1 7.27e4 3.41e-2 3.33e-2
3.33e-2

- 34 1 7.25e4 3.42e-2 3.33e-2

{1,2,3} 33 33 1 7.27e4 3.45e-2 3.35e-2
3.35e-2

32 32 1 7.24e4 3.45e-2 3.35e-2

Table 2: Simulation results using set of parameters (A) for all possible roundings.

3.2.2 Results

{3} {3,1} {3,2} {3,2,1}
Checkpoint Levels
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Figure 4: Simulated and (corresponding) theoretical overhead for best and worst rounding
using set of parameters (A).

Figure 4 and Table 2 present the results of the simulation. With k = 3, there are four
possible level subsets. First, the difference between simulated and theoretical overhead is very
small, with a difference < 1% in overhead values, and a relative error ranging from ≈ 2%
(levels 2 and 3) to ≈ 9% (level 3), which shows the accuracy of the first-order approximation
for this set of values. The simulated overhead is always higher than the theoretical one, which
is expected, because the first-order approximation is ignoring some lower order terms. Next,
we observe that the difference between the best and worst integer roundings for the number
of checkpoints at each level is almost negligible. All roundings yield similar overhead for this
platform. Finally, we observe that the best subset (levels 2 and 3) improves the overhead by
over 50% compared to using only a single level 3 checkpoint.

3.3 Petascale HPC system

3.3.1 Platform settings

Here, we run simulations for the large BG/Q platform Mira running LAMMPS application
at ANL [1], whose parameters correspond to set (B) in Table 1. Four checkpoint levels are
provided by the FTI library [2] (k = 4): Local checkpoint; Local checkpoint + Partner-
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copy; Local checkpoint + Reed-Solomon coding; and PFS-based checkpoint. The MTBFs
correspond to a default failure rate commonly used for petascale HPC applications [2, 12, 7].

3.3.2 Results

{4} {4,1} {4,2} {4,3} {4,2,1} {4,3,1} {4,3,2} {4,3,2,1}
Checkpoint Levels

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

O
v
e
rh
e
a
d

Theoretical Lower Bound

Sim. Overhead (Best Rounding)

Corresp. Theoretical Overhead

Sim. Overhead (Worst Rounding)

Corresp. Theoretical Overhead

Figure 5: Simulated and (corresponding) theoretical overhead for best and worst rounding
using set of parameters (B).

Figure 5 presents the results for the set of parameters (B). There are 8 possible subsets. As
before, we observe that the theoretical overhead is always slightly smaller that the simulated
one, with a difference < 2% in overhead values, and a relative error of ≈ 5-7%, demonstrating
the accuracy of the model. For this platform, the simulated overheads vary from 6.4%
(optimal subset with levels 4,3) to 11.2% (single level 4 checkpoint). For a given level
subset, the rounding does not play a significant role, as W opt is also increased, or decreased
in consequence. For instance, we observe that for subset 4, 3, 2, 1, twice fewer checkpoints of
levels 1 and 2 are used for the second rounding in Table 3, but W opt is also reduced by 33%,
so that for the same amount of work, the number of checkpoints does not change by much.
Then, we can see that the pattern length W opt for the smallest overhead is around 12000s,
but only 2000s for the largest overhead. Actually, the largest pattern length is obtained when
using all the 4 levels. This is because using more checkpoints both increases the error-free
overhead and reduces the time lost due to re-executions upon errors. As a consequence, and
to mitigate the aforementioned overhead, the size of the pattern length W opt increases (e.g.
W opt = 1.47e4s for 4, 3, 2, 1 and N1 = 20, N2 = 10, N3 = 5 and N4 = 1). And the reciprocal
is true: when using fewer checkpoints, the error-free overhead decreases and the time lost
upon re-execution increases. In order to compensate, W opt decreases (e.g. W opt = 9.80e3s
for 4, 3, 2, 1 and N1 = 10, N2 = 5, N3 = 5 and N4 = 1).

3.4 Summary of results

From the simulation results, we conclude that the first-order approximation for the multi-level
pattern provides an accurate performance model for systems where the λi’s stay reasonably
small. Hence, the results corroborate the analytical study and show the benefits of using
only a few levels among all the available levels. In our case, the best thing is to consider a
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Levels N1 N2 N3 N4 W opt Sim. Ov. Th. Ov. L. b.

{4} - - - 1 2.00e3 1.13e-1 1.00e-1 1.00e-1

{1,4} 4 - - 1 3.10e3 9.74e-2 9.04e-2
9.02e-2

3 - - 1 2.87e3 9.74e-2 9.05e-2

{2,4} - 5 - 1 4.90e3 8.65e-2 8.17e-2 8.17e-2

{3,4} - - 14 1 1.25e4 6.40e-2 6.08e-2
6.08e-2

- - 13 1 1.18e4 6.41e-2 6.08e-2

{1,2,4} 6 3 - 1 5.00e3 9.26e-2 8.80e-2
8.80e-2

4 2 - 1 4.02e3 9.40e-2 8.94e-2

{1,3,4}

18 - 9 1 1.32e4 7.27e-2 6.95e-2

6.91e-2
16 - 8 1 1.21e4 7.24e-2 6.94e-2
9 - 9 1 1.04e4 7.36e-2 7.09e-2
8 - 8 1 9.54e3 7.41e-2 7.13e-2

{2,3,4} - 15 5 1 1.34e4 7.87e-2 7.45e-2
7.42e-2

- 10 5 1 1.07e4 7.83e-2 7.45e-2

{1,2,3,4} 20 10 5 1 1.47e4 8.49e-2 8.17e-2
8.05e-2

10 5 5 1 9.80e3 8.56e-2 8.16e-2

Table 3: Simulation results using set of parameters (B) for all possible roundings.

2-level equivalent pattern with C1 = 20, C2 = 100, µ1 = 20, 570, µ2 = 720, 000 achieving
an overhead of 6.4% instead of 8.2% with the 4 initial levels described in Table 1. It also
shows the efficiency of this new model of checkpointing (instead of using only one level of
checkpoint) as the overhead is almost divided by 2 in our example.

4 Related work

Given the checkpointing cost and platform MTBF, classical formulas due to Young [16] and
Daly [6] are well known to determine the optimal checkpointing period in the single-level
checkpointing scheme. However, this method suffers from the intrinsic limitation that the
cost of checkpointing/recovery grows with failure probability, and becomes unsustainable at
large scale [9, 5] (even with diskless or incremental checkpointing [13]).

To reduce the I/O overhead, various two-level checkpointing protocols have been studied.
Vaidya [15] proposed a two-level recovery scheme that tolerates a single node failure using
a local checkpoint stored on a parter node. If more than one failure occurs during any
local checkpointing interval, the scheme resorts to the global checkpoint. Silva and Silva [14]
advocated a similar scheme by using memory to store local checkpoints, which is protected by
XOR encoding. Di et al. [8] analyzed a two-level computational pattern, and proved equal-
length segments in the optimal solution. They also provided mathematical equations that
can be solved numerically to compute the optimal pattern length and number of segments.
Benoit et al. [4] relied on disk checkpoints to cope with fail-stop failures and used memory
checkpoints coupled with error detectors to handle silent data corruptions. They derived
first-order approximation formulas for the optimal pattern length as well as the number of
memory checkpoints between two disk checkpoints.

Some authors have also generalized two-level checkpointing to account for an arbitrary
number of levels. Moody et al. [12] implemented this approach in a three-level Scalable
Checkpoint/Restart (SCR) library. They relied on a rather complex Markov model to recur-
sively compute the efficiency of the scheme. Bautista-Gomez et al. [2] designed a four-level
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checkpointing library, called Fault Tolerance Interface (FTI), in which partner-copy and Reed-
Solomon encoding are employed as two intermediate levels between local and global disks.
Based on FTI, Di et al. [7] proposed an iterative method to compute the optimal check-
pointing interval for each level with prior knowledge of the application’s total execution time.
Hakkarinen and Chen [10] considered multi-level diskless checkpointing for tolerating simul-
taneous failures of multiple processors. Balaprakash et al. [1] studied the trade-off between
performance and energy for general multi-level checkpointing schemes.

While all of these works relied on numerical methods to compute the checkpointing inter-
vals at different levels, this paper appears to be the first one to provide explicit formulas on the
optimal parameters in a multi-level checkpointing protocol (up to first-order approximation
as in Young/Daly’s classical result).

5 Conclusion

This work has studied multi-level checkpointing protocols, where different levels of checkpoints
can be set; lower levels deal with frequent errors that can be recovered at low cost (for instance
with a memory copy), while higher levels allow us to recover from all errors, such as node
failures (for instance with a copy in stable storage). We consider a general scenario with k
levels of faults, and we provide explicit formulas to characterize the optimal checkpointing
pattern, up to first-order approximation. The overhead turns out to be of the order of∑k

`=1

√
2λ`C`, which elegantly extends Young/Daly’s classical formula.

The first-order approximation to the optimal k-level checkpointing pattern uses rational
numbers of checkpoints, and we prove that all segments should have equal lengths. We cor-
roborate the theoretical study by a set of simulations, demonstrating that a solution greedily
rounding rational values, leads to an overhead very close to the lower bound. Furthermore,
we provide a dynamic programming algorithm to determine those levels that should be used,
and simulations confirm the optimality of the subset of levels returned by the dynamic pro-
gramming algorithm.

The problem of finding a first-order optimal pattern with an integer number of segments
to minimize the overhead remains open. It may well be the case that such an integer pattern
is not periodic at each level and uses different-length segments. However, the good news is
the rounding of the rational solution provided in this paper seems quite efficient in practice;
this should be confirmed in future work by further experimentations.
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