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Abstract: We study the resilient scheduling of moldable parallel jobs on high-
performance computing (HPC) platforms. Moldable jobs allow for choosing a processor
allocation before execution, and their execution time obeys various speedup models. The
objective is to minimize the overall completion time of the jobs, or the makespan, when
jobs can fail due to silent errors and hence may need to be re-executed after each failure
until successful completion. Our work generalizes the classical scheduling framework for
failure-free jobs. To cope with silent errors, we introduce two resilient scheduling algo-
rithms, Lpa-List and Batch-List, both of which use the List strategy to schedule the
jobs. Without knowing a priori how many times each job will fail, Lpa-List relies on a
local strategy to allocate processors to the jobs, while Batch-List schedules the jobs in
batches and allows only a restricted number of failures per job in each batch. We prove
new approximation ratios for the two algorithms under several prominent speedup models
(e.g., roofline, communication, Amdahl, power, monotonic, and a mixed model). An ex-
tensive set of simulations is conducted to evaluate different variants of the two algorithms,
and the results show that they consistently outperform some baseline heuristics. Overall,
our best algorithm is within a factor of 1.6 of a lower bound on average over the entire set
of experiments, and within a factor of 4.2 in the worst case.

Key-words: Resilient scheduling, parallel jobs, moldable jobs, speedup model, failure
scenario, transient errors, silent errors, list schedule, batch schedule, approximation ratios.



Ordonnancement avec tolérance aux pannes pour
des tâches parallèles à nombre de processeurs

programmable

Résumé : Ce rapport étudie l’ordonnancement résilient de tâches sur
des plateformes de calcul à haute performance. Dans le problème étudié, il
est possible de choisir le nombre constant de processeurs effectuant chaque
tâche, en déterminant le temps d’execution de ces dernières selon différent
modèles de rendement. Nous décrivons des algorithmes dont l’objectif est de
minimiser le temps total d’exécution, sachant que les tâches sont susceptibles
d’échouer et de devoir être ré-effectuées à chaque erreur. Ce problème est
donc une généralisation du cadre classique où toutes les tâches sont connues
à priori et n’échouent pas. Nous décrivons un algorithme d’ordonnancement
par listes de priorité, et prouvons de nouvelles bornes d’approximation pour
divers modèles de rendement classiques (roofline, communication, Amdahl,
power, monotonic, et un modèle qui mélange ceux-ci). Nous décrivons
également un algorithme d’ordonnancement par lots, au sein desquels les
tâches pourront échouer un nombre limité de fois, et prouvons alors de
nouvelles bornes d’approximation pour des rendements quelconques. En-
fin, nous effectuons des expériences sur un ensemble complet d’exemples
pour comparer les niveaux de performance de différentes variantes de nos
algorithmes, significativement meilleurs que les algorithmes simples usuels.
Notre meilleure heuristique est en moyenne à un facteur 1.6 d’une borne
inférieure de la solution optimale, et à un facteur 4.2 dans le pire cas.

Mots-clés : Ordonnancement tolérant aux pannes, tâches parallèles,
modèles de rendement, nombre de processeurs variable, scénario d’erreurs,
erreurs silencieuses, ordonnancement de liste, ordonnancement par paquets,
facteurs d’approximation.
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1 Introduction

Scheduling parallel jobs on high-performance computing (HPC) platforms
is crucial for improving the application and system performance. In the
scheduling literature, a moldable job is a parallel job that can be executed
on an arbitrary but fixed number of processors, with an execution time de-
pending on the number of processors on which it is executed. More precisely,
a moldable job allows a variable set of resources for scheduling but requires
a fixed set of resources to execute, which the job scheduler must allocate
before it starts the job. This corresponds to a variable static resource allo-
cation, as opposed to a fixed static allocation (rigid jobs) and to a variable
dynamic allocation (malleable jobs) [13]. Moldable jobs can easily adapt to
the amount of available resources, contrarily to rigid jobs, while being easy
to design and implement, contrarily to malleable jobs. Thus, many compu-
tational kernels in scientific libraries are provided as moldable jobs that can
be deployed on a wide range of processor numbers.

Because of the importance and wide availability of moldable jobs, schedul-
ing algorithms for such jobs have been extensively studied. An important
objective is to minimize the overall completion time, or makespan, for a set
of jobs that are either all known before execution (offline setting) or released
on-the-fly (online setting). Many prior works have published approximation
algorithms or inapproximability results for both settings. These results no-
tably depend upon the speedup model of the jobs. Indeed, consider a job
whose execution time is t(p) with p processors (1 ≤ p ≤ P , and P denotes
the total number of processors on the platform). An arbitrary speedup
model allows t(p) to take any value, but realistic models call for t(p) non-
increasing with p: after all, if t(p + 1) > t(p), then why use that extra
processor? Several speedup models have been introduced and analyzed, in-
cluding the roofline model, the communication model, the Amdahl’s model,
the power model, and the (more general) monotonic model, where the area
of the job p · t(p) is non-decreasing with p. Section 2 presents a survey of
some important results for all these models.

In this paper, we revisit the problem of scheduling moldable jobs in a
resilience framework. Unlike the classical problem without job failures, we
consider failure-prone jobs that may need to be re-executed several times
before successful completion. This is primarily motivated by the threat of
silent errors (a.k.a. silent data corruptions or SDCs), which strike large-scale
high-performance computing (HPC) platforms at a rate proportional to the
number of floating-point (CPU) operations and/or the memory footprint of
the applications (bit flips) [35,45]. When a silent error strikes, even though
any bit can be corrupted, the execution continues (unlike fail-stop errors),
hence the error is transient, but it may dramatically impact the result of
a running application. Coping with silent errors is a major challenge on
today’s HPC platforms [31] and it will become even more important at
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exascale [18]. Fortunately, many silent errors can be accurately detected by
verifying the integrity of data using dedicated, lightweight detectors (e.g., [7,
9,16,42]). When considering job failures caused by silent errors, we assume
the availability of ad-hoc detectors.

To model this resilient scheduling problem, we focus on a general set-
ting, where the aim is to schedule a set of moldable jobs subject to a failure
scenario that specifies the number of failures for each job before successful
completion. The failure scenario is, however, not known a priori, but only
discovered as failed executions manifest themselves when the jobs complete.
Hence, the scheduling decisions must be made dynamically on-the-fly: when-
ever an error has been detected, the job must be re-executed. As a result,
even for the same set of jobs, different schedules may be produced, depending
on the failure scenario that occurred in a particular execution. Intuitively,
the problem lies in between an offline problem (where all the jobs are known
before the execution starts) and an online problem (where the jobs are re-
vealed on-the-fly). The goal is to minimize the makespan for any set of
jobs under any failure scenario. Since the problem is clearly NP-complete
(as it generalizes the NP-complete failure-free scheduling problem), we aim
at designing approximation algorithms that guarantee a makespan within a
provable factor of the optimal makespan, independently of the jobs’ failure
scenarios.

Extending the literature on scheduling moldable jobs in the failure-free
setting, this work lays the theoretical and practical foundation for scheduling
such jobs on failure-prone platforms. Our key contributions are the design
and analysis of two resilient scheduling algorithms with new approximation
results for various speedup models. We further show that the two algorithms
achieve good practical performance using an extensive set of simulations.
The following summarizes our main results:

• We present a formal model for the problem of resilient scheduling
of moldable jobs on failure-prone platforms. The model formulates
both the worst-case and average-case performance of an algorithm for
general speedup models and under arbitrary failure scenarios.

• We design a resilient scheduling algorithm, called Lpa-List, that relies
on a local processor allocation strategy and list scheduling to achieve
O(1)-approximation for some prominent speedup models, including
the roofline model, the communication model, the Amdahl’s model,
and a mixed model. For the communication model, our approximation
ratio improves on that of the literature for failure-free jobs. We also
show that the algorithm is Θ(P 1/4)-approximation for the power model
and Θ(P 1/2)-approximation for the general monotonic model. All of
these results apply to both worst-case and average-case performance.

• We design another resilient scheduling algorithm, called Batch-List,
which schedules the jobs in batches using the list strategy, and each
job is allowed only a restricted number of failures per batch. We prove
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a tight Θ(log2 fmax)-approximation for the algorithm under arbitrary
speedup model in the worst case, where fmax is the maximum number
of failures of any job in a failure scenario. We also prove an ω(1) lower
bound on the average-case performance of the algorithm.

• We conduct an extensive set of simulations to evaluate and compare
different variants of the two algorithms. The results show that they
consistently outperform some baseline heuristics. In particular, the
first algorithm (Lpa-List) performs better for the roofline and commu-
nication models, while the second algorithm (Batch-List) performs
better for the other models. Overall, our best algorithm is within a
factor of 1.6 of a lower bound on average and within a factor of 4.2 in
the worst case for all speedup models.

The rest of this paper is organized as follows. Section 2 surveys related
work. The formal model and problem statement are presented in Section 3.
In Section 4, we describe the two main algorithms and analyze their perfor-
mance, providing several new approximation results. Section 5 presents an
extensive set of simulation results and highlights the main findings. Finally,
Section 6 concludes the paper and discusses future directions.

2 Related Work

In this section, we review some related work on scheduling moldable jobs
without failures, and we highlight the differences of these models with the
one studied in this paper.

2.1 Offline Scheduling of Independent Moldable Jobs

In offline scheduling, all jobs are known a priori along with each job’s exe-
cution time t(p) as a function of the processor allocation p. The following
reviews some results in the failure-free setting under various job speedup
models (the definitions of these models can be found in Section 3.1).

Roofline Model : This model assumes linear speedup up to a bounded
degree of parallelism p̄. Some authors have considered this model for mold-
able jobs with precedence constraints (see Section 2.3). We are not aware of
any results for independent moldable jobs. In this paper, we show that allo-
cating exactly p̄ processors to the job and then scheduling all jobs greedily
gives a 2-approximation when jobs are subject to failures.

Communication Model : This model assumes a communication overhead
when using more than one processor. Havill and Mao [17] presented a short-
est execution time (Set) algorithm, which selects a number of processors
that minimizes the job’s execution time (they use around

√
w/c processors

when t(p) = w/p + (p − 1)c), and schedules each job as early as possible.
They showed that Set has an approximation ratio around 4. In this paper,
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we present an improved algorithm with an approximation ratio of 3. Fur-
thermore, the algorithm is able to handle job failures. Dutton and Mao [12]
presented an earliest completion time (Ect) algorithm, which allocates pro-
cessors for each job that minimizes its completion time based on the current
schedule. They proved tight approximation ratios of Ect for P ≤ 4 pro-
cessors and presented a general lower bound of 2.3 for arbitrary P . Kell
and Havill [27] presented algorithms with improved approximation ratios
for P ≤ 3 processors.

Monotonic Model : This model assumes that the execution time is a
non-increasing function and the area (product of processor allocation and
execution time) is a non-decreasing function of the processor allocation.
Examples of this model include Amdahl’s speedup [1], i.e., t(p) = w

(1−γ
p +

γ
)

with γ ∈ [0, 1], and the power speedup t(p) = w/pδ [15, 39] with δ ∈
[0, 1]. Belkhale and Banerjee [2] presented a 2/(1 + 1/P )-approximation
algorithm by starting from a sequential LPT schedule and then iteratively
incrementing the processor allocations. B lażewicz et al. [5] presented a 2-
approximation algorithm while relying on an optimal continuous schedule,
in which the processor allocation of a job may not be integral. Mounié et
al. [33] presented a (

√
3 + ε)-approximation algorithm using a two-phase

approach and dual approximation. Using the same techniques, they later
improved the approximation ratio to 1.5 + ε [34]. Jansen and Land [21]
showed the same 1.5 + ε ratio but with a lower runtime complexity, when
the execution time functions of the jobs admit certain compact encodings.
They also proposed a PTAS for the problem.

Arbitrary Model : In this model, the execution time t(p) is an unrestricted
function of the processor allocation p. This model can be reduced to the
monotonic model by scanning all possible allocations and discarding those
with both larger execution time and area. Turek et al. [40] presented a
2-approximation list-based algorithm and a 3-approximation shelf-based al-
gorithm. Ludwig and Tiwari [30] improved the 2-approximation result with
lower runtime complexity. When each job only admits a subset of all pos-
sible processor allocations, Jansen [20] presented a (1.5 + ε)-approximation
algorithm, which is the strongest result possible for any polynomial-time
algorithm, since the problem does not admit an approximation ratio better
than 1.5 unless P = NP [26]. However, when the number of processors
is a constant or polynomially bounded by the number of jobs, Jansen et
al. [22, 23] showed that a PTAS exists.

2.2 Online Scheduling of Independent Moldable Jobs

In online scheduling, jobs are released one by one to the scheduler, and each
released job must be scheduled irrevocably before the next job is revealed.
As some algorithms discussed in the previous section (e.g., [12,17,27]) make
scheduling decisions independently for each job, their results can be directly
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applied to this online problem with the corresponding competitive ratios.
In contrast, other algorithms rely on the information about all jobs to make
global scheduling decisions, so these algorithms and their approximation re-
sults are not directly applicable to the online problem. In this online prob-
lem under the arbitrary speedup model, Ye et al. [43] presented a technique
to transform any ρ-bounded algorithm1 for rigid jobs to a 4ρ-competitive
algorithm for moldable jobs. Then, relying on a 6.66-bounded algorithm
for rigid jobs [19,44], they gave a 26.65-competitive algorithm for moldable
jobs. Both algorithms are based on building shelves. They also provided an
improved algorithm with a competitive ratio of 16.74 [43].

The problem studied in this paper can be considered as semi-online,
since all jobs are known to the scheduler offline but their failure scenarios
are revealed online. We point out that the transformation technique by Ye
et al. [43] does not apply here, since it implicitly assumes the independence
of all jobs, whereas the different executions of the same job in our problem
(due to failures) have linear dependence.

2.3 Scheduling Moldable Jobs with Dependencies

Some authors have studied the problem of scheduling moldable jobs with de-
pendencies modeled as directed acyclic graphs (DAGs). Under the roofline
model, Wang and Cheng [41] showed that the earliest completion time (Ect)
algorithm is a (3 − 2/P )-approximation. Feldmann et al. [14] proposed an
online algorithm that maintains a system utilization at least α for some
α ∈ (0, 1]. By choosing α carefully, they showed that the algorithm achieves
2.618-competitiveness, even when the job execution times and the DAG
structure are unknown. Under the monotonic model, Belkhale and Baner-
jee [3] presented a 2.618-approximation algorithm while relying on the avail-
ability of an optimal processor allocation strategy to minimize the maxi-
mum of critical path length and total area. By adopting a 2-approximation
processor allocation technique [37], Lepère et al. [29] presented a 5.236-
approximation algorithm under the same model. They also showed that
the optimal allocation can be achieved in pseudo-polynomial time for some
special graphs, such as series-parallel graphs and trees, thus leading to a
2.618-approximation for these graphs. Jansen and Zhang [25] improved the
approximation ratio for general graphs to around 4.73. Chen [6] developed
an iterative method to further improve the ratio, which tends to around 3.42
after a large number of iterations. When assuming that the area of a job
is a concave function of the number of processors, Jensen and Zhang [24]
proposed a 3.29-approximation algorithm via a linear programming formu-
lation. Chen and Chu [8] improved the ratio to around 2.95 by further

1An algorithm for rigid jobs is said to be ρ-bounded if its makespan is at most ρ times

the lower bound L = max
(∑

j tjpj

P
,maxj tj

)
, where tj denotes the execution time of job

Jj , and pj denotes its processor allocation.
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assuming that the execution time of a job is strictly decreasing in the num-
ber of allocated processors.

For the problem studied in this paper, the jobs can be considered to form
multiple linear chains, where each chain represents a job and the number of
nodes in a chain represents the number of executions for the job. However,
the failure scenario (thus the complete graph) is not known a priori, which
prevents the above algorithms (except the ones in [14,41]) from being directly
applicable, since they all rely on knowing the complete graph in advance.

3 Models

In this section, we formally describe the models, and present the resilient
scheduling problem.

3.1 Job and Speedup Models

We consider a set J = {J1, J2, . . . , Jn} of n parallel jobs to be executed
on a platform consisting of P identical processors. All jobs are released at
the same time, corresponding to the batch scheduling scenario in an HPC
environment. We focus on moldable jobs, which can be executed using any
number of processors at launch time. The number of processors allocated
cannot be changed once a job has started executing. For each job Jj ∈ J ,
tj(pj) denotes its execution time when allocated pj ∈ {1, 2, . . . , P} proces-
sors2, and the area of the job is defined as aj(pj) = pj × tj(pj).

Let wj denote the total work of job Jj (or its sequential execution time
tj(1)). The parallel execution time tj(pj) of the job when allocated pj pro-
cessors depends on the speedup model. We consider several speedup models:

• Roofline model: linear speedup up to a bounded degree of parallelism
p̄j ∈ [1, P ], i.e., tj(pj) = wj/pj for pj ≤ p̄j , and tj(pj) = wj/p̄j for
pj > p̄j ;

• Communication model: there is a communication overhead cj ≥ 0
per processor when more than one processor is used, i.e., tj(pj) =
wj/pj + (pj − 1)cj ;

• Monotonic model: the execution time (resp. area) is a non-increasing
(resp. non-decreasing) function of the number of allocated processors,
i.e., tj(pj) ≥ tj(pj + 1) and aj(pj) ≤ aj(pj + 1);

• Amdahl’s model: this is a particular case of the monotonic model with
tj(pj) = wj

(1−γj
pj

+ γj
)
, where γj ∈ [0, 1] denotes the inherently se-

quential fraction of the job;
• Mix model: this mixed model combines Roofline, Communication and

Amdahl’s models with tj(pj) =
wj(1−γj)
min(p,p̄j)

+wjγj+(pj−1)cj , which could

2In this work, we do not allow fractional processor allocation, which could otherwise
be realized by timesharing a processor among multiple jobs.
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capture more realistically the speedups of some complex applications;
• Power model: this is another particular case of the monotonic model

with tj(pj) = wj/p
δj
j , where δj ∈ [0, 1] is a constant parameter;

• Arbitrary model: there are no constraints on tj(pj).
In all of these models, the speedup of job Jj with pj processors is given

by σj(pj) =
tj(1)
tj(pj)

.

3.2 Failure Model

We consider silent errors (or SDCs) that could cause a job to produce er-
roneous results after an execution attempt. Further, we assume that such
errors can be detected using lightweight detectors with negligible overhead
at the end of an execution. In that case, the job needs to be re-executed
followed by another error detection. This process repeats until the job com-
pletes successfully without errors.

Let f = (f1, f2, . . . , fn) denote a failure scenario, i.e., a vector of the
number of failed execution attempts for all jobs, during a particular ex-
ecution of the job set J . Note that the number of times a job will fail is
unknown to the scheduler a priori, and the failure scenario f becomes known
only after all jobs have successfully completed without errors.

3.3 Problem Statement

We study the following resilient scheduling problem: Given a set of n mold-
able jobs, find a schedule on P identical processors under any failure scenario
f . In this context, a schedule is defined by the following two decisions:

• Processor allocation: a collection p = (~p1, ~p2, . . . , ~pn) of processor al-

location vectors for all jobs, where vector ~pj = (p
(1)
j , p

(2)
j , . . . , p

(fj+1)
j )

specifies the number of processors allocated to job Jj at different ex-
ecution attempts until success. Note that processor allocation can
change for each new execution attempt of a job.

• Starting time: a collection s = (~s1, ~s2, . . . , ~sn) of starting time vec-

tors for all jobs, where vector ~sj = (s
(1)
j , s

(2)
j , . . . , s

(fj+1)
j ) specifies the

starting times for job Jj at different execution attempts until success.

The objective is to minimize the overall completion time of all jobs, or
makespan, under any failure scenario. Suppose an algorithm makes decisions
p and s for a job set J during a failure scenario f . Then, the makespan of
the algorithm for this scenario is defined as:

T (J , f ,p, s) = max
1≤j≤n

(
s

(fj+1)
j + tj(p

(fj+1)
j )

)
. (1)
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Both scheduling decisions should be made with the following two con-
straints: (1) the number of processors used at any time should not exceed
the total number P of available processors; (2) a job cannot be re-executed
if its previous execution attempt has not yet been completed.

As the problem generalizes the failure-free moldable job scheduling prob-
lem, which is known to be NP-complete for P ≥ 5 processors [11], the
resilient scheduling problem is also NP-complete. We therefore consider
approximation algorithms. A scheduling algorithm Alg is said to be an
r-approximation3 if its makespan is at most r times that of an optimal
scheduler for any job set J under any failure scenario f , i.e.,

sup
J ,f

TAlg(J , f ,p, s)

TOpt(J , f ,p∗, s∗) = r , (2)

where TOpt(J , f ,p∗, s∗) denotes the makespan produced by an optimal sched-
uler with scheduling decisions p∗ and s∗.

3.4 Worst-Case vs. Average-Case Analysis

The problem above is agnostic of the failure scenario, which is given as an in-
put of the scheduling problem. A scheduling algorithm is an r-approximation
only if it achieves a makespan at most r times the optimal for any possible
failure scenario. This can be viewed as the worst-case analysis.

In contrast, some practical settings may call for an average-case analysis.
In practice, each job Jj ∈ J could fail with a probability qj in each execu-
tion attempt, independent of the number of previous failures. For instance,
consider silent errors that strike CPUs and registers during the execution
of a job: the probability of having a silent error is determined solely by
the number of flops of the job, or equivalently, by its sequential execution
time. On the contrary, the amount of resources used to execute the job
does not matter, even if the parallel execution time depends on the number
of allocated processors. Suppose the occurrence of silent errors follows an
exponential distribution with rate λ, then the failure probability for job Jj
is given by:

qj = 1− e−λtj(1) , (3)

where tj(1) denotes the sequential execution time of job Jj . Then, the
probability that the job fails fj times before succeeding on the fj + 1-st

execution is qj(fj) = q
fj
j (1− qj). Assuming that errors occur independently

for different jobs, the probability that a failure scenario f = (f1, f2, . . . , fn)
happens can then be computed as Q(f) =

∏n
j=1 qj(fj).

3We consider the studied problem offline, although the failure scenario is unknown to
the scheduler a prior and only revealed on-the-fly as jobs complete. One can also view
the problem as semi-online, in which case all of our obtained approximation ratios can be
interpreted as competitive ratios.
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In general, given the probability Q(f) of each failure scenario f , we can
define the expected approximation ratio of an algorithm Alg for a job set J
as follows4:

E
[
TAlg(J )

TOpt(J )

]
=
∑
f

Q(f) · TAlg(J , f ,p, s)

TOpt(J , f ,p∗, s∗) , (4)

and the algorithm is said to be r-approximation in expectation if its expected
approximation ratio is at most r for any job set J , i.e.,

sup
J

E
[
TAlg(J )

TOpt(J )

]
= r . (5)

While the approximation ratio of a scheduling algorithm under any fail-
ure scenario shows its worst-case performance, the expected approximation
ratio shows its average-case performance. Clearly, a worst-case ratio will
translate directly to the average case, because if the ratio holds true for
every failure scenario, it is also true for the weighted sum. However, the
converse may not be the case: an algorithm could have a very good ex-
pected approximation ratio, but perform arbitrarily worse than the optimal
in some (low probability) failure scenarios.

In the theoretical analysis (Section 4), we mainly focus on bounding the
worst-case approximation ratios of the proposed algorithms (except in Sec-
tion 4.6, where we study the average-case performance of the Batch-List
algorithm). For the experimental evaluations (Section 5), we will instantiate
the failure model with the silent error probability for each job as defined in
Equation (3), and report both worst-case and average-case performance of
the algorithms under a variety of experimental scenarios.

4 Resilient Scheduling Algorithms

In this section, we present two resilient scheduling algorithms (Lpa-List
and Batch-List), and derive their approximation ratios for some common
speedup models.

4While we use expectation of ratios to define the average-case performance of an al-
gorithm, some studies in stochastic scheduling and online algorithms (e.g., [28, 32]) have
used ratio of expectations, i.e.,

E(TAlg)

E(TOpt)
=

∑
f Q(f) · TAlg(J , f ,p, s)∑

f Q(f) · TOpt(J , f ,p∗, s∗) .

This approach, however, has not been favored by recent studies, since E(TAlg) could be
dominated by “a few” instances with large objective functions, thus the ratio may not
reflect the actual performance of the algorithm for “most” instances. See [36, 38] for a
discussion on the two approaches.
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4.1 A Lower Bound on the Makespan

We first consider a simple lower bound on the makespan of any scheduling
algorithm under a given failure scenario. This generalizes the well-known
lower bound [30,40] for the failure-free case.

Let p denote the processor allocation decision made by a scheduling
algorithm Alg for job set J under failure scenario f . Then, we define,
respectively, the maximum cumulative execution time and total cumulative
area of the jobs under algorithm Alg to be:

tmax(J , f ,p) = max
1≤j≤n

fj+1∑
i=1

tj(p
(i)
j ) , (6)

A(J , f ,p) =

n∑
j=1

fj+1∑
i=1

aj(p
(i)
j ) . (7)

The following quantity serves as a lower bound on the makespan of the
algorithm for job set J under failure scenario f :

L(J , f ,p) = max
(
tmax(J , f ,p),

A(J , f ,p)

P

)
. (8)

Thus, we have:

TAlg(J , f ,p, s) ≥ L(J , f ,p) , (9)

regardless of the scheduling decision s of the algorithm.

4.2 Lpa-List Scheduling Algorithm

Our first algorithm, called Lpa-List, adopts a two-phase approach [30,40].
The first phase uses a Local Processor Allocation (Lpa) strategy to decide
processor allocation p of the jobs, and the second phase uses List scheduling
to determine the starting time s of the jobs.

4.2.1 List Scheduling Strategy

We first discuss List scheduling for the second phase, assuming a given
processor allocation p. Algorithm 1 shows the pseudocode. The strategy
first organizes all jobs in a list based on some priority. Then, at time 0
or whenever a running job Jk completes and hence releases processors, the
algorithm detects if job Jk has errors. If so, the job will be inserted back
into the list, again based on its priority, to be re-scheduled later. It finally
scans the list of pending jobs and schedules all jobs that can be executed
at the current time with the available processors. We point out that the
algorithm essentially resembles a greedy backfilling strategy. In our analysis
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Algorithm 1: List (Scheduling Strategy)

begin
Organize all jobs in a list L according to some priority rule;
Pavail ← P ;
fj ← 0, ∀j;
when at time 0 or a running job Jk completes execution do

Pavail ← Pavail + p
(fk+1)
k ;

if job Jk failed then
L.insert with priority(Jk);
fk ← fk + 1;

end
for j = 1, . . . , |L| do

Jj ← L(j);

if Pavail ≥ p
(fj+1)

j then

execute job Jj at the current time;

Pavail ← Pavail − p
(fj+1)

j ;

L.remove(Jj);

end

end

end

end

below, we will show that the worst-case approximation ratio is independent
of the job priorities used, although it may affect the algorithm’s practical
performance. In Section 5, we will consider some commonly used priority
rules for the experimental evaluation.

The following lemma shows the worst-case performance of the List
scheduling strategy. Note that the job set J is dropped from the notations
since the context is clear.

Lemma 1. Given a processor allocation decision p for the jobs, the makespan
of a List schedule (that determines the starting times s) under any failure
scenario f satisfies:

TList(f ,p, s)≤
{

2A(f ,p)
P , if pmin ≥ P

2
A(f ,p)
P−pmin

+ (P−2pmin)·tmax(f ,p)
P−pmin

, if pmin <
P
2

where pmin ≥ 1 denotes the minimum number of utilized processors at any
time during the schedule.

Proof. We first observe that List only allocates and de-allocates processors
upon job completions. Hence, the entire schedule can be divided into a set
of consecutive and non-overlapping intervals I = {I1, I2, . . . , Iv}, where jobs
start (or complete) at the beginning (or end) of an interval, and v denotes
the total number of intervals. Let |I`| denote the length of interval I`. The
makespan under a failure scenario f can then be expressed as TList(f ,p, s) =∑v

`=1 |I`|.
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Let p(I`) denote the number of utilized processors during an interval
I`. Since the minimum number of utilized processors during the schedule
is pmin, we have p(I`) ≥ pmin for all I` ∈ I. We consider the following two
cases:

Case 1: pmin ≥ P
2 . In this case, we have p(I`) ≥ pmin ≥ P

2 for all
I` ∈ I. Based on the definition of total cumulative area, we have A(f ,p) =∑v

`=1 |I`| · p(I`) ≥ P
2 · TList(f ,p, s). This implies that:

TList(f ,p, s) ≤ 2A(f ,p)

P
.

Case 2: pmin < P
2 . Let Imin denote the last interval in the schedule

with processor utilization pmin, and consider a job Jj that is running during
interval Imin. Necessarily, we have pj ≤ pmin. We now divide the set I of
intervals into two disjoint subsets I1 and I2, where I1 contains the intervals
in which job Jj is running (including all of its execution attempts), and I2 =
I\I1. Let T1 =

∑
I∈I1 |I| and T2 =

∑
I∈I2 |I| denote the total lengths of

all intervals in I1 and I2, respectively. Based on the definition of maximum

cumulative execution time, we have T1 =
∑fj+1

i=1 tj(p
(i)
j ) ≤ tmax(f ,p).

For any interval I ∈ I2 that lies between the i-th execution attempt and
the (i+ 1)-th execution attempt of Jj in the schedule, where 0 ≤ i ≤ fj , the
processor utilization of I must satisfy p(I) > P −pmin, since otherwise there
are at least pmin ≥ pj available processors during interval I and hence the
i+1-st execution attempt of Jj would have been scheduled at the beginning
of I.

For any interval I ∈ I2 that lies after the (fj + 1)-th (last) execution
attempt of Jj , there must be a job Jk running during I and that was not
running during Imin (meaning no attempt of executing Jk was made during
Imin). This is because p(I) > pmin, hence the job configuration must differ
between I and Imin. The processor utilization during interval I must also
satisfy p(I) > P − pmin, since otherwise the processor allocation of Jk will
be pk ≤ p(I) ≤ P − pmin, implying that the first execution attempt of Jk
after interval Imin would have been scheduled at the beginning of Imin.

Thus, for all I ∈ I2, we have p(I) > P − pmin. Based on the definition
of total cumulative area, we have A(f ,p) ≥ (P − pmin) · T2 + pmin · T1. The
makespan of List under failure scenario f can then be derived as:

TList(f ,p, s) = T1 + T2

≤ T1 +
A(f ,p)− pmin · T1

P − pmin

=
A(f ,p)

P − pmin
+

(P − 2pmin) · T1

P − pmin

≤ A(f ,p)

P − pmin
+

(P − 2pmin) · tmax(f ,p)

P − pmin
.
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While Lemma 1 bounds the general performance of a List schedule for
a given processor allocation p, the following lemma shows its approximation
ratio when the processor allocation strategy satisfies certain properties.

Lemma 2. Given any failure scenario f , if the processor allocation decision
p satisfies:

A(f ,p) ≤ α ·A(f ,p∗) ,

tmax(f ,p) ≤ β · tmax(f ,p∗) ,

where p∗ denotes the processor allocation of an optimal schedule, then a
List schedule using processor allocation p is r(α, β)-approximation, where

r(α, β) =

{
2α, if α ≥ β
P
P−1α+ P−2

P−1β, if α < β
(10)

Proof. Based on Lemma 1, when pmin ≥ P
2 , we have:

TList(f ,p, s) ≤ 2A(f ,p)

P
≤ 2α ·A(f ,p∗)

P
≤ 2α · TOpt(f ,p∗, s∗).

The last inequality above is due to the makespan lower bound, as shown in
Equation (8).

When pmin <
P
2 , we can derive:

TList(f ,p, s) ≤ A(f ,p)

P − pmin
+

(P − 2pmin) · tmax(f ,p)

P − pmin

≤ α ·A(f ,p∗)

P − pmin
+
β(P − 2pmin) · tmax(f ,p∗)

P − pmin

≤ (α+ β)P − 2βpmin

P − pmin
· TOpt(f ,p∗, s∗)

=
(
α+ β + (α− β)

pmin

P − pmin

)
· TOpt(f ,p∗, s∗).

We have 1
P−1 ≤

pmin
P−pmin

< 1, since 1 ≤ pmin <
P
2 . Therefore, if α ≥ β,

we get:
TList(f ,p, s) ≤ 2α · TOpt(f ,p∗, s∗),

and if α < β, we get:

TList(f ,p, s) ≤
( P

P − 1
α+

P − 2

P − 1
β
)
· TOpt(f ,p∗, s∗).

Note that, in this case, P
P−1α+ P−2

P−1β > 2α.
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Algorithm 2: Lpa (Processor Allocation Strategy)

begin
for j = 1, 2, . . . , n do

tmin ←∞, amin ←∞;
for p = 1, 2, . . . , P do

if tj(p) < tmin then
tmin ← tj(p);

end
if p · tj(p) < amin then

amin ← p · tj(p);
end

end
pj ← 0, rmin ←∞;
for p = 1, 2, . . . , P do

α← p · tj(p)/amin;
β ← tj(p)/tmin;
compute r(α, β) from Equation (10);
if r(α, β) < rmin then

pj ← p, rmin ← r(α, β);
end

end

end

end

4.2.2 Local Processor Allocation (Lpa)

We now discuss the Lpa strategy for the first phase of the algorithm. Given
the result of Lemma 2, Lpa allocates processors locally for each job. Algo-
rithm 2 shows its pseudocode. For each job Jj , the strategy first computes
its minimum possible execution time and area. Then, it chooses a processor
allocation that leads to the smallest ratio r(α, β) defined in Equation (10)
based on the job’s local bounds (α and β) on the area and execution time.
If all jobs satisfy the same bounds, then the bound will also hold globally.

Once the processor allocation of a job has been decided, the same al-
location will be used by the List scheduling strategy in the second phase
throughout the execution until the job completes successfully without fail-
ures.

4.3 Worst-Case Performance of Lpa-List for Some Common
Speedup Models

We now analyze the worst-case performance of the Lpa-List algorithm for
moldable jobs that exhibit some common speedup models, as well as for the
general monotonic model. All derived approximation ratios are independent
of the failure scenarios, hence based on Equations (4) and (5). The same
ratios also apply to the average-case performance of the algorithm for the
respective speedup models.
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4.3.1 Roofline Model

In the roofline model, the execution time of a job Jj when allocated p proces-
sors satisfies tj(p) =

wj
min(p,p̄j)

for a bounded degree of parallelism 1 ≤ p̄j ≤ P .

Theorem 1. Lpa-List is a 2-approximation for jobs with the roofline speedup
model.

Proof. In the roofline speedup model, the minimum execution time of a job
Jj is tmin = wj/p̄j and the minimum area of the job is amin = wj . These
two quantities can be achieved by simply allocating pj = p̄j processors to
the job. This leads to the bounds of α = 1 and β = 1 for each job as well as
globally under any failure scenario. Hence, based on Lemma 2, we get an
approximation ratio of 2α = 2.

4.3.2 Communication Model

In the communication model [12, 17], the execution time of a job Jj when
allocated p processors is given by tj(p) = wj/p + (p − 1)cj , where cj ≥ 0
denotes the per-processor communication overhead.

Theorem 2. Lpa-List is a 3-approximation for jobs with the communica-
tion model.

Proof. For the communication model, we consider a processor allocation pj
for a job Jj and show that it achieves α = β = 3

2 , i.e., aj(pj) ≤ 3
2amin and

tj(pj) ≤ 3
2 tmin. Hence, based on Lemma 2, we get an approximation ratio

of 2α = 3. The detailed proof can be found in Appendix A.

Remarks. Our result improves upon the 4-approximation of the Set
algorithm [17], which is the best ratio known for this model. Our result
further extends the one in [17] in two ways: (1) The model in [17] assumes the
same communication overhead c for all jobs, while we consider an individual
overhead cj for each job Jj ; (2) The algorithm in [17] applies to failure-free
job executions, while our algorithm is able to handle job failures.

4.3.3 Amdahl’s Model

In Amdahl’s model [1], the execution time of a job Jj when allocated p

processors satisfies tj(p) = wj
(1−γj

p + γj
)
, where γj ∈ [0, 1] denotes the

inherently sequential fraction of the job. It is a particular case of the mono-
tonic model as described in Section 3.1. For convenience, we consider an
equivalent form of the model in the analysis: tj(p) =

wj
p + dj , where wj

denotes the parallelizable work of the job and dj denotes the inherently
sequential work.
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Theorem 3. Lpa-List is a 4-approximation for jobs with the Amdahl’s
speedup model.

Proof. In Amdahl’s model, the minimum execution time of a job Jj is tmin =
wj
P +dj (achieved by allocating P processors), and the minimum area of the
job is amin = wj + dj (achieved by allocating one processor). We consider a
processor allocation of pj = min(dwjdj e, P ) for the job.

For the area, we have aj(pj) = wj + pjdj ≤ wj + dwjdj edj ≤ wj + (
wj
dj

+

1)dj = 2wj + dj ≤ 2amin. Thus, we get α = 2.
For the execution time, we consider two cases: (1) If dwjdj e ≤ P , then

pj = dwjdj e, and we have tj(pj) =
wj
pj

+ dj ≤ wj
wj/dj

+ dj = 2dj ≤ 2tmin.

In this case, we get β = 2; (2) If dwjdj e > P , then pj = P , and we have

tj(pj) =
wj
P + dj = tmin. In this case, we get β = 1.

Hence, based on Lemma 2, we get an approximation ratio of 2α = 4.

4.3.4 Mix Model

We now consider the mixed model combining Roofline, Communication and

Amdahl’s models as follows: tj(p) =
wj(1−γj)
min(p,p̄j)

+wjγj +(p−1)cj , which could

capture more realistically the speedups of some complex applications. In
this model, we only need to consider p ≤ p̄j , since any p > p̄j will obviously
be a bad choice. To simplify the analysis, we also factorize the function by

cj and obtain the following equivalent form: tj(p) = cj

(
w′j
p + d′j + (p− 1)

)
,

with w′j =
wj(1−γj)

cj
and d′j =

wjγj
cj

Theorem 4. Lpa-List is a 6-approximation for jobs with the mixed model.

Proof. For this mixed model, we provide a processor allocation pj for a job Jj
and show that it achieves α = β = 3, i.e., aj(pj) ≤ 3amin and tj(pj) ≤ 3tmin.
Hence, based on Lemma 2, we get an approximation ratio of 2α = 6. The
detailed proof can be found in Appendix B.

4.3.5 Power Model

In the power model, the execution time of a job Jj when allocated p proces-
sors satisfies tj(p) = wj/p

δj , where δj ∈ [0, 1] is a constant parameter. This
speedup has been observed in some linear algebra applications [15, 39] and
it is also an example of the monotonic model.

Theorem 5. Lpa-List is a Θ(P 1/4)-approximation for jobs with the power
model.

Proof. In the power model, the minimum execution time of a job Jj is
tmin =

wj

P δj
(achieved by allocating P processors), and the minimum area of

the job is amin = wj (achieved by allocating one processor).
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By allocating pj processors to the job, we will get α =
aj(pj)
amin

= p
1−δj
j

and β =
tj(pj)
tmin

= ( Ppj )δj . Hence, to minimize Equation (10), the algorithm

will choose pj = Θ(P δj ) processors, resulting in an approximation ratio
of Θ(P δj(1−δj)). Since δj ∈ [0, 1], the value of δj(1 − δj) is maximized at
δj = 1/2, leading to an approximation ratio of Θ(P 1/4).

4.3.6 Monotonic Model

We now consider the general monotonic model. Recall that a job Jj is mono-
tonic, if tj(p) ≥ tj(p

′) and aj(p) ≤ aj(p
′) for any p ≤ p′. This means that

the execution time of the job will not increase with the processor allocation
and the area will not decrease with the processor allocation. In particular,
the area assumption implies that the speedup efficiency of the job will not
increase as more processors are allocated to it, i.e., σj(p)/p ≥ σj(p

′)/p′, a
property that has been observed in many practical parallel applications.

Theorem 6. Lpa-List is an O(
√
P )-approximation for jobs with the mono-

tonic model.

Proof. In a general monotonic model, the minimum execution time of a job
Jj is achieved with P processors, i.e., tmin = tj(P ), and the minimum area
is achieved with one processor, i.e., amin = aj(1) = tj(1).

Consider an allocation pj = b
√
P c. Based on the monotonic assumption,

we get aj(pj) = pjtj(pj) ≤
√
P · tj(1) =

√
P · amin, and tj(pj) ≤ P

pj
tj(P ) =

O(
√
P ) · tmin. Thus, based on Lemma 2, we get an approximation ratio of

O(
√
P ).

We show that the above ratio is asymptotically tight for any algorithm
that makes local processor allocation decisions based on individual job char-
acteristics. Examples of such algorithms include the Lpa algorithm con-
sidered in this paper and the Set algorithm studied in [17]. The result
holds even under the additional assumption that the speedup profiles of the
jobs are concave [24] and that jobs do not fail. In the next section, we
will propose another algorithm that overcomes this limitation by making
coordinated processor allocation decisions for a set of jobs.

Theorem 7. Any scheduling algorithm that relies on local processor allo-
cation for each individual job is Ω(

√
P )-approximation with the monotonic

model.

Proof. Assume that
√
P is an integer and P ≥ 4. We consider a job with a

concave speedup profile5 that contains two piece-wise linear segments defined

5The speedup profile is concave because σ′(p) = 1√
P−1

for any p ∈ [1,
√
P ), and

σ′(p) =
√
P−2

P−
√
P
<

√
P

P−
√
P

= 1√
P−1

for any p ∈ (
√
P , P ].
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(a) (b) (c)

Figure 1: Speedup (a), execution time (b), and area (c) profiles of the job
used in the proof of Theorem 7.

by three points: σ(1) = 1, σ(
√
P ) = 2 and σ(P ) =

√
P (see Figure 1(a)).

Suppose the execution time of the job with one processor is t(1) = 1. We can
then derive the execution time profile of the job as follows (see Figure 1(b)):

t(p) =


√
P−1

p+
√
P−2

if p ≤
√
P ,

P−
√
P

p(
√
P−2)+P

if p >
√
P ;

and the area profile of the job as follows (see Figure 1(c)):

a(p) =


p(
√
P−1)

p+
√
P−2

if p ≤
√
P ,

p(P−
√
P )

p(
√
P−2)+P

if p >
√
P .

The job is obviously monotonic.
Suppose there are n identical such jobs in the system, where n depends

on the processor allocation algorithm (denoted as Alg). Since the jobs are
identical and processors are allocated locally, the processor allocation p for
each job should be the same. We consider two cases.

Case 1 : If p ≤
√
P , then there is only n = 1 job. In this case, the

algorithm has a makespan of TAlg ≥ t(
√
P ) = 1

2 and the optimal makespan
is TOpt = t(P ) = 1√

P
by allocating P processors to the job.

Case 2 : If p >
√
P , then there are n = P jobs. In this case, the

makespan of the algorithm satisfies TAlg ≥ n·a(p)
P ≥ a(

√
P ) =

√
P

2 , and the
optimal makespan is TOpt = 1 by allocating one processor to each job.

Thus, in both cases, we have TAlg
TOpt
≥
√
P

2 .

4.4 Batch-List Scheduling Algorithm

We now present the second algorithm, called Batch-List. Unlike the Lpa-
List algorithm, which allocates processors locally for each job, Batch-
List coordinates the processor allocation decisions for different jobs. While
not knowing the failure scenario in advance, the algorithm organizes the
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execution attempts of the jobs in multiple batches, where each batch executes
the pending jobs (i.e., the jobs that have not been successfully completed
so far) up to a certain number of attempts that doubles after each batch.
The idea is inspired by the doubling strategy [10] that has been commonly
applied in many online problems. The following describes the details of the
Batch-List algorithm.

Let Bk denote the k-th batch created by the algorithm, where k ≥ 1. Let
nk denote the number of pending jobs immediately before Bk starts, and let
Jk = {Jk,1, Jk,2, . . . , Jk,nk} denote this set of pending jobs. For convenience,
we define gk = 2k−1. In batch Bk, we allow each pending job Jk,j to have
at most fk,j = gk − 1 failures, i.e., each job is allowed to make gk execution
attempts in the batch; if the job is still not successfully completed after that,
it will be handled by the next batch Bk+1. Let fk = (fk,1, fk,2, . . . , fk,nk)
denote this worst-case failure scenario for the jobs in batch Bk. Given fk,

each job Jk,j can be represented by a chain J
(1)
k,j → J

(2)
k,j → · · · → J

(gk)
k,j of

gk sub-jobs with linear precedence constraint, where each sub-job represents
an execution attempt of Jk,j in the batch. Thus, all sub-jobs in batch Bk
form a set of nk linear chains, one for each pending job.

To allocate processors for all the sub-jobs (or the different execution at-
tempts of the pending jobs) in batch Bk, we adopt the pseudo-polynomial
time algorithm, called Mt-Allotment, proposed in [29] for series-parallel
precedence graphs (of which a set of independent linear chains is a spe-

cial case). Specifically, the algorithm determines an allocation p
(m)
k,j for

each sub-job J
(m)
k,j (or the m-th execution attempt of job Jk,j). Let ~pk,j =

(p
(1)
k,j , p

(2)
k,j , . . . , p

(fk,j+1)
k,j ) be the vector of processor allocations for job Jk,j ,

and let pk = (~pk,1, ~pk,2, . . . , ~pk,nk) be the processor allocations for all jobs
in batch Bk. The following lemma shows the property of the allocation pk
returned by Mt-Allotment for jobs with any arbitrary speedup model.

Lemma 3. For any ε > 0, Mt-Allotment can compute, with complexity
polynomial in 1/ε, a processor allocation pk for all jobs in batch Bk that
approximates the minimum makespan lower bound as defined in Equation
(8) as follows:

L(Jk, fk,pk) ≤ (1 + ε) ·min
p
L(Jk, fk,p) . (11)

We refer to [29] for a detailed description of the Mt-Allotment algo-
rithm and its analysis6. Once the processor allocation pk has been decided,
Batch-List schedules all pending jobs in a batch Bk using the List strat-
egy as shown in Algorithm 1, while restricting each job to execute at most

6In a nutshell, the algorithm uses dynamic programming to decide whether there exists
an allocation p such that L(Jk, fk,p) ≤ (1 + ε) · X for a positive integer bound X, and
performs a binary search on X.
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gk times. After batch Bk completes and if there are still pending jobs, the
algorithm will create a new batch Bk+1 to schedule the remaining pending
jobs.

4.5 Worst-Case Performance of Batch-List for Arbitrary Speedup
Model

We analyze the worst-case performance of Batch-List for moldable jobs
with any arbitrary speedup model.

First, we define the following concept: a job set J ′ with failure scenario
f ′ is said to be dominated by a job set J with failure scenario f , denoted by
(J ′, f ′) ⊆ (J , f), if for every job Jj ∈ J ′, we have Jj ∈ J and f ′j ≤ fj . The
following lemma gives two trivial properties without proof for a dominated
pair of job set and failure scenario.

Lemma 4. If (J ′, f ′) ⊆ (J , f), then we have:

(a) L(J ′, f ′,p) ≤ L(J , f ,p);

(b) TOpt(J ′, f ′,p′∗, s′∗) ≤ TOpt(J , f ,p∗, s∗).

Lemma 5. Suppose a job set J with failure scenario f is executed by
Batch-List. Then, any job Jj ∈ J will successfully complete in bj =
dlog2(fj + 2)e batches, and in any batch Bk, where 1 ≤ k ≤ bj, we have
fk,j ≤ fj.

Proof. Since the algorithm allows the number of execution attempts of a job
to double in each new batch, the maximum number of execution attempts
of the job in a total of b batches is given by

∑b
k=1 2k−1 = 2b − 1. Thus, if a

job Jj fails fj times (i.e., executes fj + 1 times), then the number of batches
it takes to complete the job is bj = dlog2(fj + 2)e = 1 + blog2(fj + 1)c.

In any batch Bk until job Jj completes, where 1 ≤ k ≤ bj , we have
fk,j = 2k−1 − 1 ≤ 2blog2(fj+1)c − 1 ≤ fj .

The following theorem shows the approximation ratio of Batch-List
for jobs with arbitrary speedup model.

Theorem 8. Batch-List is an O((1+ε) log2(fmax))-approximation for jobs
with arbitrary speedup model, where fmax = maxj fj denotes the maximum
number of failures of any job in a failure scenario.

Proof. According to Lemma 5, the total number of batches for any job set
J with failure scenario f is given by bmax = dlog2(fmax + 2)e. Further, for
any batch Bk, where 1 ≤ k ≤ bmax, we have (Jk, fk) ⊆ (J , f).

Let f ′k = (f ′k,1, f
′
k,2, . . . , f

′
k,nk

) denote the actual failure scenario for the
jobs in batch Bk. Clearly, we have f ′k,j ≤ fk,j for any Jj ∈ Jk, and thus,
(Jk, f ′k) ⊆ (Jk, fk).
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Since Batch-List uses the Mt-Allotment algorithm to allocate pro-
cessors and the List strategy to schedule all jobs in each batch, according
to Lemmas 1, 3 and 4, we can bound the execution time of any batch Bk as
follows:

TList(Jk, f ′k,pk, sk) ≤ 2 · L(Jk, f ′k,pk)
≤ 2 · L(Jk, fk,pk)
≤ 2(1 + ε) · L(Jk, fk,p∗k)
≤ 2(1 + ε) · TOpt(Jk, fk,p∗k, s∗k)
≤ 2(1 + ε) · TOpt(J , f ,p∗, s∗) .

Therefore, the makespan of Batch-List satisfies:

TBatch-List(J , f ,p, s) =

bmax∑
k=1

TList(Jk, f ′k,pk, sk)

≤ 2(1 + ε)dlog2(fmax + 2)e · TOpt(J , f ,p∗, s∗) .

We now show that the approximation ratio of Batch-List is tight up
to a constant factor.

Theorem 9. Batch-List is Ω(log2(fmax))-approximation.

Proof. We consider a set J = {J1, J2, . . . , JK} of K jobs and at least as
many processors, so that each job can be executed on a dedicated processor.
For each job Jj , where 1 ≤ j ≤ K, its (sequential) execution time is tj = 1

2j
,

and it fails fj = 2j−1−1 times (i.e., executes 2j−1 times). Given this failure
scenario f , the total time to complete job Jj is given by 2j−1 · 1

2j
= 1

2 . The

optimal makespan for this failure scenario is therefore TOpt(J , f) = 1
2 .

In the above failure scenario, the maximum number of failures of any job
is fmax = fK = 2K−1 − 1. Based on Lemma 5, Batch-List will complete
each job Jj in dlog2(fj + 2)e = j batches, and will complete all jobs in
dlog2(fmax + 2)e = K batches. Figure 2 illustrates the execution of this
failure scenario for K = 5. In each batch Bk, where 1 ≤ k ≤ K, the set
of pending jobs is given by Jk = {Jk, Jk+1, . . . , JK}. For the first batch
B1, it takes t1 = 1

2 time to complete job J1 and thus the entire batch. For
any batch Bk, where 2 ≤ k ≤ K − 1, it takes tk+1 = 1

2(k+1) time for each

execution attempt of job Jk+1, which will have 2k−1 execution attempts.
Thus, batch Bk will take 2k−1 · 1

2(k+1) = 1
4 time to complete. The makespan

of Batch-List for the entire job set J then satisfies:

TBatch-List(J , f) ≥ 1

2
+ (K − 2) · 1

4

=
K

4
=
dlog2(fmax + 2)e

2
· TOpt(J , f) .
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Figure 2: An illustration of the lower bound instance for the Batch-List
algorithm shown in Theorem 9 with K = 5 jobs.

4.6 A Lower Bound on the Average-Case Performance of
Batch-List

The preceding section shows that the worst-case approximation ratio of
Batch-List grows linearly with the number b of batches. However, when
jobs have fixed failure probabilities, the probability of having b batches tends
to 0 as b approaches infinity. Thus, one might expect a constant approxima-
tion in expectation. In this section, we show that it is not true by providing
an ω(1) lower bound. Despite this negative result, the experimental evalua-
tion (in Section 5) shows that the average-case performance of the algorithm
is very close to the optimal under many practical settings. Deriving an up-
per bound on the average-case approximation ratio of Batch-List remains
an open question.

Theorem 10. The expected approximation ratio of Batch-List is ω(1), if
all jobs have constant failure probabilities.

The proof of this theorem can be found in Appendix C. We point out
that the above lower bound applies when the jobs’ failure probabilities are
either arbitrarily defined or related to their sequential execution times as
defined in Equation (3). In fact, Theorem 10 holds generally true as long as
the failure probability qj of each job Jj is upper-bounded by a constant ρ,
i.e., qj ≤ ρ < 1 for all j = 1, . . . , n.

5 Performance Evaluation

In this section, we evaluate and compare the performance of different schedul-
ing algorithms using simulations on synthetic moldable jobs that follow var-
ious speedup models.

5.1 Simulation Setup

Evaluated Algorithms: We evaluate the performance of our two scheduling
algorithms, namely, Lpa-List (or Lpa in short) and Batch-List (or Batch
in short). For Batch, we set ε = 0.3 for its processor allocation procedure
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(Lemma 3). Their performance is also compared against that of the following
two baseline heuristics:

• MinTime: allocates processors to minimize the execution time of each
job and schedules all jobs using the List strategy (Algorithm 1). This
is also known as the shortest execution time (Set) algorithm in [17];

• MinArea: allocates processors to minimize the area of each job and
schedules all jobs using the List strategy.

Priority Rules: We consider three priority rules that have been shown
to give good performance when (rigid) jobs are scheduled with the List
strategy [4], which is used in all four evaluated algorithms (recall that Batch
uses List in each batch). The three priority rules are:

• LPT (Longest Processing Time): a job with a longer processing time
has a higher priority;

• HPA (Highest Processor Allocation): a job with a higher processor
allocation has a higher priority;

• LA (Largest Area): a job with a larger area has a higher priority.

Speedup Models: We generate synthetic moldable jobs that follow six
speedup models: roofline, communication, Amdahl, mix (in two different
versions) and power. Each job Jj is defined by two parameters: the total
work wj (i.e., the sequential execution time), which is drawn uniformly in
[5000, 4000000], and another parameter that depends on the speedup model.

• Roofline: the maximum degree of parallelism p̄j is an integer drawn
uniformly in [100, 4000];

• Communication: the communication overhead is set as cj = α ·
2r, where r is an integer uniformly chosen in [0, 3] and α is drawn
uniformly in [1, 2].

• Amdahl: the sequential fraction is set as γj = α
10r , where r is an

integer uniformly chosen in [2, 7] and α is drawn uniformly in [0, 10].
• Mix: we consider two different parameter settings: the first one, called

mix-low-com, uses the same set of parameters as what is chosen for
the roofline, communication, and Amdahl’s model. The second one,
called mix, uses 3cj instead of cj for the communication overhead.

• Power: the parameter δj is chosen uniformly in [0, 1].

Failure Distribution: To generate failures for the jobs, we assume that
silent errors follow the exponential distribution [18]. Let λ denote the error
rate per unit of work, so a job will be struck by a silent error for every 1/λ
unit of work executed on average. Following our failure model (Section 3),
we assume parallelizing a job does not change the total number of compu-
tational operations (it may increase the communication, which we consider
protected). Hence, the failure probability of a job will not depend on its
processor allocation nor its execution time, but solely on its total work. For
a job Jj with total work wj , its failure probability is given by qj = 1−e−λwj .

In the simulations, we set λ = 10−7 by default. Given the chosen values
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of wj , this corresponds to a failure probability between 0.0005 and 0.33 for
a job. We also set the default number of processors and number of jobs to
be P = 7500 and n = 500, but we will also vary all of these parameters to
evaluate their impact on the performance.

Evaluation Methodology : The evaluation is done as follows: we generate
30 different sets of jobs, and for each set, 100 failure scenarios are drawn
randomly from the failure distribution described above. For each of the
failure scenarios, the simulated makespan of an algorithm is normalized by
a lower bound (described below), which is then averaged over the 100 failure
scenarios to estimate the expected ratio for the job set. Lastly, this ratio is
averaged over the 30 job sets to compute the final expected performance of
the algorithm. In addition, we also estimate the worst-case performance of
the algorithm by using its largest normalized makespan over all job sets and
failure scenarios.

Given job set J and a failure scenario f , the makespan lower bound
given in Equation (8) depends on the processor allocation and hence the
scheduling algorithm. To ensure that the performance of all algorithms is
normalized by the same quantity, we use the following rather loose lower
bound, which is, however, independent of the scheduling decision:

L′(J , f) = max
(
t′max(J , f),

A′(J , f)

P

)
,

where t′max(J , f) = maxj minp(fj + 1)tj(p) is the minimum possible maxi-
mum execution time of all jobs, and A′(J , f) =

∑
j minp(fj + 1)aj(p) is the

minimum possible total area. Since this lower bound gives a pessimistic es-
timation on the optimal schedule, the actual performance of the algorithms
is likely to be better than reported.

The simulation code for all experiments is publicly available at http:

//www.github.com/vlefevre/job-scheduling. We report here mainly re-
sults for the mix model, since it captures Roofline, Amdahl, and Commu-
nication as special cases. Full results can be found in Appendix D.

5.2 Comparison of Algorithms and Priority Rules

We first compare the performance of different algorithms and study the
impact of priority rules on their performance.

Figure 3 (left) shows the normalized makespans for the 11 combinations
of algorithms and priority rules under the mix speedup model, with λ =
10−7, P = 7500, and n= 500. For the MinArea algorithm, priority rules
LA and LPT are identical, as the algorithm allocates one processor to all
jobs, so only the results of LPT are reported. As we can see, MinArea fares
poorly in most cases, because it allocates one processor to each job in order to
minimize the area. This results in very long job execution (and re-execution)
times, which leads to extremely large makespan. Moreover, allocating only
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Figure 3: Performance of different algorithms and priority rules under the
mix model with λ = 10−7, P = 7500, n = 500 and four other different
combinations of P and n. The bars represent expected performance and the
top endpoints of the lines represent worst-case performance.

one processor per job also results in idle processors thus resource inefficiency
whenever the number of processors is higher than the number of jobs. The
Lpa and Batch algorithms maintain a good balance between the execution
time and area of a job, thus they perform well (and this remains true for all
speedup models) in terms of both expected performance (bars) and worst-
case performance (top endpoints of lines). Batch performs the best for
the mix model. MinTime also performs relatively well with this set of
parameters.

Figure 3 (right) further shows the results of four combinations of P and
n with similar performance trends. We notice that these two parameters do
have an impact on the performance of Batch, in particular at P = 1000
and n=500. Indeed, when P is significantly larger than n, Batch tends to
reduce all jobs to similar length and execute them at the same time, which
gives the best tradeoff between the area and maximum execution time. In
that case, the first batch, where all jobs are executed exactly once, is done
almost perfectly. As the makespan of the first batch is dominant under
λ=10−7, the overall makespan is closer to the lower bound. However, with
P =1000 and n=500, there are not enough processors to execute all jobs at
the same time. Thus, the performance of Batch becomes close to Lpa.

Note also that the performance of MinTime under the mix models be-
comes better when the number of processors is large compared to the number
of jobs (e.g., P = 10000, n = 100). Indeed, MinTime is able to simultane-
ously minimize the execution time of all jobs in this case without using all
the processors, thus achieving near-optimal performance. This is not possi-
ble with fewer processors, as minimizing the execution time alone for each
job will increase the total area, which also plays an important role under
such circumstance to have overall good performance.

Comparing the three priority rules, no significant difference is observed.
In general, LPT and LA give similar results, and slightly better results than
HPA. This is consistent with the results observed in [4] for scheduling rigid
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Figure 4: Performance of the algorithms for the mix speedup model, with
P =7500, n=500, and λ=10−7.

jobs. Given these results, we will only consider the LPT priority rule in
the subsequent evaluation. We will also omit the MinArea algorithm, and
focus on comparing the expected performance of the remaining algorithms.

5.3 Impact of Different Parameters

We now study the impact of different parameters on the performance of the
algorithms. We start from P = 7500, n= 500, and λ= 10−7, and vary one
of these parameters in each experiment. We still focus on the mix model
(recall that results for other speedup models are available in Appendix D).

Impact of Number of Processors (P ): Figure 4(a) shows the performance
when the number of processors P is varied between 1000 and 15000. Batch
outperforms Lpa despite the idle time at the end of each batch. This is due
to Batch’s ability to better balance the job execution times globally, which
becomes more important in this case. Moreover, the trend is not affected by
the number of processors. Since both algorithms tend to allocate a relatively
small number of processors for each job, the maximum degree of parallelism
is not reached and the communication cost is relatively small. Note that
the performance of MinTime is getting better with increasing number of
processors. Indeed, the minimum execution time of a job is achieved with
a reasonable number of processors because of the communication overhead.
Thus, when P is high enough such that all jobs can be processed in parallel
while minimizing their execution times, MinTime’s allocation becomes close
to optimal.

Impact of Number of Jobs (n): Figure 4(b) shows the performance when
the number of jobs n is varied between 100 and 1000. Again, we can see
that Batch has the best performance, except for small number of jobs. The
number of jobs has a small impact for Batch, but only impacts MinTime
as seen with varying P . Overall, as the number of jobs increases, the trend
in the relative performance of the algorithms is consistent with the previous
results we have observed in Figure 4(a) when the number of processors
decreases.

Impact of Error Rate (λ): Figure 4(c) shows the impact of the error
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Table 1: Summary of the performance for the four algorithms (with LPT
priority rule) under the six speedup models.

Speedup Model Roofline Communication Amdahl Mix-low-com Mix Power

Lpa
Expected 1.057 1.312 1.961 1.896 1.867 1.861
Maximum 1.219 2.241 2.349 1.987 1.995 9.655

Batch
Expected 1.158 1.434 1.529 1.548 1.571 1.549
Maximum 1.999 2.449 2.874 3.674 4.164 3.975

MinTime
Expected 1.057 2.044 15.567 2.810 2.704 20.386
Maximum 1.219 2.666 49.795 12.611 27.174 61.726

MinArea
Expected 114.079 122.199 23.594 16.875 9.686 2.571
Maximum 1217.13 871.38 199.572 259.163 120.9 27.109

rate λ when it is varied between 10−8 (corresponding to 0.03 error per job
on average) and 10−6 (corresponding to 12 errors per job on average). Once
again, the relative performance of the three algorithms remains the same
as before. While the performance of Lpa is barely affected, which is not
surprising considering that its processor allocation is performed locally and
separately from job scheduling, the performance of Batch gets worse with
increasing error rate λ (and hence the number of failures), which corrobo-
rates the theoretical analysis (Theorem 8). In particular, when the error rate
is small, there are very few failures and almost all jobs will complete in one
batch. In this case, the processor allocation procedure of Batch (Lemma
3) is very precise. With increased error rate, more failures will occur and
thus more batches will be introduced, causing scheduling inefficiencies from
both idle times between the batches and possible imprecision in the pro-
cessor allocations (especially with a large batch, since the actual number
of failures may deviate significantly from the anticipated values). Finally,
although the processor allocation is also performed locally for MinTime,
the effect of increasing λ is similar to that of increasing P (or the opposite
to that of increasing n): when there are more failures, we spend more time
processing few large jobs that fail a lot, meaning that after some time only
very few jobs are not finished yet. This effectively increases the total number
of processors for these jobs or reduces the total number of jobs.

5.4 Summary of Results

Table 1 summarizes the makespan ratios of the four algorithms over the en-
tire set of experiments, in terms of both average-case performance (expected
ratio) and worst-case performance (maximum ratio). Overall, the results
confirm the efficiency of our two resilient scheduling algorithms (Lpa and
Batch), which outperform the baseline heuristics (MinTime and MinArea)
in all settings. For the simplest roofline model, Lpa is equivalent to MinTime,
both achieving a makespan very close to the lower bound (with a ratio
around 1.06 on average). For the other models, we can observe significant
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performance difference between our best algorithm and the baseline. In
particular, Lpa achieves good performance with an expected ratio around
1.3 for the communication model, and an expected ratio less than 2 for the
other models. We also notice that the maximum ratios are only slightly
larger than the ones in the average case, and they remain much lower than
those predicted by the theoretical bounds (except for the power model where
the ratio is more than 9). Batch also achieves excellent results thanks to its
coordinated processor allocation and failure handling ability. It achieves a
better average ratio (less than 1.6) for all models, but has larger worst-case
ratios compared to Lpa (except for the power model). On the other hand,
the two baseline heuristics, although doing well in some scenarios, tend to
have more irregular performance that depends on the model and parameter.
In contrast, our algorithms exhibit more robust performance under various
models and parameter settings.

6 Conclusion and Future Work

In this paper, we have studied the problem of scheduling moldable parallel
jobs to cope with silent errors. We present a formal model of the problem
and design two resilient scheduling algorithms (Lpa and Batch). While
not knowing the failure scenarios of the jobs in advance, Lpa utilizes a del-
icate local processor allocation strategy and Batch extends the notion of
batches to coordinate the processor allocations. Both algorithms use an ex-
tended List strategy with failure-handling ability to schedule the jobs. On
the theoretical side, we derived new approximation results for both algo-
rithms under several classical speedup models. In particular, Lpa is shown
to be a constant approximation for the roofline model, the communication
model, the Amdahl’s model, as well as a mixed model. We also derived
its approximation ratios for the power model and general monotonic model.
On the other hand, Batch achieves Θ(log2 fmax)-approximation for arbi-
trary speedup models, where fmax is the maximum number of failures of
any job in a failure scenario. All of these results are worst-case results: they
hold for any failure scenario. We also derived an ω(1) lower bound on the
average-case performance of Batch. Extensive simulations show good per-
formance of the two proposed algorithms compared to some baseline heuris-
tics, demonstrating their practical usefulness and robustness under common
job speedups and parameter settings.

Future work will be devoted to the investigation of alternative failure
models, such as fail-stop errors (as opposed to silent errors) or schedule-
dependent failure probabilities (that depend on the number of processors
allocated to a job, and hence on its area). One may also consider check-
pointing and rollback recovery for long-running jobs to avoid re-executing
a failed job from scratch. On the practical side, we seek to validate the
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performance of our algorithms by evaluating them using datasets extracted
from job execution logs with realistic speedup profiles and failure traces.
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Appendix A. Proof of Theorem 2

In the communication model tj(p) = wj/p+(p−1)cj , the minimum execution
time tmin of a job Jj depends on the values of wj and cj . Let pmin denote
the processor allocation that achieves tmin, and based on the model, we get

that pmin ≈
√

wj
cj

. The minimum area of the job is amin = wj , achieved by

allocating one processor.

We consider a processor allocation of pj ≈ 1
2

√
wj
cj

for the job, and show

that it achieves the bounds α = 3
2 and β = 3

2 , i.e., aj(pj) ≤ 3
2amin and

tj(pj) ≤ 3
2 tmin. Hence, based on Lemma 2, we get an approximation ratio

of 2α = 3. We discuss several cases.
Case 1 : If 1

2

√
wj
cj
> P , we set pj = P .

Note that we also have pmin = P in this case, since tj(p) = wj/p+(p−1)cj
is a strictly decreasing function of p in [1, P ]. Thus, we have tj(pj) =
wj
P +(P−1)cj = tmin. The area of the job satisfies aj(pj) = wj+P (P−1)cj ≤
wj + P 2cj < wj + 1

4wj = 5
4amin.

Case 2 : If 1
2

√
wj
cj
< 3

2 , then the minimum of tj(p) is achieved at p∗ =√
wj
cj
∈ (0, 3). We consider three subcases depending on the values of p∗

and/or pmin.
Case 2.1 : If pmin = 1, we set pj = 1.
In this case, we must have p∗ ∈ (0, 2]. Therefore, tj(pj) = tmin and

aj(pj) = amin.
Case 2.2 : If p∗ ∈ (1, 2] and pmin = 2, we set pj = 1.

In this case, since p∗ =
√

wj
cj
≤ 2, we have cj ≥ 1

4wj . The area of the

job using pj = 1 is aj(pj) = amin. The minimum execution time of the
job is tmin =

wj
2 + cj ≥ 3

4wj , and the execution time using pj = 1 satisfies
tj(pj) = wj ≤ 4

3 tmin.
Case 2.3 : If p∗ ∈ (2, 3), we set pj = 2.

In this case, since p∗ =
√

wj
cj
> 2, we have cj <

1
4wj . Also, we must have

pmin = 2 or 3. The area of the job using pj = 2 is aj(pj) = wj+pj(pj−1)cj =
wj + 2cj <

3
2wj = 3

2amin. The minimum execution time of the job satisfies
tmin =

wj
pmin

+ (pmin − 1)cj ≥ wj
3 + cj , and the execution time using pj = 2

satisfies tj(pj) =
wj
2 + cj ≤ 3

2(
wj
3 + cj) ≤ 3

2 tmin.

Case 3 : If 3
2 ≤ 1

2

√
wj
cj
≤ P , then we have cj ≤ 1

9wj . The minimum of

tj(p) is achieved at p∗ =
√

wj
cj

. Thus, the minimum execution time of the

job satisfies tmin ≥ tj(p∗) = 2
√
wjcj − cj .

Let 1
2

√
wj
cj

= q + r, where q denotes the largest integer such that q ≤
1
2

√
wj
cj

and r = 1
2

√
wj
cj
− q denotes the remaining fraction. We set pj by
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rounding 1
2

√
wj
cj

as follows:

pj =

{
q, if r ≤ 0.2
q + 1, if r > 0.2

(12)

and we consider two subcases depending on the value of pj .

Case 3.1 : If pj = q, we have 1
2

√
wj
cj
−0.2 ≤ pj ≤ 1

2

√
wj
cj

. The area of the

job using pj is aj(pj) = wj + pj(pj − 1)cj ≤ wj + p2
jcj ≤ 5

4wj = 5
4amin. The

execution time of the job using pj satisfies:

tj(pj) =
wj
pj

+ (pj − 1)cj

≤ wj
1
2

√
wj
cj
− 0.2

+
(1

2

√
wj
cj
− 1
)
cj

≤ 3

2

(
2
√
wjcj − cj

)
≤ 3

2
tmin .

The second last inequality above is shown below:

wj
1
2

√
wj
cj
− 0.2

+
(1

2

√
wj
cj
− 1
)
cj ≤

3

2

(
2
√
wjcj − cj

)
⇐ wj

1
2

√
wj
cj
− 0.2

≤ 5

2

√
wjcj −

1

2
cj

⇐ wj ≤
(5

2

√
wjcj −

1

2
cj

)(1

2

√
wj
cj
− 0.2

)
⇐ 3

4

√
wjcj ≤

1

4
wj +

1

10
cj

⇐ 3

4

√
wjcj ≤

1

4
wj

⇐ cj ≤
1

9
wj

Case 3.2 : If pj = q + 1, we have 1
2

√
wj
cj
≤ pj ≤ 1

2

√
wj
cj

+ 0.8. The area

of the job using pj satisfies:

aj(pj) = wj + pj(pj − 1)cj

≤ wj +
(1

2

√
wj
cj

+ 0.8
)(1

2

√
wj
cj
− 0.2

)
cj

= wj +
( wj

4cj
+

3

10

√
wj
cj
− 0.16

)
cj

≤ 5

4
wj +

3

10

√
wjcj

≤ 5

4
wj +

1

10
wj <

3

2
amin .
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The second last inequality above is because of cj ≤ 1
9wj .

The execution time of the job using pj satisfies:

tj(pj) =
wj
pj

+ (pj − 1)cj

≤ wj
1
2

√
wj
cj

+
(1

2

√
wj
cj

+ 0.8− 1
)
cj

≤ 5

2

√
wjcj − 0.2cj

≤ 3

2

(
2
√
wjcj − cj

)
≤ 3

2
tmin .

The second last inequality above is shown below:

5

2

√
wjcj − 0.2cj ≤

3

2

(
2
√
wjcj − cj

)
⇐ 13

10
cj ≤

1

2

√
wjcj

⇐ cj ≤
( 5

13

)2
wj

⇐ cj ≤
1

9
wj

Thus, in all cases, we have shown aj(pj) ≤ 3
2amin and tj(pj) ≤ 3

2 tmin.
This completes the proof of the theorem.

Appendix B. Proof of Theorem 4

In the mixed model with tj(p) = cj

(
w′j
p +d′j+(p−1)

)
, we provide a processor

allocation pj for a job Jj and show that it achieves the bounds α = β = 3,
i.e., aj(pj) ≤ 3amin and tj(pj) ≤ 3tmin. Hence, based on Lemma 2, we get
an approximation ratio of 2α = 6. We discuss two cases.

Case 1 : w′j ≤ 1. In this case, both execution time and area are increas-
ing with the processor allocation, so allocating pj = 1 processor gives the
optimal time and area.

Case 2 : w′j > 1. In this case, the execution time of a job Jj is minimized

at p =
√
w′j , which gives tmin ≥ cj(2

√
wj + d′j − 1) > cj(

√
w′j + d′j). The

minimum area of the job is amin = cj(w
′
j + d′j), achieved by allocating one

processor. We consider two sub-cases depending on the value of p̄j .

Case 2.1 : p̄j ≥
⌈

w′j+d
′
j√

w′j+d
′
j

⌉
. In this case, we consider a processor alloca-

tion p′j =

⌈
w′j+d

′
j√

w′j+d
′
j

⌉
. With this choice, we have p′jtmin ≥ amin, which implies

tj(p
′
j)

tmin
≤ aj(p

′
j)

amin
. We will now upper bound the latter:
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aj(p
′
j)

amin
=
w′j + p′j(d

′
j + p′j − 1)

w′j + d′j

< 3 ·
w′j +

(
w′j+d

′
j√

w′j+d
′
j

+ 1

)(
d′j +

w′j+d
′
j√

w′j+d
′
j

)
w′j + 2(w′j + d′j)

< 3 ·
w′j

(√
w′j + d′j

)2

w′j

(√
w′j + d′j

)2
+ 2(w′j + d′j)

(√
w′j + d′j

)2

+ 3 ·

(
w′j + d′j +

√
w′j + d′j

)(
d′j

(√
w′j + d′j

)
+ w′j + d′j

)
w′j

(√
w′j + d′j

)2
+ 2(w′j + d′j)

(√
w′j + d′j

)2

< 3 ·
w′j

(√
w′j + d′j

)2
+ 2(w′j + d′j)

(
w′j + 2d′j

√
w′j + d′j

2
)

w′j

(√
w′j + d′j

)2
+ 2

(
w′j + d′j

)(
w′j + 2d′j

√
w′j + d′j

2
)

= 3 .

The last inequality is obtained by applying
√
w′j < w′j and 1 <

√
w′j on top.

Thus, we get
tj(p
′
j)

tmin
≤ aj(p

′
j)

amin
< 3.

Case 2.2 : p̄j <

⌈
w′j+d

′
j√

w′j+d
′
j

⌉
. In this case, we consider a processor allo-

cation p′′j that minimizes tj(p), i.e., tj(p
′′
j ) = tmin. Since p′′j ≤ p̄j < p′j and

aj(p) is increasing with p, we have aj(p
′′
j ) < aj(p

′
j) < 3amin, as shown in

Case 2.1.

Appendix C. Proof of Theorem 10

Before proving the theorem, we first compute the probability that Batch-
List produces exactly b batches.

Lemma 6. The probability that there are exactly b batches in a Batch-List
schedule, where b ≥ 1, is given by:

Qb =

n∏
j=1

(1− q2b−1
j )−

n∏
j=1

(1− q2b−1−1
j ) .

Proof. For any b ≥ 0, let Rb denote the probability that there are at most
b batches in the schedule. According to the Batch-List algorithm, this
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happens when the number of failures fj of any job Jj satisfies fj ≤ 2b − 2,
for all 1 ≤ j ≤ n. Thus, we can compute Rb as follows:

Rb =
n∏
j=1

P(fj ≤ 2b − 2)

=
n∏
j=1

2b−2∑
k=0

P(fj = k)

=
n∏
j=1

2b−2∑
k=0

(1− qj)qkj

=
n∏
j=1

(1− q2b−1
j ) .

The probability that there are exactly b batches is therefore given by
Qb = Rb −Rb−1, for any b ≥ 1.

(Proof of Theorem 10). To prove the claim, we show that, for any given
constant C > 0, there exists an instance such that the expected approxima-
tion ratio of the Batch-List algorithm is strictly larger than C.

We construct the instance similarly to the one in the proof of Theorem 9.
Specifically, we consider a set J = {J1, J2, . . . , JK} of K sequential jobs and
at least as many processors, so that each job can be executed on a dedicated
processor. For each job Jj , where 1 ≤ j ≤ K, its (sequential) execution time
is given by tj = 1

2j
and its failure probability qj is defined arbitrarily but

upper-bounded by a constant ρ < 1.
Consider a failure scenario f , in which each job Jj fails until batch BK+j

where it finally completes successfully. Hence, the total number of execution
attempts of job Jj is at most 2K+j , and the time to complete the job is
at most 2K+j · 1

2j
= 2K . The optimal makespan for this failure scenario

therefore satisfies TOpt(J , f) ≤ 2K .
Consider the Batch-List algorithm under the same failure scenario f .

In each batch BK+j , where 1 ≤ j ≤ K − 1, job Jj+1 does not complete
successfully and is thus executed 2K+j−1 times. The execution time of this
batch is therefore at least 2K+j−1 · 1

2(j+1) = 2K−2. The total time to complete
batches BK+1 to B2K−1, and hence the makespan of Batch-List, is at least
TBatch-List(J , f) ≥ (K − 1)2K−2 ≥ K−1

4 · TOpt(J , f).
Now, suppose the above failure scenario f happens with probability

Q(f) > 1
2 . Then, based on Equation (5), the expected approximation ratio

of Batch-List satisfies:

E
[
TBatch-List(J )

TOpt(J )

]
> Q(f) · TBatch-List(J , f)

TOpt(J , f)
>
K − 1

8
.
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If we fix K > 8C + 1, we would get the results if Q(f) > 1
2 is true,

given any bounded probabilities for the jobs. Intuitively, if a job has a very
low failure probability, the probability that it completes successfully in the
required batch is also very low. To resolve this issue, we use the following
technique: replace each job Jj with a cluster Cj of nj jobs that are all
identical to Jj , i.e., each with an execution time tj and a failure probability
qj . We also scale up the number of processors accordingly so that each job
can still be executed on a dedicated processor. Then, by choosing nj wisely,
we can make sure that cluster Cj completes successfully in batch BK+j with
high probability, and thus, collectively, the failure scenario f happens with
high probability. In particular, we choose nj as follows:

nj =

⌊
2K+j−1 ln(1/qj)

q2K+j−1−1
j

⌋
.

Lemma 7. Under the above choice of nj and when K is large enough, the
probability that any cluster Cj, where 1 ≤ j ≤ K, takes exactly K+j batches
to complete satisfies:

Sj ≥ 1− 2Kρ2K − ρ2K−1
.

Proof. Based on Lemma 6, the probability that cluster Cj takes exactly K+j
batches to complete is given by:

Sj =
(

1− q2K+j−1
j

)nj − (1− q2K+j−1−1
j

)nj
. (13)

We now apply the following inequalities that hold for any x ∈ [0, 1] and
n ∈ N:

1− nx ≤ (1− x)n ≤ e−nx .

In particular, the first inequality comes from the Bernoulli’s Inequality, and
the second inequality can be derived from the well-known inequality (1 +
1/x)x < e for any x ≥ 1. Applying these two inequalities to Equation (13),
we get:

Sj ≥
(

1− q2K+j

j

)nj − (1− q2K+j−1−1
j

)nj
≥ 1− njq2K+j

j − e−njq
2K+j−1−1
j . (14)

We will now provide upper bounds for the second term Xj = njq
2K+j

j and

the third term Yj = e−njq
2K+j−1−1
j .
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To bound the second term, we note that ln(x) ≤ x for any x > 0 and

nj ≤ 2K+j−1 ln(1/qj)

q2
K+j−1−1
j

. The second term then satisfies:

Xj ≤
2K+j−1 ln(1/qj)

q2K+j−1−1
j

q2K+j

j

≤ 2K+j−1

q2K+j−1

j

q2K+j

j

= 2K+j−1q2K+j−1

j

≤ 2K+j−1ρ2K+j−1
.

Further, we can easily check that xρx is a decreasing function of x when
x ln(ρ) < −1. Thus, when K is large enough, and since j ≥ 1, we have

2K+j−1ρ2K+j−1 ≤ 2Kρ2K . Therefore, we can get the following upper bound
for the second term:

Xj ≤ 2Kρ2K . (15)

To bound the third term, we note that nj ≥ 2K+j−1 ln(1/qj)

2·q2K+j−1−1
j

, so we can

get:

Yj ≤ e
−

2K+j−1 ln(1/qj)

2·q2
K+j−1−1
j

q2
K+j−1−1
j

= e−2K+j−2 ln(1/qj)

= q2K+j−2

j

≤ ρ2K+j−2

≤ ρ2K−1
. (16)

The lemma is then proved by substituting Inequalities (15) and (16) into
Inequality (14).

Based on the result of Lemma 7, the probability of the desired failure
scenario f can be computed as:

Q(f) =

K∏
j=1

Sj

≥
(

1− 2Kρ2K − ρ2K−1
)K

≥ 1−K2Kρ2K −Kρ2K−1
.

The last inequality is again due to the Bernoulli’s Inequality.
For any constant ρ < 1, two terms above, namely, K2Kρ2K and Kρ2K−1

both tend to 0 as K → ∞. Therefore, there must exist a K∗ such that
Q(f) ≥ 1

2 . Setting K = max(K∗, 8C + 1) proves the theorem.
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Appendix D. Experimental results with all speedup
models

D.1. Comparison of Algorithms and Priority Rules (All Speedup
Models)

We first compare the performance of different algorithms and study the
impact of priority rules on their performance.

Figure 5 shows the normalized makespans for the 11 combinations of
algorithms and priority rules under all speedup models. For the MinArea
algorithm, priority rules LA and LPT are identical, as the algorithm allo-
cates one processor to all jobs, so only the results of LPT are reported. As
we can see, MinArea fares poorly in most cases, because it allocates one
processor to each job in order to minimize the area. This results in very
long job execution (and re-execution) times, which leads to extremely large
makespan. Moreover, allocating only one processor per job also results in
idle processors thus resource inefficiency whenever the number of processors
is higher than the number of jobs. The MinTime algorithm performs well
for the roofline and mix models, but as more overhead is introduced in the
communication, Amdahl and power models, it continues to allocate a large
number of processors to the jobs in order to minimize the execution time.
This leads to a significant increase in the total area and hence degrades the
performance. On the other hand, the Lpa and Batch algorithms maintain
a good balance between the execution time and area of a job, thus they
perform well for all speedup models in terms of both expected performance
(bars) and worst-case performance (top endpoints of lines). Independently
of the priority rules, Lpa performs the best for the roofline and communi-
cation models while Batch performs the best for the other models.

Figure 6 further shows the results of four combinations of P and n with
similar performance trends. We notice that these two parameters do have
an impact on the performance of Batch under the communication, Amdahl
and mix models, in particular at P =1000 and n=500. Indeed, under these
models and when P is significantly larger than n, Batch tends to reduce
all jobs to similar length and execute them at the same time, which gives
the best tradeoff between the area and maximum execution time. In that
case, the first batch, where all jobs are executed exactly once, is done almost
perfectly. As the makespan of the first batch is dominant under λ= 10−7,
the overall makespan is closer to the lower bound. However, with P =1000
and n=500, there are not enough processors to execute all jobs at the same
time. Thus, the performance of Batch becomes worse than that of Lpa.

We also notice that the performance of MinTime under the two mix
models becomes better when the number of processors is large compared to
the number of jobs (e.g., P = 10000, n = 100). Indeed, MinTime is able to
simultaneously minimize the execution time of all jobs in this case without
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using up all the processors, thus achieving near-optimal performance. Note
this is not possible with fewer processors, as minimizing the execution time
alone for each job will increase the total area, which also plays an important
role under such circumstance to have overall good performance.

Comparing the three priority rules, no significant difference is observed.
In general, LPT and LA give similar results, and slightly better results than
HPA. This is consistent with the results observed in [4] for scheduling rigid
jobs. Given these results, we will only consider the LPT priority rule in
the subsequent evaluation. We will also omit the MinArea and MinTime
algorithms for the models under which they perform badly, while focusing
on comparing the expected performance of the remaining algorithms.

D.2. Impact of Different Parameters (All Speedup Models)

We now study the impact of different parameters on the performance of the
algorithms. We start from P =7500, n=500, and λ=10−7, and vary one of
these parameters in each experiment.

Impact of Number of Processors (P ): Figure 7 shows the performance
when the number of processors P is varied between 1000 and 15000 for
different speedup models. For the roofline model, all three algorithms return
the same processor allocation, i.e., the maximum degree of parallelism or
the maximum number of processors, for each job. Further, both Lpa and
MinTime use the List strategy for scheduling, so the two algorithms have
exactly the same performance. In contrast, Batch does not perform as well,
because it schedules the jobs in batches, and thus needs to wait for every job
in a batch to finish before starting the next one, which causes delays. The
initial up-and-down of the normalized makespans is due to the upper limit
(i.e., 4000) we set on the maximum degree of parallelism: when P � 4000,
few processors are wasted so the resulting schedules are very efficient; when
P � 4000, most jobs are fully parallelized and thus completed faster. For
Batch, however, the proportion of idle processors at the end of a batch
increases with P , which explains the widening of performance gap from the
other two algorithms.

For the communication model, parallelizing a job becomes less efficient
due to the extra communication overhead, so Batch starts to perform better
than MinTime thanks to its smarter processor allocation strategy. Here,
both Batch and Lpa have similar processor allocations, so the performance
difference between the two algorithms is still induced by the idle times at the
end of the batches, which are again increasing with the number of processors.

For the Amdahl’s model, the results look very different, as Batch now
outperforms Lpa despite the idle time at the end of each batch. This is due
to Batch’s ability to better balance the job execution times globally, which
becomes more important in this case. Moreover, the trend is not affected
by the number of processors.
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Figure 5: Performance of different algorithms and priority rules under six
speedup models with P = 7500, n= 500 and λ= 10−7. The bars represent
expected performance and the top endpoints of the lines represent worst-case
performance.
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Figure 6: Performance of different algorithms and priority rules under six
speedup models with λ= 10−7 and four other different combinations of P
and n. The bars represent expected performance and the top endpoints of
the lines represent worst-case performance.
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For the two mix models, Lpa and Batch behave similarly as in the
Amdahl’s model, because they tend to allocate a relatively small number
of processors for each job, thus the maximum degree of parallelism is not
reached and the communication cost is relatively small. We also notice that
the performance of MinTime is getting better with increasing number of
processors, especially under higher communication cost. Indeed, contrary
to the Amdahl’s model (where the execution time of a job is minimized
when we allocate all the processors), the minimum execution time of a job
is achieved with a reasonable number of processors because of the commu-
nication overhead. Thus, when P is high enough such that all jobs can
be processed in parallel while minimizing their execution times, MinTime’s
allocation becomes close to optimal.

Unlike the previous models, the power model has a relatively slow-
increasing speedup curve, thus allocating one processor to each job as in
MinArea is not a bad choice. For the same reason, MinTime that allo-
cates all the processors to a job performs badly, so it is not showed here. The
relative performance of Lpa and Batch is similar to that in the Amdahl’s
and mix models, again due to Batch’s coordinated processor allocation
strategy. Because of the jobs’ slow speedup curves, the benefit of allocat-
ing more processors also gets smaller, thus having more processors barely
impacts the performance of the algorithms.

Impact of Number of Jobs (n): Figure 8 shows the performance when
the number of jobs n is varied between 100 and 1000. Again, we can see that
Batch performs the worst in the roofline model, gets better than MinTime
in the communication model, and has the best performance in the other
models. While the varying number of jobs has a small impact on the per-
formance of Lpa, the performance of Batch improves as the number of
jobs increases in the roofline and communication models. Indeed, with a
constant number of processors P , having more jobs decreases the number
of available processors per job, thus reduces the performance gap between
scheduling algorithms due to the idle processors between batches. For the
other models, the number of jobs has a small impact even for Batch. Over-
all, as the number of jobs increases, the trend in the relative performance of
the algorithms is consistent with the previous results we have observed in
Figure 7 when the number of processors decreases.

Impact of Error Rate (λ): Figure 9 shows the impact of the error rate
λ when it is varied between 10−8 (corresponding to 0.03 error per job on
average) and 10−6 (corresponding to 12 errors per job on average). Once
again, the relative performance of the three algorithms remains the same
as before under the respective speedup models. While the performance of
Lpa is barely affected, which is not surprising considering that its proces-
sor allocation is performed locally and separately from job scheduling, the
performance of Batch gets worse with increasing error rate λ (and hence
the number of failures), which corroborates the theoretical analysis (Theo-
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Figure 7: Performance of the algorithms for different speedup models with
n=500, λ=10−7 and P ∈ [1000, 15000].

rem 8). In particular, when the error rate is small, there are very few failures
and almost all jobs will complete in one batch. In this case, the processor
allocation procedure of Batch (Lemma 3) is very precise. With increased
error rate, more failures will occur and thus more batches will be introduced,
causing scheduling inefficiencies from both idle times between the batches
and possible imprecision in the processor allocations (especially with a large
batch, since the actual number of failures may deviate significantly from
the anticipated values). Finally, although the processor allocation is also
performed locally for MinTime and MinArea, the effect of increasing λ
is similar to that of increasing P (or the opposite to that of increasing n):
when there are more failures, we spend more time processing few large jobs
that fail a lot, meaning that after some time only very few jobs are not fin-
ished yet. This effectively increases the total number of processors for these
jobs or reduces the total number of jobs.
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Figure 8: Performance of the algorithms for different speedup models with
P =7500, λ=10−7 and n ∈ [100, 1000].
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Figure 9: Performance of the algorithms for different speedup models with
P =7500, n=500 and λ∈ [10−8, 10−6].
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