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Abstract

Pipelined workflows are a popular programming paradigm for parallel applications. In
these workflows, the computation is divided into several stages and these stages are con-
nected to each other through first-in first-out channels. In order to execute these workflows
on a parallel machine, we must first determine the mapping of the stages onto the various
processors on the machine. After finding the mapping, we must compute the schedule —
the order in which the various stages execute on their assigned processors.

In this paper, we explore the scheduling problem for linear workflows, assuming that the
mapping is given. Linear workflows are a special case of workflows for which the dependen-
cies between stages can be represented by a linear graph. The objective of the scheduling
algorithm is either to maximize throughput or to minimize latency or both. We consider two
realistic execution models: the one-port model and the multi-port model. In both models,
finding a schedule to minimize latency is easy. However, computing the schedule to mini-
mize period (maximize throughput) is NP-hard in the one-port model, but can be done in
polynomial time in the multi-port model. We also present an approximation algorithm to
minimize period in the one-port model. Finally, the bi-criteria problem, which consists in
finding a schedule respecting a given period and a given latency, is NP-hard in both models.

Key words: pipeline graphs, workflow, scheduling, mapping, period, latency, bi-criteria,
complexity results
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1 Introduction

Pipelined workflows are a popular paradigm for streaming applications like video and audio
encoding and decoding, DSP applications, etc. [6, 14]. Streaming applications are becoming
increasingly prevalent, and many languages [5, 8, 10, 11, 15] are being continually designed
to support these applications. In these languages, the program is represented by a workflow
graph, which consists in several stages connected to each other using first-in-first-out channels.
In order to execute these workflows on a parallel machine, we must first determine the mapping
of these stages on the various processors of the machine. After finding the mapping, we must
compute the schedule, that is, the order in which the various stages execute on their assigned
processors. Since data continually flows through these applications, the goal is often to decrease
period and/or latency.

Like Subhlok and Vondran [12, 13], we explore the problem of linear workflows. Linear
workflows are a special case of workflows where stages and communications can be represented
by a linear graph. Subhlok and Vondran studied the problem of mapping linear graphs on
homogeneous platforms, and their work has been extended for heterogeneous platforms in [1, 3].

Since finding the optimal mapping is often NP-hard [1], we explore the problem of schedul-
ing linear workflows, given the mapping. As in [1], we consider two realistic models. The first
model is the one-port model without overlap where each processor can either compute or receive
an incoming communication or send an outgoing communication at any time-step. This model
does a good job of representing single-threaded systems. The second model we consider is the
bounded-multiport model with overlap, which allows multiple incoming and outgoing communi-
cations simultaneously, and allows the processor to perform computation and communication
at the same time. To the best of our knowledge, the problem of computing an optimal schedule
for a given mapping has not been explored for linear workflows.

After giving some details about the framework (Section 2), we recall some related work
(Section 3). Section 4 is devoted to the one-port model without overlap, and shows that finding
a schedule with optimal latency has polynomial complexity, whereas finding a schedule with
optimal period is NP-hard. The section also presents a 4-approximation algorithm for mini-
mizing the period. Section 5 is devoted to the multi-port model with overlap, and shows that
both finding a schedule with optimal latency and finding a schedule with optimal period can be
done in polynomial time. However, finding a schedule which respects both a given period and
a given latency is NP-hard.

2 Framework

This section is devoted to a precise statement of the different models and optimization prob-
lems. First, we explain the representation of programs by linear graphs. We then explain the
parallel architecture of the machines and give two main models of computation, both realistic
for different machines. Finally, we introduce important optimization problems.

2.1 Representation of a program by a linear graph

A workflow graph contains several stages, connected to each other by first-in-first-out (FIFO for
short) channels. A lot of work has been done in the very general case, and many problems have
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been shown to be NP-hard [2, 14, 16, 17]. Because of this, we only consider simple workflow
applications whose graphs are linear chains. Such an application is represented in Figure 1.
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Figure 1: Representation of an application workflow by a linear graph. Stage Sk has a compu-
tation of size wk, an incoming communication of size δk−1 and an outgoing communication of
size δk.

We assume that our pipeline graph consists of n stages Sk with k ∈ J1, nK. A stage Sk receives
an incoming communication of size δk−1 from the previous stage, performs wk computations
and send a data item of size δk to the next stage. If computations and communications are
done in parallel, the input for data set i+ 1 can be received while computing for data set i and
sending result for data set i − 1. Else, these tasks have to be done serially. We will deal with
both models, with and without communication/computation overlap.

2.2 Platform

We assume that the platform consists of p processors Pu with u ∈ J1, pK, which are fully in-
terconnected as a virtual clique. There is a bidirectional link linku,v : Pu ↔ Pv between each
processor pair (Pu, Pv)1, and the corresponding bandwidth is bu,v. It takes X/bu,v time-units
to send a message of size X from Pu to Pv. The speed of processor Pu is denoted by su and
it takes X/su times-units to execute X floating point operations on Pu. Such a platform, with
4 processors, is shown in Figure 2. The bounded capacity of each processor’s network card is
represented as follows: Bi

u (resp. Bo
u) represents the capacity of the input (resp. output) network

card of processor Pu. Pu cannot receive more than 1/Bi
u data items per time-unit, and cannot

send more than 1/Bo
u data items per time-unit.

P4���� P3����
P1���� P2����s2

b1,4 �
��

@
@@

�
��

@
@@

Figure 2: A platform with 4 processors. Processor P2 has a speed s2 and the bandwidth of the
bidirectional link between P1 and P4 is b1,4.

A platform is said to be:

• fully homogeneous if all processors are identical, that is, they compute at the same speed s,
and all communication devices are identical, that is, the bandwidth is the same (say b)
between any pair of processor and all network cards have the same capacities (say Bi

and Bo).
1We suppose that Pu 6= Pv.
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• communication homogeneous if communication devices are identical, that is, the band-
width is the same (say b) between any pair of processor and all network cards have the
same capacities (say Bi and Bo). However, in these platforms, processor speeds may differ
(su 6= sv).

• fully heterogeneous if there is a priori no relation between processors and between com-
munications devices. This is the most general case, where two processors Pu and Pv may
have different speeds (su 6= sv), where two different links linku,v and linku′,v′ may have
different bandwidths (bu,v 6= bu′,v′), and where two network cards may have different lim-
itations (Bi

u 6= Bi
v and/or Bo

u 6= Bo
v).

Finally, we assume that two processors Pin and Pout are devoted to input/output data.

These platform models are all realistic. In general, multi-core processors can be represented
by fully homogeneous platforms, whereas department clusters and large-scale grids are respec-
tively communication homogeneous and fully heterogeneous platforms.

2.3 Model of computation

We now provide a precise description of the model of execution, since the results depend greatly
on this model. There are basically two degrees of freedom in the model of execution:

• Can a processor send (resp. receive) some data to (resp. from) some different processors
at the same time? The model is said to be multi-port if the answer is “yes”, and one-port
otherwise.

• Can communication and computation overlap, i.e. can a processor compute for a data set
and send (resp. receive) communication for another data set at the same time?

This leads to four theoretical models. In fact, some of them are not realistic, and in this
paper, we only consider one-port without overlap and multi-port with overlap, both of them
without preemption: we cannot stop and restart later a communication or a computation:

• One-port model without overlap: This model does a good job for representing single-
threaded systems. The complexity of finding the optimal mapping for this model has
already been studied in [1, 3].

• Multi-port model with overlap This model is representative of current multi-threaded sys-
tems. Once again, the complexity of finding the optimal mapping for the model has
already been studied in [1].

It is important to point out that in the multi-port model with overlap, we require that
communications use a constant bandwidth: having a variable bandwidth is reasonable
when we allow preemption, which is not the case here. This means that when a commu-
nication of size δi begins between two different processors Pu and Pv, it uses a constant
bandwidth bi 6 bu,v for a time t = δi/bi. Such communications are represented in Figure 3.

2.4 Mapping

To execute the workflow linear graph, we have to assign application stages Sk to platform
processors Pu. This assignment is called a mapping and the following section is devoted to a
precise statement of this function.
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Figure 3: Representation of bandwidths used by two communications in the multi-port
model.

2.4.1 Mapping representation

We define a function a:
a : J1, nK −→ J1, pK (1)

This function is called mapping and makes the link between stages and processors. Typically,
a(k) = u means that the computation of a stage Sk is executed by processor Pu = Pa(k). We
extend the domain of definition of a to {0, . . . , n+ 1} by a(0) = in and a(n + 1) = out. This
means Pa(0) = Pin and Pa(n+1) = Pout, with Pin the input processor, and Pout the output pro-
cessor, and it is used in many equations in this paper.

To represent a linear graph and a mapping on the same figure, we add over each stage Sk
the corresponding processor Pa(k). An example of this representation is given in Figure 4, where
stages S1 and S3 are mapped on P2 whereas stage S2 is mapped on P3 and stage S4 on P1.
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Figure 4: Representation of a linear graph and a mapping.

2.4.2 Cycle-time

Given a linear graph G and a mapping a, we define the working time of a processor Pu for
the computation of each data set in steady-state mode (after the initialization phase). This
quantity is called the cycle-time of processor Pu and is represented by CTu(a,G). When there
is no confusion possible, we may omit a and G and refer to the cycle-time of Pu as CTu. The
formal definition of the cycle-time differs if we are in the one-port model or in the multi-port
model, because communications and computations can be done in parallel in one model and
not in the other one.

Formally, in the one-port model, the cycle-time of processor Pu is the sum of computation
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times, input communication times and output communication times:

CTu(a,G) =
n∑
j=1

wj1a(j)=u

su
+

n∑
j=1

δj−11a(j)=u1a(j−1)6=u

min
{
ba(j−1),u, Bi

u

} +
n∑
j=1

δj1a(j)=u1a(j+1)6=u

min
{
bu,a(j+1), Bo

u

} (2)

and in the multi-port model, the cycle-time of processor Pu is the minimum time that a processor
needs to accomplish all tasks for one kind of limitation (network card limitations, processor
maximal speed, bandwidths limitations):

CTu(a,G) = max



1
su

∑
a(i)=u

wi

max
k∈{1,...,p}∪{in,out},k 6=u

{
1
bk,u

∑
a(i)=k,a(i+1)=u

δi

}

max
k∈{1,...,p}∪{in,out},k 6=u

{
1
bu,k

∑
a(i)=u,a(i+1)=k

δi

}
1
Bo
u

∑
a(i)=u, a(i+1)6=u

δi

1
Bi
u

∑
a(i−1)6=u, a(i)=u

δi−1

(3)

In both models, we call the cycle-time CT (a,G) of a linear graph and a mapping the
maximum processor cycle-time:

CT (a,G) = max {CT1(a,G), . . . , CTp(a,G)} (4)

Once again, we may omit a and G when it is clear from context.

2.5 Schedule

We assume that the input data arrives periodically, every K time-units. In addition, we focus
on periodic executions, where computations and communications are also of period K. For a
given mapping, there exist different ways to execute the application on the platform. For exam-
ple, suppose that the linear graph and the mapping are represented by Figure 5. The platform

-
δ0 = 0
��
��
P1

S1

w1 = 2

-
δ1 = 1
��
��
P2

S2

w2 = 3

-
δ2 = 0

Figure 5: A simple linear graph.

is homogeneous and consists of two processors P1 and P2. The common computation speed is
s = 1 and the limitations for communications are b = Bi = Bo = 1.

On Figure 6 are represented two different schedules of period K = 4, in the one-port model,
when communications and computations occur at full speed. For each schedule, the computa-
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P1
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time 0 2 3 6

. . .

. . .

P1

P2

time 0 2 3 4 7

. . .

. . .

Figure 6: Two different schedules of same period K = 4 for a given linear graph, a given platform
and a given mapping. For each schedule, the computation of one data set is represented in bold.

tion of one data set is drawn in bold. Computations of other data sets are also represented to
show that the schedule has a period of 4. Notice that it takes 7 time-units to run the linear
graph (i.e. to execute a data set entirely) in the first schedule and only 6 is the second one.

In both models, a schedule is given by the computation of one data set and by the period K,
which permits to deduce the computations of all data-sets from the computation of one of them:

• One-port model: In the one-port model, a processor cannot send/receive data to/from
two processors simultaneously. Because of this, it makes no sense to consider that a
communication uses only a part of the bandwidth: the non-used bandwidth cannot be use
for any other communication ! Therefore, we assume that, in the one-port model, every
communication occurs using the maximal bandwidth which respects link bandwidths and
network cards limitations. Formally, a communication from Pu to Pv uses a bandwidth b
which follows

b = min
{
bu,v, B

i
v, B

o
u

}
(5)

Similarly, we assume that a computation on Pu is done at maximal speed s = su.

• Multi-port model: In the multi-port model, it makes sense to have a communication which
uses only a fraction of the available bandwidth, because different communications can
occur at the same time. On the contrary, we assume that two computations cannot
occur simultaneously on a processor Pu. As in the one-port model, we assume that a
computation on processor Pu always occurs at full speed su.

2.5.1 Period K and cycle-time CT (a,G).

It is easy to see that, for both models, the period K of any schedule has to be larger than the
cycle-time CT (a,G), which means that, for a given linear graph G, a given platform and a given
mapping a, the period K of any schedule satisfies

CT (a,G) 6 K (6)

This inequality states that the period has to be larger than the maximal amount of time nec-
essary for any processor to execute computations and communications for one data set. Since
an important part of this paper concerns period minimization, this observation is important:
it gives a lower bound of the period K that is easy to compute. In proofs, theorems and ex-
periments, we often compare the period K (and the optimal period Kmin) to the cycle-time
CT .
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2.6 Goal: minimize period and/or latency

There are basically three important objectives in parallel executions:

• to minimize the period K (inverse of throughput) i.e. finding Kmin

• to minimize the latency L (response time) i.e. finding Lmin

• to enforce a given period and a given latency (bi-criteria)

We point out that these two optimization criteria are anagonistic to each other.

In this paper, we always consider that the linear graph and platform are given. In the related
work section (Section 3), we recall that the problems of finding a mapping that minimizes period,
latency or by-criteria are often NP-hard. Therefore, for this paper, we assume that the mapping
is given, and we address the complexity of finding a schedule that minimizes period or latency.
More exactly, we show in Sections 4 and 5 that:

• finding the optimal latency Lmin is easy in both computation models.

• finding the optimal period Kmin is NP-hard in the one-port model without overlap, but
has polynomial complexity in the multi-port model with overlap.

• respecting a given period K and a given latency L is easily proved to be NP-hard in
the one-port model without overlap2 and is also NP-hard in the multi-port model with
overlap: this second result is interesting and surprising because period minimization and
latency minimization are both polynomial for this model.

2.7 Example

To explain the previous notations, we explore a basic example, represented on Figure 7. We
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4
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1

Figure 7: A simple example of linear graph.

assume that the platform is fully-homogeneous, and consists of two processors P1 and P2 of
speed s = 1. Network card capacities are Bi = Bo = 1, and links have same bandwidth b = 1.
The goal is to minimize the period.

Stages S1 and S3 are mapped on P1 whereas stages S2 and S4 are mapped on P2. Such a
mapping balances computations. The computation of a single data set on this graph can be
represented by the schedule in Figure 8 and the next array. This computation fits both the
one-port model and the multi-port one.

2since finding the optimal period is already NP-hard.
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in→ P1 1
P1 2 3 13 14 15
P1 → P2 4 5 6 7 16
P2 8 17 18 19 20
P2 → P1 9 10 11 12
P2 → out 21

P1

P2

time 0 1 3 7 8 12 15 16 20 21

Figure 8: Computation of a single data set on the graph represented in Figure 7. Communi-
cations between P1 and P2 are represented in bold whereas computations on P1 or on P2 and
input and output communications are not.

We now assume that we are in the multi-port model with overlap (computations/communications
can overlap and a processor can have simultaneously different incoming/outgoing communica-
tions).

Obviously, choosing a period of 21 for the schedule represented in Figure 8 respects all con-
straints, because 21 is also the latency of this schedule. We can now try to find a better period
for this schedule, or search for other schedules with smaller periods.

By definition of the cycle-time (see Equation 3), we have for processor P1:

CT1 = max
{
w1 + w3

s
,
δ0 + δ2
b

,
δ1 + δ3
b

,
δ1 + δ3
Bo

,
δ0 + δ2
Bi

}
= 5

and similarly, the cycle-time of processor P2 follows

CT2 = max
{
w2 + w4

s
,
δ1 + δ3
b

,
δ2 + δ4
b

,
δ2 + δ4
Bo

,
δ1 + δ3
Bi

}
= 5

The cycle-time of the linear graph and the mapping CT follows

CT = max {CT1, CT2} = 5

The period of any schedule for this linear graph and this mapping is bigger than the cycle-
time (see equation 6), which means that, for any schedule of period K,

K > 5

and the optimal period Kmin for this linear graph and this mapping follows

Kmin > 5
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The schedule given by Figure 8 cannot be executed with a period of 5. For example, incoming
communications on P1, represented in bold Figure 9, cannot be executed every 5 time units:
the communication from P2 to P1 for data set i (upper schedule) would occur at the same time
than the input communication for data set i− 2 (lower schedule), and reach the network card
limitation Bi = 1 in the interval of time [10, 11].

P1

P2

time 0 1 3 7 8 12 15 16 20 21

P1

P2

time10 11 13 17 18 22 25 26 40 41

Figure 9: Computation of two data sets on the graph represented in Figure 7. The upper
schedule represents the computation of one data set i, whereas the lower one represents the
computation of the data set i− 2, when the period is supposed to be 5. In bold are represented
incoming communications of processor P1, and cannot be computed in parallel for different data
sets without reaching the network card limitation Bi. Because of the conflict in the interval of
time [10, 11], here is a counter example: such a schedule is not admissible.

For this graph and this mapping, it is possible to build a schedule with period 5. Such a
schedule is represented in Figure 10. Ones can verifies that with a period of 5, all processors
speeds, all bandwidths and all network card limitations are respected. This schedule has an
optimal period K = Kmin = 5, but a latency of 31 which is bigger than the optimal latency
Lmin = 21.

P1

P2

time 0 1 3 7 8 11 15 18 21 22 23 27 30 31

Figure 10: A schedule of optimal period K = Kmin = 5 for the graph and the mapping
represented in Figure 7. Computations on P1 and on P2 are represented in bold whereas
communications between P1 and P2 and input and output communications are not.

Finally, for this example, the optimal period Kmin is equal to the cycle-time CT . Later in
this paper, we prove this result holds true for any graph and any mapping in the multi-port
model (see Theorem 5.2).
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3 Related work

A lot of work has been done in the problem of scheduling workflows. This section is devoted
both to models used for representing workflows and/or platforms, and to complexity results,
especially those concerning the mapping.

3.1 Model for the application

Many languages [5, 8, 10, 11, 15] are being continually designed to support streaming appli-
cations. In these languages, a program is represented by a workflow graph, which consists
of stages. Two stages can be connected to each other and the link between these stages is a
bidirectional first-in-first-out channel. Moreover, there are specific links for the input and the
output.

Many papers focus on workflows represented by Directed Acyclic Graphs (DAGs
for short). Since data continually flows through streaming applications, the goal of a scheduler
is often to decrease the period and/or the latency [6, 14, 16, 17]. We saw in the previous sec-
tion that this is done by choosing both a mapping and a schedule. In the very general case
where the workflow graph is not constrained, most problems related to period and/or latency
minimization are NP-hard. Because of this, many simplifications have been considered for
this problem. Vydynathan et al. consider bi-criteria minimization problems on homogeneous
platforms. In [16], they explain that finding the optimal mapping is NP-hard and they give
a mapping and scheduling heuristic for applications workflows represented as DAGs. Their
algorithm minimizes the latency of workflows while satisfying strict throughput requirements.
In [17], they also describe a heuristic that optimizes throughput of streaming workflows while
meeting latency constraints. These papers provide many interesting ideas and several heuristics
to solve the general mapping problem. Similarly, Taura and Chien [14] and Beaumont et al. [2]
consider applications represented with DAGs. In both cases, the problem of finding an optimal
mapping that minimizes period on heterogeneous platforms is NP-hard, but heuristics are given.

A lot of work has been done with a stronger simplification, where workflows are repre-
sented using linear graphs. Subhlok and Vondran studied the problem of mapping linear
graphs on homogeneous platforms. In [12], they prove that minimizing period is polynomial
and has a time complexity O(P 4k2) when P is the number of processors and k the number of
tasks. In [13], they extend their results and show that finding the optimal latency respecting a
period has also a time complexity O(P 4k2). We point out that they assume that the number of
processors P is larger than the number of tasks k, which is a strong assumption that we do not
use in this paper. Without this assumption, minimizing period is easily proved to be NP-hard,
using a reduction to 2-PARTITION [7].

3.2 Model for the platform

The standard model for DAG scheduling heuristics does a poor job to model physical limits of
interconnection networks. The model assumes an unlimited number of simultaneous sends and
receives, i.e. a network card of infinite capacity, on each processor. A more realistic model is
the one-port model [4], where a processor can be involved in a single communication, either
a send or a receive. Obviously, independent communications between distinct processor pairs
can take place simultaneously. Some work has already been done, where workflows are linear
and under the one-port model [1, 3]: the problem of finding a mapping that minimizes period is
proved to be NP-hard for one-to-one mappings, interval-based mappings and general mappings.
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Because of this, the bi-criteria problem is also NP-hard on heterogeneous plaftorms.

An other realistic model we use in this paper is the bounded multiport model [9]. This
model allows multiple incoming and outgoing communications but the total communication
incoming (resp. outgoing) volume is bounded by the capacity of the network card. Once again,
some work has already been done, where workflows are linear and under the bounded multiport
model [1]. It is proved that finding the mapping that minimizes period is NP-hard on fully
homogeneous platforms3. Moreover, finding the mapping that minimizes latency is proved to
be NP-hard on communication homogeneous platforms and on fully heterogeneous platforms.

3This means that this problem is also NP-hard on communication homogeneous platforms and on fully het-
erogeneous platforms.
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4 Finding the optimal schedule for a given mapping in the one-
port model

In this part, we explore the problem of period and/or latency minimization in the one-port model
without overlap. We first deal with latency minimization, then comes period minimization and
finally the bi-criteria problem.

4.1 Latency

Theorem 4.1. Given a linear workflow and a mapping, the problem of computing the sched-
ule that leads to the optimal latency has polynomial complexity in the one-port model without
overlap.

Proof. For minimizing latency, we can consider schedules with periods long enough to separate
the computation of different data sets in the linear workflow. This way, the optimal order is
obvious: we execute all the computations and all the communications as soon as possible. The
corresponding latency is the sum of all computation and communication times.

4.2 Period

4.2.1 Finding the optimal period is NP-hard

Theorem 4.2. Given a linear workflow and a mapping, the problem of computing the schedule
that leads to the optimal period is NP-hard in the one-port model without overlap.

Proof. We consider the corresponding decision problem and show that it is NP-complete: given
a linear graph, a mapping, and a bound B, does there exist a schedule such that the period
does not exceed B? This problem is obviously in NP: given a linear graph, a mapping, and
a schedule, we can easily compute the period K and check whether it does not exceed B. To
establish the completeness, we use a reduction from 2-PARTITION [7], which is NP-complete
in the weak sense. We consider an instance I1 of this problem: given a list of integers (ai)16i6n

such that
∑n

i=1 ai = B, does there exist γ ∈ {1, . . . , n} such that∑
i∈γ

ai =
∑
i/∈γ

ai = B/2 (7)

We associate to I1 an instance I2 with 2n+ 2 processors, given by the linear graph and the
mapping represented on Figure 11. The size of I2 is obviously linear in the size of I1. We now
show that I1 has a solution if and only if I2 has one, i.e. if and only if there exists a schedule of
period smaller than B for the graph and the mapping given by Figure 11. The corresponding
execution graph is given by Figure 12.

Intuitively, we note that processor P0 has many successors and P2n+1 many predecessors
(see Figure 12). We need the ordering of the associated communications to compute the optimal
period for this execution graph. Because we deal with the period, we suppose that two different
processors can run in parallel, which is true if they deal with different data sets.

Suppose first that I1 has a solution γ. We compute the following operation list for I2: P0

first communicates with P1, P3, . . . , P2n−1. All of this is done at the beginning of a period, for
different data sets, because these communications are free. Then, P0 makes his computation
which lasts B time units. The schedule of P0 is represented in Figure 13a.
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Figure 11: A linear graph and a mapping to prove that minimizing period in the one-port model
is NP-hard.
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Figure 12: The execution graph corresponding to the linear graph and the mapping given in
Figure 11.
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Then, we do the computations of processors (P2i−1)i∈γ in the interval of time [0, B/2] and
the communications between (P2i−1, P2i)i∈γ in the interval of time [B/2, B] (see Figure 13b). On
the contrary, we do the communications between (P2i−1, P2i)i/∈γ in the interval of time [0, B/2]
and then the computations of processors (P2i−1)i/∈γ in the interval of time [B/2, B](see Fig-
ure 13c). We also do the communications between (P2i, P2n+1)i∈γ one per one in an unspecified
order in the interval of time [0, B/2] : this is possible because

∑
i∈γ ai = B/2 by hypothesis

(see Figure 13d). Similarly, we do the communications between (P2i, P2n+1)i/∈γ one per one in
an unspecified order in the interval of time [B/2, B] (see Figure 13e).

We obtain a schedule of period B, which ends the first part of the proof. Ones can no-
tice that this construction is possible because we have

∑
i∈γ ai =

∑
i/∈γ ai = B/2, so we can

“2-PARTITION” communications with P2n+1 and avoid to have a communication which starts
before B/2 and ends after B/2 (see Figure 13f).

We now prove that any schedule of period K 6 B “looks like” the previous schedule and
“2-PARTITION” communications with P2n+1. Let us suppose that I2 has a solution. There is
a schedule of period K 6 B. Since there is a computation of size B on P0, we know that K > B
and finally K = B. Processor P0 computes for a data set k0 between t0 and t0 +B. There is no
idle time for P0, so for all 1 6 i 6 n, there is a data set such that the communication between
P0 and P2i−1 is done at t = t0. For all 1 6 i 6 n, there is no idle time for processor P2i−1, so we
have either a computation on P2i−1 for t ∈ [t0, t0 + B/2] and a communication between P2i−1

and P2i for t ∈ [t0 +B/2, t0 +B], either a communication between P2i−1 and P2i followed by a
computation on P2i−1. We define γ as follows:

γ = {1 6 i 6 n, there is a computation on P2i−1 for t ∈ [t0, t0 +B/2]} (8)

Let j be in γ. By hypothesis, there is a computation on P2j−1 for t ∈ [t0, t0 +B/2]. There is no
idle time for P2j−1, so there is a communication between P2j−1 and P2j for t ∈ [t0 +B/2, t0 +B].
A communication between P2j and P2n+1 occurs in the interval of time t ∈ [t0, t0+B/2]. Because
we cannot parallelize incoming communications of P2n+1, communications between P2i−1, (i ∈ γ)
and P2n+1 are done during independent intervals of time included in [t0, t0 +B/2], so we have:∑

i∈γ
ai 6 B/2 (9)

The same way, we can show that communications between P2i−1, i /∈ γ and P2n+1 are done
during independent intervals of time included in [t0 +B/2, t0 +B], so we have∑

i/∈γ

ai 6 B/2 (10)

By hypothesis, we have
∑

i∈γ ai +
∑

i/∈γ ai =
∑

16i6n ai = B, so
∑

i∈γ ai =
∑

i/∈γ ai = B/2.
This ends the proof.

4.2.2 The greedy algorithm

The goal is to find a schedule with a small period in polynomial time in the one-port model
without overlap when the mapping is given. By Theorem 4.2, we saw that finding the optimal
period is NP-hard, therefore we now try to find some approximations.

A first algorithm is to put each task (communication or computation) in the schedule as
soon as possible. This algorithm is called Greedy Algorithm.

16



P0

...
P2i−1

P2i

...
P2n+1

time0 B
(a) Free communications and one
computation on P0

P0

...
P2i−1

P2i

...
P2n+1

time0 BB/2
(b) If i ∈ γ, there is a computation for
t ∈ [0, B/2] on P2i−1 and a communi-
cation for t ∈ [B/2, B] between P2i−1

and P2i.

P0

...
P2i−1

P2i

...
P2n+1

time0 BB/2
(c) If i /∈ γ, there is a communication
for t ∈ [0, B/2] between P2i−1 and P2i

and a computation for t ∈ [B/2, B] on
P2i−1.

P0

...
P2i−1

P2i

...
P2n+1

time0 BB/2

ai

(d) If i ∈ γ, the communication be-
tween P2i and P2n+1 occurs in the in-
terval of time [0, B/2].

P0

...
P2i−1

P2i

...
P2n+1

time0 BB/2

ai

(e) If i /∈ γ, the communication be-
tween P2i and P2n+1 occurs in the in-
terval of time [B/2, B].

P0

...

P2n+1

time0 BB/2

ai,i∈γ ai,i/∈γ

(f) This schedule uses the 2-
PARTITION of {a1, . . . , an}.

Figure 13: Creation of a schedule of period B.
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Algorithm 1 The Greedy Algorithm
for all tasks, communications and computations do

add the task as soon as possible in the schedule
end for

We detail this algorithm on a basic example:

Let us suppose that the linear graph and the mapping are given by Figure 14.
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S4

2

-
2

Figure 14: A linear graph and a mapping to explain the greedy algorithm.

We assume that the platform is fully-homogeneous and consists of p = 3 processors P1, P2

and P3 of speeds s = 1. Network card capacities are Bi = Bo = 1 and links between these
processors have bandwidths b = 1. The mapping is given: S1 and S4 are mapped on P1 whereas
S2 and S3 are respectively mapped on P2 and P3.

The list of tasks that the greedy algorithm has to add to the schedule consists of 5 commu-
nications and 4 computations. If we note com(Pi, Pj , s) a communication from Pi to Pj of size
s and cp(Pk, t) a computation of size t on processor Pk, the list of tasks in this example is:

{com(Pin, P1, 1), cp(P1, 1), com(P1, P2, 2), cp(P2, 3), com(P2, P3, 1), cp(P3, 4), com(P3, P1, 1),

cp(P1, 2), com(P1, Pout, 2)}

The algorithm firstly adds the communication com(Pin, P1, 1) to an empty schedule (see Fig-
ure 15). Then, it adds the computation cp(P1, 1), followed by the communication com(P1, P2, 2)

P1

P2

P3

time 0 1

Figure 15: Construction of a schedule using the greedy algorithm: addition of the input com-
munication on P1.

and by the computation cp(P2, 3) (see Figure 16). At this point, the algorithm has to add the
communication com(P2, P3, 1). In the schedule, processors P2 and P3 are not working at the

18



P1

P2

P3

time 0 1 2 4 7

Figure 16: Construction of a schedule using the greedy algorithm.

first step of time. The algorithm puts the communication between these two processors as soon
as possible, i.e. not at step of time 8 but at step of time 1 (see Figure 17). The final schedule is

P1

P2

P3

time 0 1 2 4 7

Figure 17: Construction of a schedule using the greedy algorithm.

represented in Figure 18. In this case, the algorithm returns a schedule with a period K of 10.

P1

P2

P3

time 0 1 2 4 5 6 7 8 10

Figure 18: Construction of a schedule using the greedy algorithm.

In fact, the optimal period Kmin is 9.

4.2.3 The communications first algorithm

All the constraints that we can find in the greedy algorithm come from the communications
between processors: in the case where there are only computations, each processor can just
compute its tasks in any order, and the period is the time needed to the busiest processor to
compute all its tasks. This leads us to compute the schedule with the greedy algorithm slightly
modified: we first use the greedy algorithm to add all the communications between processors
(except Pin and Pout) in the schedule, and then we use it to add the computations.
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Algorithm 2 The Communications First Algorithm
for all communications of the linear graph do

add the communication as soon as possible in the schedule
end for
for all computations of the linear graph do

add the computation as soon as possible in the schedule
end for

The schedule obtained by this algorithm running on the previous example (see Figure 14)
for the communications is given by Figure 19 and the schedule for all the tasks by Figure 20.

P1

P2

P3

time 0 2 3 4

Figure 19: Construction of a schedule using the Communications First algorithm. First step:
addition of communications.

On this example, the Communications First algorithm is strictly better than the Greedy one,

P1

P2

P3

time 0 2 3 4 5 6 7 9

Figure 20: Construction of a schedule using the Communications First algorithm. Second step:
addition of computations.

and computes a schedule of optimal period. In fact, some tests (detailed later in this paper)
show that this new algorithm seems to be slightly better than the greedy one.

4.2.4 The longest first algorithm

It is reasonable to try to add tasks in the schedule from the biggest to the smallest, because
if there is a gap in the schedule, a small task can be more easily placed than a big one. We
first explain why we can say that a task is bigger than an other one4, and then we give a new

4Typically, we can a priori not say than a task lasts longer than an other one if the mapping is not given
because we have to take into account that there are different bandwidths, and processors may not compute at
same speed.
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algorithm to compute a schedule.

In the one-port model without overlap, we now exactly how long each task (communication or
computation) will take. A computation of size ωk on a processor Pa(k) lasts ωk/sa(k) time units,
and a communication of size δk from Pa(k) to Pa(k+1)

5 lasts δk/min(la(k),a(k+1), B
o
a(k), B

i
a(k+1))

time units. This means that we always use the full processor speed for computations and the
maximum bandwidth for communications.

Because of this, it makes sense to say that we take tasks (communications and computations)
from the longest to the shortest. The new algorithm is simple: we add to a initially empty
schedule all the tasks, from the longest to the shortest, as soon as possible in the schedule.

Algorithm 3 The Longest First Greedy Algorithm
for all tasks, communications and computations, from the biggest one to the smallest one do

add the task as soon as possible in the schedule
end for

Since this algorithm is very similar to the Greedy algorithm (see algorithm 1), we do not
run it on an example.

4.2.5 Experimentations on random graphs

Given a size n, and four integers a, b, c, d such that a 6 b and c 6 d, we can construct a random
linear graph of size n by choosing the size of each communication δi, i ∈ J0, nK uniformly in
Ja, bK and the size of each computation wj , j ∈ J1, nK uniformly in Jc, dK. If we have a set
of processors {P1, P2, . . . , Pp}, we can construct a random mapping by assigning to each stage
Sk, k ∈ J1, nK a random processor uniformly chosen in {P1, P2, . . . , Pp}.

We give some average results, for random tests, when the platform is fully-homogeneous
and consists of p = 3 processors, with same speed s = 1 and same bandwidth b = 1. Card
limitations are Bo = Bi = 1. We took (a, b) = (c, d) = (0, 9).

Size of linear graph 10 20 30 40 50 60
Number of tests 1000 950 900 850 800 750
Greedy algorithm 52.152 93.5779 133.806 172.526 211.405 248.741
Communications first algorithm 50.891 92.0905 131.933 170.433 209.44 246.656
Longest first algorithm 50.714 91.4863 131.132 169.342 207.954 244.78
Cycle-time 50.077 90.5989 130.158 168.46 207.15 244

Size of linear graph 70 80 90 100
Number of tests 700 650 600 550
Greedy algorithm 287.9 323.028 365.89 399.435
Communications first algorithm 285.431 320.534 363.408 396.72
Longest first algorithm 283.353 318.306 361.185 394.22
Cycle-time 282.594 317.602 360.592 393.705

5Pa(k) 6= Pa(k+1).
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We also give some average results, for random tests, when the platform is fully-homogeneous
and consists of p = 10 processors, with same speed s = 1 and same bandwidth b = 1. Card
limitations are Bo = Bi = 1. We took (a, b) = (c, d) = (0, 99).

Size of linear graph 10 20 30 40 50 60
Number of tests 1000 1000 1000 1000 1000 500
Greedy algorithm 417.267 644.373 867.466 1070.49 1258.05 1458.95
Communications first algorithm 405.223 629.444 851.974 1052.56 1240.58 1441.31
Longest first algorithm 398.541 619.962 837.387 1035.38 1217.29 1419.07
Cycle-time 390.085 607.363 823.857 1020.2 1201.01 1401.95

Size of linear graph 70 80 90 100
Number of tests 500 500 500 500
Greedy algorithm 1641.56 1820.72 1994.31 2185.77
Communications first algorithm 1623.29 1804.42 1973.07 2171.72
Longest first algorithm 1595.65 1778.33 1944.45 2138.3
Cycle-time 1578.17 1758.57 1924.07 2119.7
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Some average results, for random tests, when the platform is fully-homogeneous and consists
of p = 10 processors, with same speed s = 1 and same bandwidth b = 1. Card limitations are
Bo = Bi = 1. We took (a, b) = (c, d) = (0, 999).

Size of linear graph 10 20 30 40 50 60
Number of tests 1000 950 900 850 800 750
Greedy algorithm 4233.96 6565.5 8716.86 10736.5 12564.2 14595.7
Communications first algorithm 4113.6 6424.85 8560.47 10563.4 12376.8 14424.6
Longest first algorithm 4013.19 6284.16 8403.8 10376.5 12173.4 14171.6
Cycle-time 3918.17 6155.42 8249.46 10204.8 11986.1 13991.8

Size of linear graph 70 80 90 100
Number of tests 700 650 600 550
Greedy algorithm 16564.3 18327 19988.7 21772
Communications first algorithm 16375.8 18183.4 19865.4 21604.4
Longest first algorithm 16136 17890.9 19552.7 21265.1
Cycle-time 15913.1 17684.5 19342.3 21022.7

23



-

6

graph size

period

0 20 40 60 80 100

1.104

2.104

r
r
r
r
r
r
r r
r
r

r
r
r
r
r
r
r
r r
r

r
r
r
r
r
r
r r
r r

r
r
r
r
r
r
r r
r r

Some average results, for random tests, when the platform is fully-homogeneous and consists
of p = 20 processors, with same speed s = 1 and same bandwidth b = 1. Card limitations are
Bo = Bi = 1. We took (a, b) = (c, d) = (0, 999).

Size of linear graph 10 20 30 40 50 60
Number of tests 1000 950 900 850 800 750
Greedy algorithm 3554.76 5217.48 6559.74 7953.39 9095.66 10325.8
Communications first algorithm 3426.55 5091.81 6425.09 7826.91 8960.36 10212.6
Longest first algorithm 3371.81 4997.29 6303.7 7668.32 8776.25 10011.7
Cycle-time 3290.37 4890.45 6183.69 7548.35 8638.13 9878.1

Size of linear graph 70 80 90 100
Number of tests 700 650 600 550
Greedy algorithm 11453.3 12580.3 13739.4 14719.2
Communications first algorithm 11335 12447 13615.2 14615.7
Longest first algorithm 11127.5 12208.3 13366.6 14376.3
Cycle-time 10976.5 12049.1 13220.5 14207.6
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Some average results, for random tests, when the platform is fully-homogeneous and consists
of p = 3 processors, with same speed s = 1 and same bandwidth b = 1. Card limitations are
Bo = Bi = 1. We took (a, b) = (0, 9) and (c, d) = (0, 0), which means that all computation’s
size are 0.

Size of linear graph 10 20 30 40 50 60
Number of tests 1000 950 900 850 800 750
Greedy algorithm 31.362 59.1084 88.44 117.696 147.143 176.107
Communications first algorithm 30.915 58.6811 88.1167 117.278 146.721 175.787
Longest first algorithm 30.811 58.8158 88.2578 117.362 146.84 175.921
Cycle-time 28.873 51.6253 74.0811 96.1412 117.353 138.156

Size of linear graph 70 80 90 100
Number of tests 700 650 600 550
Greedy algorithm 208.027 238.829 266.848 298.616
Communications first algorithm 207.816 238.658 266.713 298.533
Longest first algorithm 207.961 238.658 266.74 298.576
Cycle-time 162.231 182.638 202.987 225.824
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Some average results, for random tests, when the platform is fully-homogeneous and consists
of p = 10 processors, with same speed s = 1 and same bandwidth b = 1. Card limitations are
Bo = Bi = 1. We took (a, b) = (0, 99) and (c, d) = (0, 0), which means that all computation’s
size are 0.

Size of linear graph 10 20 30 40 50 60
Number of tests 1000 950 900 850 800 750
Greedy algorithm 280.28 442.379 594.581 732.531 874.959 1000.54
Communications first algorithm 278.35 439.327 590.979 731.294 871.236 998.765
Longest first algorithm 263.19 412.415 552 678.866 810.486 926.949
Cycle-time 253.028 393.693 530.894 655.529 782.05 898.947

Size of linear graph 70 80 90 100
Number of tests 700 650 600 550
Greedy algorithm 1135.43 1259.89 1380.43 1495.6
Communications first algorithm 1132.85 1255.84 1382.31 1491.55
Longest first algorithm 1053.61 1169.55 1285.32 1394.94
Cycle-time 1023.43 1139.5 1250.77 1361.12
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Some average results, for random tests, when the platform is fully-homogeneous and consists
of p = 20 processors, with same speed s = 1 and same bandwidth b = 1. Card limitations are
Bo = Bi = 1. We took (a, b) = (0, 999) and (c, d) = (0, 0), which means that all computation’s
size are 0.

Size of linear graph 10 20 30 40 50 60
Number of tests 1000 950 900 850 800 750
Greedy algorithm 2468.42 3630.3 4673.57 5584.81 6462.88 7265.42
Communications first algorithm 2440.9 3612.76 4661.92 5574.18 6430.19 7253.8
Longest first algorithm 2278.46 3364.7 4318.16 5147.7 5982.88 6700.21
Cycle-time 2196.36 3240.2 4186.05 4995.31 5816.46 6519.81

Size of linear graph 70 80 90 100
Number of tests 700 650 600 550
Greedy algorithm 8034.79 8841.3 9577.88 10388.3
Communications first algorithm 8038.57 8868.45 9540.42 10360.2
Longest first algorithm 7436.78 8226.86 8875.82 9617.78
Cycle-time 7268.89 8027.19 8665.19 9400.26
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In the next sections, we use some examples where tasks have exponential sizes. Because of
this, we test previous algorithms on random graphs where the number of small tasks is expo-
nentially bigger than the number of big tasks, and where big sizes are exponentially bigger than
small ones. To create such graphs, we use a gaussian law for choosing the size of the tasks.

A good way to generate a gaussian law is to use the Box-Muller method: if x1 and x2 are inde-
pendent and uniformly picked in ]0, 1[, y1 =

√
−2 ln(x1) sin(2πx2) and y2 =

√
−2 ln(x1) cos(2πx2)

follow a standard normal distribution N (0, 1), and z1 = m + sy1 and z2 = m + sy2 follow the
normal distribution N (m, s).

We don’t want negative sizes, so we construct y′1 =
√
−2 ln(x1) sin(πx2) and z′1 = m+ sy′1.

This law is exactly the law N (0, 1) conditioned to be positive, and is also the law |N (0, 1)|.

We have to choose the values m and s. In some future examples, the size of tasks increase
as their number decrease. Because of this, we can choose m = 0. Moreover, if X follows a
law N (0, s), we know that P (0 6 X 6 s|X 6 0) ≈ 0.68, P (0 6 X 6 2s|X 6 0) ≈ 0.95 and
P (0 6 X 6 3s|X 6 0) ≈ 0.997. If we choose 3s = 3000, we have in average about 5 tasks, for a
graph of size 100 whose sizes are between 2000 and 3000, which is quite similar to the next exam-
ples. As a consequence, we will use the law |N (0, 1000)| to generate random sizes on our graphs.

Some average results, for random tests, when the platform is fully-homogeneous and consists
of p = 3 processors, with same speed s = 1 and same bandwidth b = 1. Card limitations are
Bo = Bi = 1.
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Size of linear graph 10 20 30 40 50 60
Number of tests 1000 950 900 850 800 750
Greedy algorithm 9508.23 16886.6 24092.4 31151.8 38079.7 44565.9
Communications first algorithm 9198.17 16451.1 23583.1 30632.1 37493.8 44031.3
Longest first algorithm 9197.92 16410 23483.2 30495.7 37326.8 43792.5
Cycle-time 9016.71 16120.7 23108 30061.5 36814.7 43272.9

Size of linear graph 70 80 90 100
Number of tests 700 650 600 550
Greedy algorithm 51706.2 58239.3 65367.3 71981.3
Communications first algorithm 51099.6 57459.1 64771.1 71317.1
Longest first algorithm 50787.9 57130.6 64386.7 70918.1
Cycle-time 50233.9 56562.2 63759 70277.5

-
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Some average results, for random tests, when the platform is fully-homogeneous and consists
of p = 10 processors, with same speed s = 1 and same bandwidth b = 1. Card limitations are
Bo = Bi = 1.

Size of linear graph 10 20 30 40 50 60
Number of tests 1000 950 900 850 800 750
Greedy algorithm 6919.04 10771.3 14335 17789.5 20629.7 23527.1
Communications first algorithm 6680.3 10481.7 14006.9 17455 20313.3 23182.6
Longest first algorithm 6597.3 10305.3 13769.3 17162.4 20003.8 22841.7
Cycle-time 6432.42 10095.3 13542.7 16925.2 19728.3 22538.4
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Size of linear graph 70 80 90 100
Number of tests 700 650 600 550
Greedy algorithm 26691.9 29412.7 32525.5 35320.3
Communications first algorithm 26294.8 29029 32179.5 34919.2
Longest first algorithm 25885.6 28584.1 31692.1 34396.3
Cycle-time 25576.5 28267.5 31382.7 34067.2

-
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For these tests using random graphs, it seems that the Greedy algorithm, the Computations
First algorithm and the Longest First algorithm compute schedules with small periods. More
exactly, generally, the period computed by these algorithms is only slightly larger than the
cycle-time, which is a lower bound on the period. Because of this, it makes sense to investigate
whether these algorithms provide a k-approximation (for some constant k) for the period, and
whether there are links between the optimal period Kmin and the cycle-time CT .
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4.2.6 Greedy algorithm and the Communications First algorithm do not provide
a k-approximation (for any constant k) of the cycle-time

In spite of the first intuition given by previous experiments, we now show that the Greedy
algorithm and the Communications First algorithm do not always compute schedules of periods
similar to cycle-times.

Proposition 4.3. For any constant k, there exists a linear graph G and a mapping a such
that, if K1 (resp. K2) is the period of the schedule computed by the Greedy algorithm (resp. the
Communications First algorithm), we have:

K1 > k.CT (a,G)

K2 > k.CT (a,G)

where CT (a,G) is the cycle-time of the linear graph G and the mapping a.

Remark. Since the cycle-time time is only a lower bound of the optimal period, this do not
prove that the Greedy algorithm and the Communications First algorithm are not some k-
approximation for the period.

Proof. To prove the previous theorem, we provide a construction of some counter examples.

We assume that the platform is fully-homogeneous and consists of p = n processors P1, P2, . . . , Pn
of same speeds s = 1. Network cards capacities are Bi = Bo = 1 and links between processors
have same bandwidths b = 1.

Our counter examples only contain communications between processors (computations are
of size 0 and we will omit them). This way, these counter examples fit either the Greedy algo-
rithm than the Communications First one. We also omit communications of size 0, which means
a communication com(Pk, Pl, s2) can follow a communication com(Pi, Pj , s1) even if Pj 6= Pk
(in fact, between these communications we have a communication com(Pj , Pk, 0) in the corre-
sponding linear graph).

Let us suppose that we have (n− 1) strictly positive integers {k1, k2, . . . kn−1} such that,

∀i ∈ {1, . . . , n− 2}, ki+1 < ki
n− i

(n− i− 1)2
(11)

We can construct these integers from kn−1 to k1 by induction, using the formula

ki = bki+1
(n− i− 1)2

n− i
c+ 1

and starting with kn−1 = 1. One can check that k1 is at least exponential in n.

Using this formula, for n = 15, we obtain:

{k1, . . . , k14} =
{1582973825, 131133929, 11838479, 1174064, 129147, 15944, 2242, 366, 71, 17, 5, 2, 1, 1}

Let us now describe the list of communications of the counter example step by step. Firstly,
there is k1 times the following set of communications:{

com
(
P1, Pn,

1
k1(n− 1)

)
, com

(
P1, Pn−1,

1
k1(n− 1)

)
, . . . , com

(
P1, P2,

1
k1(n− 1)

)}
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The Greedy algorithm or the Communications First one construct for these k1(n− 1) tasks
a schedule represented in Figure 21, where any processor Pi for i ∈ {2, . . . , n} has k1 communi-
cations of size 1

k1
1

n−1 separated by gaps of size 1
k1
n−2
n−1 in the schedule.

P1

P2

P3

...

Pn

time 0 1

Figure 21: Construction of a schedule in order to prove Proposition 4.3.

Then, there is in the counter example k2 times the following set of communications:{
com

(
P2, Pn,

1
k2(n− 2)

)
, com

(
P2, Pn−1,

1
k2(n− 2)

)
, . . . , com

(
P2, P3,

1
k2(n− 2)

)}
We supposed that k2 < k1

n−1
(n−2)2

, which means that 1
k2(n−2) >

1
k1
n−2
n−1 . Gaps of size 1

k1
n−2
n−1 on

the previous schedule are too small to put any task of size 1
k2(n−2) . Because of this, the sched-

ule computed by the Greedy algorithm (or by the Communications First algorithm) looks like
Figure 22. In the schedule, any processor Pi, for i ∈ {3, . . . , n}, has k2 communications of size

P1

P2

P3

...

Pn

time 0 1 2

Figure 22: Construction of a schedule in order to prove Proposition 4.3.

1
k2

1
n−2 separated by gaps of size 1

k2
n−3
n−2 for 1 6 time 6 2.

By induction, this construction is repeated for {k3, k4, . . . , kn−1}. At the end the schedule
computed by the Greedy algorithm (resp. the Communications First algorithm) looks as Fig-
ure 23. For this example, the Greedy algorithm (resp. the Communications First algorithm)
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P1

P2

P3

...

Pn

time 0 1 2

. . .

n− 2 n− 1

Figure 23: Construction of a schedule in order to prove Proposition 4.3.

computes a schedule of period (n− 1) = O(n). Moreover, the cycle-time CT follows:

CT =
n−1∑
i=1

ki
1

ki(n− i)
=

n−1∑
i=1

1
(n− i)

=
n−1∑
j=1

1
j

= O(log(n))

This shows that there exist examples where the schedules found by the Greedy algorithm
(resp. the Communications First algorithm) have not a period smaller than k times the cycle-
time for any constant k.

We can run previous algorithms on the example detailed in this part. The size of our example
increase very quickly with the number of processors n. Because of this, we give some results of
periods found by previous algorithms when 2 6 n 6 7.

Number of processors n 2 3 4 5 6 7 n
Size of the graph 1 5 17 57 227 1079 O((n+ 1)!)
Greedy algorithm 1 2 3 4 5 6 n− 1
Communications first algorithm 1 2 3 4 5 6 n− 1
Longest first algorithm 1 2 2 2.18 2.41 2,5 ??? (Given later)
Cycle-time 1 1.5 1.83 2.08 2.28 2.45 O(log(n))

In the following part, we construct an other example, which prove that the greedy algorithm
and the first modified one are not some k-approximations, for a constant k.

4.2.7 Greedy algorithm and the Communications First algorithm do not provide
a k-approximation (for any constant k) of the optimal period

Proposition 4.3 gives a relation between cycle-time and periods founds by the Greedy algorithm
and the Communications First one. This section extends this to the optimal period.

Proposition 4.4. There is no constant k such that the Greedy algorithm (resp. the Communi-
cations First algorithm) computes a schedule whose period is a k-approximation of the optimal
period.

Proof. As in Proposition 4.3’s proof, we give a linear graph and a mapping, then compute
corresponding schedules using the Greedy or the Communications First algorithm and extract
periods of these schedules. The main difference is that instead of making comparisons between
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these periods and the cycle-time, we give an other schedule that has a small period, and compare
periods to periods. Counter examples using for this proof are similar to those used perviously.

Construction of the counter example

We assume that our platform is fully-homogeneous and consists of 2n processors P1, P2, . . . , P2n

of same speeds s = 1. Network cards capacities are Bi = Bo = 1 and links between processors
have same bandwidths b = 1.

As in the previous part, our example only contains communications between processors
(computations are of size 0 and we will omit them). We also omit to write communications of
size 0.

Let ε be a constant in ]0, 1/2[. Let us suppose that we have (n− 1) strictly positive integers
{k1, k2, . . . kn−1} such that,

∀i ∈ {1, . . . , n− 2}, ki >
1
ε

(n− i− ε)(n− i− 1)
n− i

ki+1 (12)

We can construct these integers from kn−1 to k1 by induction, using the formula

ki = b1
ε

(n− i− ε)(n− i− 1)
n− i

ki+1c+ 1

and starting with kn−1 = 1. Ones can check that k1 is at least exponential in n and in 1
ε .

We prose

∀i ∈ {1, 2, . . . , n− 1}, εi =
ε

(n− i)ki
, δi =

1− ε
ki

(13)

Since this proof is quite similar to Proposition 4.3’s one, we only describe the induction
part. Let us suppose that, at a stage i ∈ {2, . . . , n − 2} the schedule looks like Figure 24. We

P1

P2...
Pi
Pi+1

Pi+2...
Pn
Pn+1...
Pn+i

Pn+i+1...
P2n

time i− 1 i

Figure 24: Construction of a schedule in order to prove Proposition 4.4.
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assume that, in the schedule constructed by the Greedy algorithm (resp. the Communications
First algorithm), in the interval of time [t − 1, t[, t 6 i, a processor Pj , j ∈ {t + 1, t + 2, . . . , n}
has kt communications with Pt of equal size εt separated by gaps of same size n−t−ε

(n−t)kt (in blue
for t = i). Ones can check that the sum of tasks and gaps sizes is equal to 1:

ktεt + kt
n− t− ε
(n− t)kt

=
ktε

kt(n− t)
+
kt(n− t− ε)
kt(n− t)

= 1

Processor Pn+t has kt communications with Pt of equal size δt separated by gaps of same
size 1

kt
− δt (in red for t = i). Once again, the sum of these sizes is equal to 1:

ktδt + kt

(
1
kt
− δt

)
= 1

Using the greedy algorithm, we add to this schedule ki+1 times the following list of commu-
nications:

{com (Pi+1, Pn+i+1, δi+1), com (Pi+1, Pi+2, εi+1) , com (Pi+1, Pi+3, εi+1) , . . . , com (Pi+1, Pn, εi+1)}

We want to prove that the Greedy algorithm (resp. the Communications First algorithm)
put these communications in the interval of time [i, i+1[. This is true if for any communication
com (Pa, Pb, s), s is bigger than gaps on processor Pa in the schedule in the interval of time [0, i[.
We now show that we are in that case.

The size of a communication com (Pi+1, Pn+i+1, δi+1) is δi+1. In the schedule and for
processor Pi+1, gaps on the interval of time [t, t + 1[, t ∈ {1, . . . , i − 1} are of size n−t−ε

(n−t)kt .
Moreover, we have:

ki >
1
ε

(n− i− ε)(n− i− 1)
n− i

ki+1 (A) by (12)

(A) =⇒ ki >
1

1− ε
n− i− ε
n− i

ki+1 (B) because ε ∈ [0, 1/2[ and (n− i− 1) > 1

(B) ⇐⇒ 1− ε
ki+1

>
n− i− ε
(n− i)ki

(C)

(C) =⇒ 1− ε
kt+1

>
n− t− ε
(n− t)kt

(D) because i > t and kt > ki

(D) ⇐⇒ δi+1 >
n− t− ε
(n− t)kt

by (13)

which prove that gaps are smaller that the communication we want to add.

Likewise, the size of any task com (Pi+1, Pk, εi+1) , k ∈ {i+ 2, . . . , n} is εi+1, and we have:

ki >
1
ε

(n− i− ε)(n− i− 1)
n− i

ki+1 (A′) by (12)

(A′) =⇒ ε

(n− i− 1)ki+1
>
n− t− ε
(n− t)kt

(B′) because i > t and kt > ki

(B′) ⇐⇒ εi+1 >
n− t− ε
(n− t)kt

by (13)

which prove that, once again, gaps are smaller that the communication we want to add.
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P1

P2...
Pi
Pi+1

Pi+2...
Pn
Pn+1...
Pn+i

Pn+i+1...
P2n

time i− 1 i i+ 1

Figure 25: Construction of a schedule in order to prove Proposition 4.4.

With these ki+1(n − i) new communications, the schedule looks like Figure 25. When the
induction ends, the schedule computed by the Greedy algorithm (resp. the Communication
First algorithm) has a period of n− 1. In order to complete the proof, we have to give an other
schedule which has a period o(n).

An other schedule for the previous list of communications

The idea is very simple. We first add in the schedule communications com (Pi, Pn+i, δi)
for i ∈ {1, . . . , n− 1}. Two communications com (Pi1, Pn+i1, δi1) and com (Pi2, Pn+i2, δi2)
don’t share a processor if i1 6= i2. Because of this, two communications com (Pi1, Pn+i1, δi1)
and com (Pi2, Pn+i2, δi2) can be computed in parallel in the schedule if i1 6= i2.

Moreover, there is ki communications com (Pi, Pn+i, δi). We add them one per one in the
schedule, it takes a size of kiδi and we have:

kiδi = ki
1− ε
ki

= 1− ε < 1

The schedule containing all communications com (Pi, Pn+i, δi) for i ∈ {1, . . . , n − 1} has
a size smaller than 1. We also have to add in the schedule communications com (Pi, Pj , εj), i ∈
{1, . . . , n−1} and j ∈ {i+1, . . . , n}. The sum of these communications sizes is

∑n−1
i=1 ki(n−i−1)εi

and we have:

n−1∑
i=1

ki(n− i− 1)εi =
n−1∑
i=1

ki(n− i− 1)
ε

(n− i)ki
= ε

n−1∑
i=1

n− i− 1
n− i

< ε(n− 1)

We can choose ε in ]0, 1/2[. Letting ε = min( 1
n−1 , 1/2), this sum is smaller than 1. We can

add all these communications in the schedule one per one in the interval of time [1, 2[. This
method constructs a schedule as a period smaller than 2.
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Finally, for any n ∈ N, there exists a linear graph and a mapping such that the Greedy
algorithm (resp. the Communications First algorithm) computes a schedule of period (n − 1),
and whose minimal period Kmin is smaller than 2. This ends the proof.

Remark. Letting n be 15 (i.e. on p = 30 processors), we have k1 ∼ 1025. Counter examples used
in the previous proof exists, but are not very common in “real life”.

4.2.8 Periods found by the Longest First algorithm are some 4-approximation of
the cycle-time

Proposition 4.4 states that the Greedy algorithm and the Communications First one are not
k-approximations of the optimal period. These results are interesting because not intuitive, but
they do not give any method to compute schedules with small periods. The end of this section
is devoted to prove that the Longest First algorithm constructs a schedule with “small” periods.

Lemma 4.5. The Longest First algorithm computes schedules whose periods are 4-approximation
of cycle-times.

Proof. Let us recall that the Longest First algorithm (see Algorithm 3) adds tasks, communi-
cations and computations, from the longest to the shortest as soon as possible in the schedule.
Because of this, in this proof, we suppose that these tasks are given by the ordered list (ti)16i6N ,
t1 is the longest task and tN the shortest one. We assume that the size of task ti is given by
size(ti).

We introduce some other notations. We assume that the schedule contains the first k tasks
t1, . . . , tk. For any processor Pi, 1 6 i 6 p, the ending work’s time is Ek(i). We know that the
schedule is of period K for any K > Ek, with Ek = max16i6p {Ek(i)}. These notations are
represented on Figure 26.

P1

P2

P3

time 0 Ek(1) Ek(2) = EkEk(3)

tk1

tk2

tk2

Figure 26: A simple schedule for representing new notations when the platform consists of 3
processors P1, P2 and P3. We suppose that there are k tasks in this schedule. Two tasks are
represented in bold: a computation tk1 and a communication tk2 .

We now prove by induction that, ∀ 0 6 k 6 N ,

Ek 6 4.CT (14)

Initialisation: Equation 14 is clearly verified when k = 0 because there is no task in the
schedule., and E0 = 0 6 4.CT .

Induction part: Let us suppose that the algorithm has constructed, with the first k tasks,
a schedule such that equation 14 is verified. When the Longest First algorithm adds the task
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tk+1 of size size(tk+1), there are two possibilities: it can modify Ek or not.

Let us first suppose that Ek is not modified, i.e. Ek+1 = Ek. By hypothesis, Ek 6 4.CT ,
i.e. Ek+1 6 4.CT , and the induction works.

Let us now suppose that Ek+1 6= Ek. Clearly, Ek+1 > Ek, because adding a task tk+1 can
only increase the ending work’s time of a processor.

Ek+1 > Ek ⇐⇒ max
16l6p

{Ek+1(l)} > max
16l6p

{Ek(l)}

⇐⇒∃ i1, i2 ∈ {1, . . . , p}2,


Ek+1(i2) > Ek(i1) > Ek(i2)
max16l6p{Ek(l)} = Ek(i1)
max16l6p{Ek+1(l)} = Ek+1(i2)

These equations mean that at stage k, these is a processor Pi1 such that Ek = Ek(i1).
When we add the new task tk+1 on the processor Pi2 , the algorithm put this task at the end
of Pi2 ’s schedule, and increase the ending time of processor Pi2 from Ek(i2) to Ek+1(i2) >
Ek(i2) + size(tk+1). (This is not an equality because it’s possible that the algorithm leave a gap
on processor Pi2 before putting the task tk+1.)

Let us suppose that the task tk+1 is a communication between processor Pi2 and a different
processor Pi3 . The schedule at stage k + 1 is represented in Figure 27.

Pi3

Pi2

Pi1

Ek(i1)

tk+1

Ek+1(i2)

Figure 27: Addition of a communication in a schedule using the Longest First algorithm.
Common gaps between processors Pi2 and Pi3 are represented between brackets.

The number of common gaps #common gaps(Pi2 , Pi3 , k + 1) between processors Pi2 and Pi3
after adding the task tk+1 in the schedule (represented between brackets in Figure 27) in bounded
by the number of tasks on Pi2 plus the number of tasks on Pi3 at stage k + 1.

#common gaps(Pi2 , Pi3 , k + 1) 6 #(l 6 k + 1, tl is on Pi2) + #(l 6 k + 1, tl is on Pi3) (15)

Moreover, there is no common gap in the schedule of size bigger than size(tk+1), because the
Longest First algorithm would have put the task tk+1 in it. The size of the sum of common
gaps S(Pi2 , Pi3 , k+ 1) between Pi2 and Pi3 at stage k+ 1 in bounded by the number of common
gaps times the biggest size of a common gap:

S(Pi2 , Pi3 , k + 1) 6 size(tk+1).#common gaps(Pi2 , Pi3 , k + 1) (16)

Combining (15) and (16) follows

S(Pi2 , Pi3 , k + 1) 6 size(tk+1).# (l 6 k + 1, tl is on Pi2) + size(tk+1).# (l 6 k + 1, tl is on Pi3)
(17)
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For all l 6 k, size(tk+1) 6 size(tl). Because of this, we have:

size(tk+1).# (l 6 k, tl is on Pi2) 6
k+1∑
l=1

size(tl)1tl is on Pi2
6 CTi2

size(tk+1).# (l 6 k, tl is on Pi3) 6
k+1∑
l=1

size(tl)1tl is on Pi3
6 CTi3

Combining these equations with (17) follows

S(Pi2 , Pi3 , k + 1) 6 CTi2 + CTi3 6 2 max
16i6p

{CTi} = 2.CT (18)

The value of Ek+1(i2) (see Figure 27) is smaller than the size of the common gaps between
Pi2 and Pi3 at stage k + 1 (represented in green) plus the sum of all the tasks on Pi2 plus the
sum of all the tasks on Pi3 . This can be written

Ek+1(i2) 6 S(Pi2 , Pi3 , k + 1) + CTi2 + CTi3 (19)

Combining this equation with (18) follows

Ek+1 = Ek+1(i2) 6 2.CT + CTi2 + CTi3 6 4.CT (20)

which ends the induction when the task tk+1 is a communication between two processors.

When tk+1 is a computation on processor Pi2 , we can consider that tk+1 is a communication
between Pi2 and a virtual processor Pi3 that has an empty schedule, and apply the previous
proof. This ends the induction when tk+1 is a computation.

Letting k = N in equation 14, we obtain

EN 6 4.CT

and the minimal period of this schedule follows K 6 CT 6 EN 6 4.CT which ends the
proof.

4.2.9 The Longest First algorithm is a 4-approximation for the period

Lemma 4.5 bounds periods found by the Longest First algorithm. Using this theorem, it is easy
to verify that the Longest First algorithm is a 4-approximation for the period.

Theorem 4.6. The Longest First algorithm computes a schedule whose period is a 4-approximation
of the optimal one.

Proof. With Lemma 4.5 we have K 6 4.CT , where K is the period found for a linear graph
and a mapping by the Longest First algorithm and CT the cycle-time. Since the cycle-time
is smaller than the optimal period Kmin, we also have K 6 4.CT 6 4.Kmin, which ends the
proof.

Remark. The Longest First algorithm finds a period that is smaller that 4.CT . We point at
that this result is interesting for someone searching for a mapping and a schedule : with a
balanced mapping where the maximum amount of work of a processor is minimized, i.e. where
the cycle-time is as small as possible, the Longest First algorithm computes a schedule with a
small period. Minimizing the cycle-time when searching for the mapping give some bounds for
the period K found by the Longest First algorithm and for the minimal period Kmin.
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4.2.10 The Longest First algorithm is not better than a 4-approximation

Theorem 4.6 states that the Longest First algorithm constructs a schedule whose period is
smaller than four times the optimal one. We now prove that unfortunately this algorithm is
not a better approximation for the period.

Theorem 4.7. For any β < 4, there exists a linear graph and a mapping such that the Longest
First algorithm computes a schedule of period K, and K > β.Kmin. In other words, the Longest
First algorithm is not a k-approximation for any k smaller than 4.

Proof. Let us choose β ∈ [1, 4[. We explain how ones can construct a linear graph such that
the Longest First algorithm constructs a schedule of period K bigger than βKmin. This proves
that this algorithm is not a k-approximation for k < 4.

In all this part, we say we have a platform of p processors to say that our platform is fully-
homogeneous and consists of p processors. All bandwidths and all speeds are equal to 1.

Some notations

Let N be in N such that N > 2. We call H2n(N) the fact that there exists a linear graph
G2n(N) and a mapping on p = α2n(N) processors6 such that the schedule computed by the last
algorithm looks like Figure 28.

P1

P2

P3

...

Pα2n(N)

4N

1

(2)

1

(4)
. . .

1

(2n)
1

(1) (3)
. . .

1

(2n− 1)

. . .

. . .

K2n(N)

Figure 28: Schedule of property H2n(N).

We suppose in H2n(N) that:

1. Between t = 0 and t = 4N , there is a computation of size 4N on each processor (not
represented on the figure).

2. For t > 4N , on P1, there is firstly a gap of size (2−1/N), then a communication of size 1,
a gap a size (3− 2/N), a communication of size 1, a gap a size (3− 2/N) and so on.

3. The schedule is identical on P2 without the first gap.
6The exact value of α2n(N) is not given and has no importance in the proof.
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4. The minimal period of the schedule is K2n(N).

5. There exists an other schedule for the graph G2n(N) such that all tasks on P1 and P2 are
set in the interval of time [0, 4N + n] (this means that there is no gap in the schedule for
P1 and P2) and such that the period of this schedule in smaller than 8N + n.

6. A task of non null size has a size bigger or equal to 1.

Remarks:

• Common gaps of P1 and P2 are all of size (1− 1/N).

• K2n(N) = 4N + 4n− 1− 2n−1
N

Similarly, we call H2n+1(N) the fact that there exists a linear graph G2n+1(N) and a map-
ping on α2n+1(N) processors7 such that the schedule computed by the last algorithm looks like
Figure 29.

P1

P2

P3

...

Pα2n+1(N)

4N

1

(2)

1

(4)
. . .

1

(2n)
1

(1) (3)
. . .

1

(2n− 1)

1

(2n+ 1)

. . .

. . .

K2n+1(N)

Figure 29: Schedule of property H2n+1(N).

We suppose in H2n+1(N) that:

1. Between t = 0 and t = 4N , there is a computation of size 4N on each processor (not
represented on the figure).

2. For t > 4N , on P1, there is firstly a gap of size (2−1/N), then a communication of size 1,
a gap a size (3− 2/N), a communication of size 1, a gap a size (3− 2/N) and so on.

3. The schedule is identical on P2 without the first gap and with one more communication.

4. The minimal period of the schedule is K2n+1(N).

5. There exists an other schedule for the graph G2n+1(N) such that all tasks on P1 are set
in the interval of time [0, 4N + n] and all tasks on P2 are set in the interval of time
[0, 4N + n+ 1] (this means that there is no gap in the schedule for P1 and P2) and such
that the period of this schedule in smaller than 8N + n.

7Once again, the exact value of α2n+1(N) is not given and has no importance in the proof.
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6. A task of non null size has a size bigger or equal to 1.

Remarks:

• Common gaps of P1 and P2 are all of size (1− 1/N).

• K2n+1(N) = 4N + 4n+ 1− 2n
N

Now, we show by induction that for all n we have (H2n(N), H2n+1(N)). We first explain
why this is true for n ∈ {0, 1, . . . , N}, and then we show by strong induction that for n > N ,
{(H2k(N), H2k+1(N))}06k6n implies {(H2k(N), H2k+1(N))}06k6n+1.

Initialization

If n = 0, we have H0(N) with the graph containing only a computation of size 4N mapped
on P1. We also have H1(N) with a graph containing three computations of size 4N mapped on
P1, P2 and P3, and one communication of size 1 between P2 and P3.

More generally, if n 6 N , we have H2n(N) on 2n+ 2 processors with the graph containing

• (2n+2) computations of size 4N respectively mapped on P1, . . . , P2n+2

• for all k ∈ {1, . . . , 2n− 1}, one computation of size (2− 1/N)k mapped on processor Pk+3

• for all k ∈ {1, . . . , n}, one communication of size 1 between P2 and P2k+1

• for all k ∈ {1, . . . , n}, one communication of size 1 between P1 and P2k+2

and we have H2n+1(N) on 2n+ 3 processors with a graph containing

• (2n+3) computations of size 4N respectively mapped on P1, . . . , P2n+3

• for all k ∈ {1, . . . , 2n}, one computation of size (2− 1/N)k mapped on processor Pk+3

• for all k ∈ {1, . . . , n+ 1}, one communication of size 1 between P2 and P2k+1

• for all k ∈ {1, . . . , n}, one communication of size 1 between P1 and P2k+2

We can check that we always have 4N > (2 − 1/N)k > 1 is 1 6 k 6 2n. Because of
this, computations of size 4N will always be put at the beginning of the schedule by the al-
gorithm. Then, we have computations of size (2−1/N)k and then the communications of size 1.

For example, the schedule of H2∗3(N) looks like Figure 30.

For both H2n(N) et H2n+1(N), 0 6 n 6 N , points (1), (2), (3) and (6) are obvious.

Point (4) is very easy: The first communication of size 4N on P1 is bigger than the gaps
of P1 (of size (3− 1/N)). Because of this, the period of the schedule is bigger than K2n (resp.
K2n+1(N)). Moreover, there is no task in the schedule after t = K2n(N) (resp. t = K2n+1(N)),
soK2n (resp.K2n+1(N)) is a period of the schedule. This leads to say thatK2n (resp.K2n+1(N))
is the minimal period of the schedule of H2n(N) (resp. H2n+1(N)).

For point (5) in H2n(N) (resp. H2n+1(N)), the idea is to construct a schedule with
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P1

P2

P3

P4

P5

P6

P7

P8

4N K2∗3(N)

Figure 30: Representation of the schedule ofH2∗3(N). Computations of size 4N at the beginning
of the schedule are not represented.

• all the computations of size 4N in the interval of time [0, 4N ]

• all the communications of size 1 in the interval of time [4N, 4N+n] (resp. [4N, 4N+n+1])

• any computation of size (2− 1/N)k in the interval of time [4N +n, 4N +n+ (2− 1/N)k]
(resp. [4N + n, 4N + n+ 1 + (2− 1/N)k])

For example, for H2∗3(N), this second schedule looks like Figure 31.

P1

P2

P3

P4

P5

P6

P7

P8

4N 4N + 3

Figure 31: Representation of the second schedule of H2∗3(N). Computations of size 4N at the
beginning of the schedule are not represented.

This schedule has a period smaller than 4N + n + (2 − 1/N)(2n − 1) (resp. 4N + n + 1 +
(2 − 1/N)(2n)). In both cases, this schedule has a period smaller than 8N + n, which prove
that point (5) is verified.

Induction
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Let n be in N, n > N . We suppose that we have {Hk(N)}06k62n+1 (this is true if n = N , we
saw it in the previous part). We wanted to show that we have {Hk(N)}06k62(n+1)+1. We will
first prove that {Hk(N)}06k62n+1 implies H2n+2(N), and then that {Hk(N)}06k62n+2 implies
H2n+3(N).

We have {Hk(N)}06k62n+1, in particular, H2(n−N)+2(N) and H2n+1(N) are true. The plat-
form using for H2n+1(N) consists of α2n+1(N) processors {P1, . . . , Pα2n+1(N)}, and the platform
for H2(n−N)+2(N) consists of processors {P ′1, . . . , P ′α2(n−N)+2

(N)}. We call G(N) the graph ob-
tained when concatenating graphs G2(n−N)+2(N) and G2n+1(N). The schedule obtained by the
last algorithm looks like Figure 32.

P1

P2

...

P ′1
P ′2
...

4N

. . .

. . .

. . .

. . .

K2(n−N)+2(N)

K2n+1(N)

Figure 32: Schedule computed by the Longest First algorithm for graph G(N), concatenation
of G2(n−N)+2(N) and G2n+1(N).

We add to G(N) (4N − 3) communications of size 1 between P ′1 and P ′2, Common gaps
between P ′1 and P ′2 are of size 1− 1/N , so the algorithm put them at the end of the schedule.
This is represented in Figure 33.

We also add to G(N) one communication of size 1 between P1 and P ′2. We call G′(N) this
graph. The corresponding schedule is represented in Figure 34.

We now claim that H2n+2(N) is true, with G2n+2(N) = G′(N). Points (1), (2), (3) and (6)
are obvious by construction. The minimal period of the new schedule is K2n+2(N) because the
last task on P1 ends at t = K2n+2(N), all tasks ends before K2n+2(N) by construction. Because
of this, the minimal period of the schedule is smaller than K2n+2(N). Moreover, there is no gap
of size bigger than 3 in P1, and there is a computation of size 4N > 3 on P1, so the minimal
period is also bigger than K2n+2(N), which prove point (4).

We know that there exists a schedule for the graph G2(n−N)+2(N) such that all tasks on P ′1
and P ′2 are set in the interval of time [0, 4N + n−N + 1], and such that the period is smaller
than 8N + n−N + 1. We also know that there exists a schedule for the graph G2n+1(N) such
that all tasks on P1 are set in the interval of time [0, 4N + n] and all tasks on P2 are set in the
interval of time [0, 4N +n+1], and such that the period of this schedule is smaller than 8N +n.
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P1

P2

...

P ′1
P ′2
...

4N

. . .

. . .

. . . . . .

. . . . . .
K2(n−N)+2(N)

K2n+1(N)

Figure 33: Schedule computed by the Longest First algorithm for graph G(N), concatenation
of G2(n−N)+2(N) and G2n+1(N), and for 4N − 3 communications of size 1 between P ′1 and P ′2.

P1

P2

...

P ′1
P ′2
...

4N

. . .

. . .

. . . . . .

. . . . . .
K2(n−N)+2(N)

K2n+1(N)
K2n+2(N)

Figure 34: Schedule computed by the Longest First algorithm for graph G′(N).
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This means there exists a schedule for G(N) which looks like Figure 35.

P1

P2

...

P ′1
P ′2
...

4N

. . .

. . .

. . .

. . .

3N + n− 1

4N + n+ 1

4N + n

8N + n

Figure 35: A schedule of small period for the graph G(N).

We can add the communication between P1 and P ′2 at t = 4N + n (this is necessary to
respect (5) and communications between P ′1 and P ′2 between t = 4N +n+1 and t = 8N +n−2.
The corresponding schedule is represented in Figure 36. This proves that we respect point (5),

P1

P2

...

P ′1
P ′2
...

4N

. . .

. . .

. . . . . .

. . . . . .

3N + n− 1

4N + n+ 1

4N + n

8N + n− 2

8N + n

Figure 36: A schedule of small period for the graph G′(N).

and ends the first par of the proof: {Hk(N)}06k62n+1 implies H2n+2(N). The construction
which proves that {Hk(N)}06k62n+2 implies H2n+3(N) is similar. Because of this, we do not
report it here. This ends the induction.

The approximation problem

Let us come back to the initial problem. We previously shown that, for any (N,n) ∈ N2,
with N > 2, ones can construct a linear graph such that the schedule computed by the last
algorithm has a minimal period K2n(N) with

K2n(N) = 4N + 4n− 1− 2n− 1
N
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and such that the optimal period Kmin(n,N) follows

Kmin(n,N) 6 8N + n

We have
lim
n→∞

K2n(N)
8N + n

= 4− 2/N

which means that for any ε > 0, there exists n1(N, ε) such that

K2n1(N)
8N + n1

> 4− 2/N − ε

We can choose ε = 1/N . There exists n1(N, 1/N) such that

K2n1(N)
8N + n1

> 4− 3/N

i.e.
K2n1(N) > (4− 3/N)(8N + n1) > (4− 3/N)Kmin(n1, N)

At the beginning of this proof, we let β < 4. There exists Nβ such that 4− 3/Nβ > β, and
there exists a linear graph and a mapping such that the Longest First algorithm constructs a
schedule of period K2n1(Nβ), with K2n1(Nβ) > β(8Nβ+n1) > βKmin, which ends the proof.

4.3 Bi-criteria

Proposition 4.8. Given a linear workflow and a mapping, the problem of computing the oper-
ation list that leads to a given period K and a given latency L is NP-hard in the one-port model
without overlap.

Proof. By Theorem 4.2, we showed that the problem of computing the operation list that leads
to a given period K is NP-hard. Therefore, the bi-criteria problem also is NP-hard.

5 Finding the optimal schedule for a given mapping in the
multi-port model

5.1 Model

Let us recall that in the multi-port model, we assume that communications along different links
can take place simultaneously. Because we deal with processor network cards, we bound the
total communication capacity of each network card: we denote by Bi

u (resp. Bo
u) the capacity

of the input (resp. output) network card of processor Pu. Pu cannot receive more than 1/Bi
u

data items per time-unit, and it cannot send more than 1/Bo
u data items per time-unit.

We also consider that computations and communications can be done in parallel (overlap
model), the input for data set i+ 1 can be received while computing for data set i and sending
result for data set i− 1.
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5.2 Latency

Computing the schedule of optimal latency in the multi-port model with overlap is done exactly
as in the one-port model without overlap. The equivalent of Theorem 4.1 is:

Theorem 5.1. Given a linear workflow and a mapping, the problem of computing the schedule
that leads to the optimal latency has polynomial complexity in the multi-port model with overlap.

Proof. Because we just deal with latency, we can suppose that the period is long enough to
separate the computation of different data sets in the linear workflow. This way, the optimal
order is obvious: we do all the computations and all the communications as soon as possible.
The corresponding latency is the sum of all computation and communication times.

5.3 Period

Complexities of period minimization differ if we use the one-port model without overlap or the
multi-port model with overlap. Theorem 4.2 states that finding a schedule of optimal period
is NP-hard in the one-port model without overlap. On the contrary, we now show that this is
easy in the multi-port model with overlap.

Theorem 5.2. Given a linear workflow and a mapping, the problem of computing the schedule
that leads to the optimal period Kmin has polynomial complexity with the multi-port model with
overlap. Moreover, Kmin = CT , where CT is the cycle-time.

Proof. We basically process in two stages: firstly, we recall that the cycle-time CT is a lower
bound of the optimal period Kmin. Then, we compute in polynomial time a schedule who re-
spects all the constraints and that has a period K = CT .

For any processor Pk, the minimum amount of time-units needed for the computations of
one data-set is given by 1

sk

∑
a(i)=k wi. This bound is reached when the processor Pk computes

everything at maximal speed and without pause. Because of this, for any schedule, the period
K follows

K > max
k∈{1,...,p}

{
1
sk

∑
a(i)=k

wi

}
(21)

Similarly, we can bound the period by the minimum amount of time-units needed for the
communications between two processors pk and pk‘ 6=k, for the input communication of every
network card, and for the output communication of every network card. Combining all these
bounds leads to K > Q, with :

Q = max



max
k∈{1,...,p}

{
1
sk

∑
a(i)=k

wi

}

max
k,k′∈{1,...,p}∪{in,out},k 6=k′

{ 1
bk,k′

∑
a(i)=k,a(i+1)=k′

δi

}

max
k∈{1,...,p}∪{in}

{
1
Bo
k

∑
a(i)=k

δi

}

max
k∈{1,...,p}∪{out}

{
1
Bi
k

∑
a(i)=k

δi−1

}
(22)

and ones can check that Q = CT , by definition of the cycle-time CTu of a processor Pu (see
equation 3) and by definition of the cycle-time CT (see equation 4).
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We now give a schedule who leads to a period K = CT and which is computable in poly-
nomial time. We assume that data-sets come at t0 + k.CT , with k ∈ Z. For each data-set, any
processor Pu has three kind of tasks to do : some computations for stages {Si}a(i)=u, some in-
put communications between stages {Si−1, Si}a(i)=u and some output communications between
stages {Si, Si+1}a(i)=u. We describe how theses tasks are computed in parallel in the interval
of time t0, t0 + CT for some data-sets. By periodicity, this describes all the schedule.

Input communications are all done in parallel. They begin at t0, end at t0 + CT , and any
communication between stages Si−1 and Si uses of bandwidth of δi−1/CT . Similarly, output
communications are done in parallel, and any communication between Si and Si+1 uses a
bandwidth of δi/CT . All communications between processors are perfectly synchronous, and if
a processor Pu1 sends a data of size δi using a bandwidth of δi/CT to a processor Pu2 , we verify
that processor Pu2 receives a data of size δi from Pu1 using a bandwidth of δi/CT . Moreover,
the bandwidth used between processors Pu1 and Pu2 is

∑
a(i)=u1,a(i+1)=u2

δi/CT . By definition
of CT , we have

∑
a(i)=u1,a(i+1)=u2

δi/CT 6

 ∑
a(i)=u1,a(i+1)=u2

δi

× bu1,u2∑
a(i)=u1,a(i+1)=u2

δi
= bu1,u2

and the bandwidth bu1,u2 between processors Pu1 and Pu2 is respected. Similarly, we check that
bandwidths of network cards Bi

u and Bo
u are respected.

The schedule for computations of stages {Si}a(i)=u is simpler: Pu executes the computations
{wi}a(i)=u one per one, from time t0 to t1. Processor Pu has a speed su, so

t1 = t0 +
∑
a(i)=u

wi/su 6 t0 + CT

by definition of CT . This shows that Pu can make the computations {wi}a(i)=u between t0 and
t0 + CT , and concludes the proof.

5.4 Bi-criteria

In the multi-port model with overlap, complexities of period minimization and latency mini-
mization are both polynomial. Because of this, we now address the problem of computing a
schedule respecting both a period and a latency. We first deal with period minimization at
minimal latency.

5.4.1 Minimizing period at minimal latency is polynomial

In this part, we prove that minimizing the period at minimal latency in the multi-port model
is polynomial. Obviously, this does not prove that the bi-criteria problem (which consists in
finding a schedule that respects a given period and a given latency) is polynomial. We recall
that finding the minimal latency is polynomial (see Theorem 5.1).

Theorem 5.3. Given a linear workflow and a mapping, the problem of computing the schedule
that minimize the period at minimal latency Lmin has polynomial complexity in the multi-port
model.
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Proof. We recall that computing the minimal latency Lmin in the multi-port model has a poly-
nomial complexity. Moreover, finding the unique first data set schedule which corresponds to
that latency has also a polynomial complexity.

Lemma 5.4. In the multi-port model and at minimal latency Lmin, the minimal period Kmin | Lmin

follows
Lmin

p2
6 Kmin | Lmin

6 Lmin

Proof. First of all, let us recall that the minimal latency follows

Lmin = A+B

with

A =
p∑

u=1

∑
a(i)=u

wi
su

B =
p∑

u=1

p∑
v=1,v 6=u

∑
a(i)=u,a(i+1)=v

δi
min(bu,v, Bi

v, B
o
u)

which traduces that Lmin is the sum of all the computations (A) and all the communications
(B) at maximum speed.

Let us suppose that A > Lmin
p . For any processor Pu, the minimal period Kmin |Lmin

is bigger
than the computation time of processor Pu:

Kmin |Lmin
>
∑

a(k)=u

wk
su

and this leads to

pKmin |Lmin
>

p∑
u=1

∑
a(i)=u

wi
su

= A

and by hypothesis we have A > Lmin
p . Combining these equation follows

Kmin |Lmin
>
Lmin
p2

Let us now suppose that A 6 Lmin
p , which means B > Lmin(1 − 1

p). For any couple of
different processors (Pu, Pv), the minimal period is bigger that the communications time from
processor Pu to processor Pv:

Kmin |Lmin
>

∑
a(i)=u,a(i+1)=v

δi
min(bu,v, Bi

v, B
o
u)

This follows
p(p− 1)Kmin |Lmin

> B > Lmin(1− 1
p

)

which can be rewritten
Kmin | Lmin

>
Lmin
p2

Moreover, this is obvious that Kmin |Lmin
6 Lmin, which ends lemma’s proof.
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Schedule representation

A schedule is entirely represented by the computation of one data set and by its period. We
are working at minimal latency. Because of this, the (unique) schedule of the first data set is
computable in polynomial time. We suppose that this schedule is represented as follows: for
each processor Pu, 1 6 u 6 p, we have five lists c (computations), bin (input links bandwidth),
bout (output links bandwidth), Bin (input card bandwidth) and Bout (output card bandwidth)
of elements (t1, t2, x). An element (t1, t2, x) in c (resp. bin, bout, Bin, Bout) represent the fact
that the processor Pu is computing (resp. communicating), between t1 and t2 and use x per
cent of its computing capacity (resp. input bandwith, output bandwidth, input card bandwidth,
output card bandwidth). Note that in the list c, for any task (t1, t2, x) we have x = 100%, be-
cause processors are always computing at full speed.

When we construct these 5p lists, we add, for each computation wi, one element in c,
and for each communication δi, four elements in bin, bout, Bin, Bout respectively. We can claim
that the number of elements in a list is smaller than n+1, when n is the size of the linear graph.

Period of a list

We say that a list l = (t1,i, t2,i, xi)i is K periodic if for any time t ∈ [0, Lmin] we have∑
α∈Z,αK+t1,i<t<αK+t2,i

xi 6 100

which means that the union of the lists l = (t1,i + αK, t2,i + αK, xi)i for α ∈ Z verifies that for
any time t the sum of percentages of utilization xi don’t exceed 100%.

Period of a schedule

A schedule is of period K if, when we started to compute data sets each K time units, for
any time t, all bandwidths are respected and if there is 0 or 1 computation on processor Pi.
This is equivalent to say that the 5p lists are K periodic.

We now proceed as follows: we first show that for any list l of the 5p lists we can com-
pute in polynomial time the domain of possible values for the period K in [Lmin/p

2, Lmin].
Then, we explain how to compute the intersection of these 5p domains, which is the domain of
possible periods for the schedule included in [Lmin/p

2, Lmin] at minimal latency. This domain
has a minimum, which can be computed in polynomial time, and which is the period Kmin | Lmin

.

Domain of periods K ∈ [Lmin/p
2, Lmin] of a list l

Let l = (t1,i, t2,i, xi)i be one of the 5p lists. l contains in most n elements. Our goal is to
compute the domain I such that

K ∈ I ⇐⇒ K is in [Lmin/p
2, Lmin] and l is K periodic

A value K of [Lmin/p
2, Lmin] is in I if for any time t ∈ [0, Lmin] we have∑

α∈Z,αK+t1,i<t<αK+t2,i

xi 6 100 (23)
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We know that t1,i and t2,i are in [0, Lmin]. Because of this, we can restrict the domain of α to

[− Lmin

Lmin/p2
− 1,

Lmin

Lmin/p2
]
⋂

Z

which can be rewritten
[−p2 − 1, p2]

⋂
Z = Iα

We can rewrite equation 23:

∀t ∈ [0, Lmin],
∑

α∈Iα,αK+t1,i<t<αK+t2,i

xi 6 100 (24)

When K is fixed, there is a finite number C of bounds αK + t1,i and αK + t2,i. Let us suppose
that these bounds are represented by a list (xj(K))16j6C with ∀ j ∈ {1, . . . , C − 1}, xj(K) 6
xj+1(K). Let ε be in R∗+. Let us suppose that we have

∀ 1 6 j 6 C − 1, xj(K − ε) 6 xj+1(K − ε)
∀ 1 6 j 6 C, xj(K − ε) 6 0⇐⇒ xj(K) 6 0
∀ 1 6 j 6 C, xj(K − ε) 6 Lmin ⇐⇒ xj(K) 6 Lmin

{xj}j are affine functions of K, so we also have, for all e ∈ [0, ε]

∀ 1 6 j 6 C − 1, xj(K − e) 6 xj+1(K − e)
∀ 1 6 j 6 C, xj(K − e) 6 0⇐⇒ xj(K) 6 0
∀ 1 6 j 6 C, xj(K − e) 6 Lmin ⇐⇒ xj(K) 6 Lmin

This leads to say that, for all e ∈ [0, ε],

∀t ∈ [0, Lmin],
∑

α∈Iα,α(K−e)+t1,i<t<α(K−e)+t2,i

xi 6 100 (25)

i.e. for all e ∈ [0, ε], the list l is (K−e)-periodic. We can do the same remark if l is notK-periodic.

This remark permits to construct an algorithm to compute the domain I of periods of the
list l in [Lmin/p

2, Lmin]. We can compute all the critical values of K such that αK + t1/2,i =
α′K + t1/2,j , all the critical values such that αK + t1/2,i = 0 (we suppose that this function is
not the null function), and all the critical values such that αK + t1/2,i = Lmin (we suppose that
this function is not the constant function equal to Lmin). There is a polynomial number D of
critical values (the number is O(p4n2)), and it takes a polynomial time in n and p to compute
them and to put them in an ordered list K0 < K1 < K2 < . . . < KD (we don’t put a same
value twice is the list).

Then, for each couple (Ki,Ki+1), we can test if l is Ki+Ki+1

2 periodic. If yes, we add
[Ki,Ki+1] to I. Else, we know that there is no value K in ]Ki,Ki+1[ such that the list l is
K-periodic, so we add Ki if the list is Ki periodic, Ki+1 is the list is Ki+1 periodic, and nothing
else. All of this permits to compute I in polynomial time and I is represented by a union of
O(p4n2) intervals.

How to compute the final period Kmin |Lmin
?

52



The minimal period of the schedule Kmin is the minimal common period of the 5p lists c,
bin, bout, Bin and Bout. Because of lemma 7, we know that

Lmin

p2
6 Kmin 6 Lmin

so the minimal period of the schedule is also the minimal common period of the 5p lists in-
tersected by [Lmin/p

2, Lmin]. We showed that these domains (Ik)16k65p are computable in
polynomial time and are of size O(p4n2). We can compute the intersection of I1 and I2, then
I1 ∪ I2 and I3, etc. This has a complexity O(p5n2). The minimal period Kmin is the minimum
number of the intersection I1∪ . . .∪I5p and is computable in polynomial time, since this domain
is represented by a sum of O(p5n2) closed intervals. This ends the proof.

5.4.2 Minimizing latency at minimal period is NP-hard

It the previous section, we explain why minimizing period at minimal latency has polynomial
complexity in the multi-port model when the mapping is given. We now prove that the opposite
problem is NP-hard.

Theorem 5.5. Given a linear workflow and a mapping, the problem of computing a schedule
that minimizes latency at minimal period Kmin is NP-hard in the weak sense in the multi-port
model with overlap. The corresponding latency is called Lmin|Kmin

.

Proof. We consider the associate decision problem and show that it is NP-complete: given a
linear graph, a mapping, and a bound L, does there exists a schedule such that the period is the
minimal period Kmin

8 and the latency does not exceed L? This problem is obviously NP: given a
linear graph, a mapping and a schedule, we can compute the minimal period Kmin in polynomial
time (see Theorem 5.2), and check that the period of the schedule is Kmin and the latency does
not exceed L. To establish the completeness, we use a reduction from 2-PARTITION [7] that
is NP-complete in the weak sense. As in the proof of Theorem 4.2, we consider an instance I1
of this problem: given a list of positive integers (ai)16i6n such that

∑n
i=1 ai = K, does there

exist γ ∈ {1, . . . , n} such that: ∑
i∈γ

ai =
∑
i/∈γ

ai = K/2 (26)

We associate to I1 an instance I2 with 2n+ 5 stages and 3 processors {P1, P2, P3}, given by
the linear graph and the mapping represented on Figure 37. We assume that the platform is
fully homogeneous and the common computation speed is s = 1. All bandwidths are equal to 19.

Finally, we let L = (n+2)K. The size of I2 is obviously linear in the size of I1. The minimal
period of this linear graph and mapping is Kmin = K.

Suppose first that I1 has a solution, i.e. there exists γ ∈ {1, . . . , n} such that∑
i∈γ

ai =
∑
i/∈γ

ai = K/2

We construct a schedule of period K as represented on Figure 38. The computation of one data
set is represented in bold. The key in this schedule is that the communication between stages
S2n+2 and S2n+3, the computation on S2n+3 and the communication between stages S2n+3 and

8In Theorem 5.2, we saw that finding the minimal period Kmin can be done in polynomial time.
9In fact, it is not necessary to precise bandwidths because all communications are of size 0.
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Figure 37: Representation of the instance I2 which consists of a linear graph with 2n+ 5 stages
mapped on 3 processors.
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an ai,i∈γ ai,i/∈γ

Figure 38: Representation of a schedule of period K, for the linear graph and the mapping
given by Figure 37. The computation of one data set is represented in bold. The latency is
(n+ 2)K = L.
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S2n+4 occur at time t = (n + 1/2)K. This is possible because computations of {ai}i∈J1,nK are
“2-PARTITIONED”, which means there is no computation at time t = (n + 1/2)K, and the
computation of size 0 of stage S2n+3 do not have to wait before being executed, and the latency
L = (n+ 2)K is respected.

We now suppose that I2 has a solution. We basically want to prove that the computation
of stage S2n+3 has to occur at time t = (n + 1/2)K for respecting the latency L. This com-
putation requires a 2-PARTITION of the computations of size ai on P3. Let us suppose that
for one data set the computation of stage S2n+5 begin on P1 at time t = 0. This computation
is done each K time units, which means that P1 is computing for stage S2n+5 all the time,
and a computation of size 0 on P1 can only occur at time αK,α ∈ Z. There is a data set d
such that the computation of stage S1 of size 0 on P1 is done at t = 0. For stage S2 there
is a computation of size a1 > 0, and computation of stage S3 can not occur before t = K.
Similarly, there is for stage S3 a computation of size a2 > 0 on P1 and computation of stage S4

occur after t = nK. The sum of computations of stages S2n+1 to S2n+5 is 2K so the output
computation occur after t = (n+2)K, which means that the latency is bigger than (n+2)K = L.

We assumed that the latency is smaller than L, so we know that the latency is exactly L
and that computation of stages S2n+1 to S2n+5 for data set d occur in the interval of time
[nK, (n+ 2)K], exactly as in Figure 38. This proves that computation of stage S2n+3 of size 0
occur on P3 at time t = (n + 1/2)K, and computations for stages S2k−1, k ∈ J1, nK occurring
in the interval of time [nK, (n+ 1)K] occur in the interval of time [nK, (n+ 1/2)K] or in the
interval of time [(n+ 1/2)K, (n+ 1)K]. There is no idle time on P3, and this constructs a
2-PARTITION of integers {a1, a2, . . . , an}, which ends the proof.

5.4.3 The bi-criteria problem

Theorem 5.6. Given a linear workflow and a mapping, the problem of computing a schedule
that respects a period K and a latency L is NP-hard in the weak sense, in the multi-port model
with overlap.

Proof. With Theorem 5.5, we now that the problem of computing a schedule that respects a
period Kmin and a latency L is NP-hard in the weak sense in the multi-port model with overlap.
Therefore, the general case is also NP-hard in the weak sense.

6 Conclusion

This work presents complexity results for finding optimal schedules for linear pipelined graphs,
when the mapping is given, both for the one-port model without overlap and for the multiport
model with overlap. We provided a formal definition of both models and various objectives:
latency minimization, period minimization and the bi-criteria problem. Altogether, with three
objectives and two models, we present six main complexity results. In both models, latency
minimization is easy, whereas period minimization can be done in polynomial time in the mul-
tiport model with overlap and is NP-hard in the one-port model without overlap. Finally, for
both models, the bi-criteria problem is NP-hard. We also provide an 4-approximation algo-
rithm for period minimization in the one-port model, and we provide some relations between
the cycle-time and the optimal period.
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In the future, we plan to find approximations, or at least efficient heuristics, for the bi-criteria
problem for both models. Moreover, theses results have to be extended to models that allow
preemption. This would require to carefully assess the cost of interruptions. Some preliminary
work has already be done in that sense, but more interesting problems (bi-criteria problems)
are not yet solved.
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