
Laboratoire de l’Informatique du Parallélisme

École Normale Supérieure de Lyon
Unité Mixte de Recherche CNRS-INRIA-ENS LYON-UCBL no 5668

Assessing general mappings for
period/reliability optimization of

streaming applications

Anne Benoit,
Hinde Lilia Bouziane,
Yves Robert

Research Report No 2010-20

École Normale Supérieure de Lyon
46 Allée d’Italie, 69364 Lyon Cedex 07, France

Téléphone : +33(0)4.72.72.80.37
Télécopieur : +33(0)4.72.72.80.80

Adresse électronique : lip@ens-lyon.fr

Assessing general mappings for period/reliability optimization

of streaming applications

Anne Benoit, Hinde Lilia Bouziane, Yves Robert

Abstract
This report deals with the problem of mapping pipelined applications
on heterogeneous platforms whose processors are subject to failures. We
address a difficult bi-criteria problem, namely deciding which stages to
replicate, and on which resources, in order to optimize the reliability of
the schedule, while guaranteeing a minimal throughput. Previous work
had addressed the complexity of interval mappings, where the applica-
tion is partitioned into intervals of consecutive stages (which are then
replicated and assigned to processors). In this report we investigate gen-
eral mappings, where stages may be partitioned without any constraint,
thereby allowing a better usage of processors and communication net-
work capabilities. The price to pay for general mappings is a dramatic
increase in the problem complexity. We show that computing the pe-
riod of a given general mapping is an NP-complete problem, and we
provide polynomial bounds to determine a (conservative) approximated
value. The bi-criteria mapping problem itself becomes NP-complete on
homogeneous platforms, while it is polynomial with interval mappings.
We design a set of efficient heuristics, which we compare with interval
mapping strategies through extensive simulations.

Keywords: pipelined applications, general mapping, interval mapping, throughput,
reliability, heterogeneous platforms, bi-criteria optimization, complexity, heuristics.

1

Contents

1 Introduction 2

2 Motivating example 2

3 Framework 5
3.1 Applicative framework . 5
3.2 Target platform . 5
3.3 Communication model . 6
3.4 Mapping problem . 7

4 Complexity results 9

5 Mixed integer linear program formulation to compute the period 10

6 Heuristics 12
6.1 Heuristics for period computation . 12
6.2 Mapping heuristics, class 1: partitioning stages then mapping 15

6.2.1 Partitioning stages . 15
6.2.2 Heuristics for mapping pre-defined subsets of intervals 18
6.2.3 Partitioning stages then mapping heuristics 23

6.3 Mapping heuristics, class 2: partitioning processors then mapping 23
6.3.1 Partitioning processors . 24
6.3.2 Partitioning processors then mapping 24

7 Experiments 26
7.1 Heuristics computing the period vs linear program 26
7.2 General vs interval mapping heuristics . 27

8 Conclusion 35

2 A. Benoit, H. L. Bouziane, Y. Robert

1 Introduction

This report deals with the problem of mapping pipelined applications on heterogeneous plat-
forms whose processors are subject to failures. We address a difficult bi-criteria problem,
namely deciding which tasks to replicate, and on which resources, in order to optimize the
reliability of the schedule, while guaranteeing a maximal period. On the one hand, the period
of a mapping is defined as the longest cycle time of a processor. Under a bounded multi-
port platform model with overlap [9], i.e., in which a processor can simultaneously receive,
compute and send data, the cycle time is the maximum among the times spent to perform
these operations for all processed data. Hence the period is the inverse of the throughput,
and measures the aggregate performance of the mapping. On the other hand, the reliability
of an application is the probability that all computations will be successfully performed. The
reliability is increased by replicating each stage on a set of processors: the application fails
to be executed only if processors involved in the execution of a same stage all fail during the
whole execution.

This report builds upon a thread of papers aiming at period and/or reliability optimiza-
tion. Computing a mapping minimizing the period has been studied in [12, 13] onto homo-
geneous platforms and later in [4] onto heterogeneous platforms. A first attempt to solve
the period/reliability problem can be found in our previous work [3], with the restriction that
mapping rules impose stages to be partitioned into intervals. Here we tackle the most difficult
framework, that of arbitrary general mappings. General mappings allow for the best usage
of processors and communication network capabilities, at the price of a dramatic increase in
the problem complexity.

We point out that the makespan/reliability problem has also been addressed in [6, 1, 8]
for general DAGs of operations. The paper [6] does not replicate the operations and has
thus a very limited impact on the reliability. Moreover, minimizing the makespan for a DAG
corresponds to minimizing the end-to-end delay, or latency, in a pipelined application, and is
therefore not directly related to period (i.e., throughput) optimization.

The rest of the report is organized as follows: the additional difficulties induced by general
mappings are illustrated by working out an example in Section 2; then we formally detail the
problem in Section 3, and establish complexity results in Section 4. Next in Section 5, we
introduce a linear program to compute the period of a given general mapping with replication
on fully heterogeneous platforms. Section 6 prensents several polynomial-time heuristics to
compute a mapping period as well as to solve the mapping problem. Section 7 is devoted to
experimental results. Finally, Section 8 provides some concluding remarks and directions for
future work.

2 Motivating example

Consider the example shown in Figure 1. Each stage of the pipeline is specified by the size
of its input/output data and a number of computations to be executed on each data set.
According to the pipelined execution model, all stages operate on an (possibly infinite) input
stream of data. As soon as the first output data of stage S3 is produced, the pipeline reaches
a steady state and periodically produces a result. The period depends on the mapping. For
instance, if we assume that S1 and S2 are both assigned to the same set of processors, while
S3 is assigned to other processors, we obtain the scenario shown in Figure 1. The notation

3

S1 S2 S3

input data size:

number of operations:

1

17 50 23

432

d1

d1

d1

d2

d2

d2

d3

d3

d3

d4

d4

d4

d5

d5

d5

d3

d4

d5

d4

d5

d5d2

d3

d4

d5

d5

d4

d3

d2

d1

S1, S2

S2 → S3

S3

res1 res5res4res3res2

0 7654321

Figure 1: A pipelined application with three stages S1, S2, S3, and its periodic execution;
d1, . . . , d5 are the first five data sets entering the pipeline, and res1, . . . , res5 are the corre-
sponding results.

Si → Si+1 denotes a remote communication from the processor assigned to Si to the one
assigned to Si+1. For this example, the period of the mapping is 1, which means that a
new data set enters the pipeline every time unit. To execute the application, we target
a platform composed of 12 heterogeneous processors P1, ..., P12 interconnected as a virtual
clique. Processors have different speeds (s1 = 45 operations per time unit for processors
P1 to P6, and s2 = 55 for P7 to P12) and different network card capacities (B1 = 20 data
emitted/received per time unit for P1 to P6, and B2 = 28 for P7 to P12). Network links are
homogeneous (identical bandwidth b = 10 data per time unit). In addition, we assume that
processors are subject to unrecoverable failures: each processor has a probability f = 0.15 to
fail during the whole application execution.

As stated above, to map the application onto the target platform, we can use either inter-
val mappings, or general mappings. These two mapping rules are combined with replication
strategies to increase the reliability. But to avoid producing redundant results if two or more
processors assigned to the same stage(s) do not fail, a consensus protocol is enforced. The
protocol elects one surviving processor as the sender of the output result to all processors ex-
ecuting the next stage. Intuitively, this election aims at choosing the surviving processor that
allows for the fastest output communications. The goal is to partition the stages into subsets
(intervals or arbitrary sets) and to assign processors to these subsets, so as to maximizing the
reliability (or minimizing the failure probability), given a threshold on the period that should
not be exceeded.

Figure 2 and Figure 3 show, in order, an optimal interval and general mapping, when
the threshold period is set to Pmax = 1. We now provide a comparison of these mappings.
For the optimal interval mapping, each stage S1 to S3 is an interval. The period is the
maximum cycle time over all processors P1, .., P12. Recall that we assume an overlap of
communications and computations (see Figure 1). The cycle time of processor P1 is CT1 =
max

(
2
10 ,

2
20 ,

17
45 ,

3
10 ,

3∗4
20

)
= 0.6. The first and second terms correspond to input data (size 2,

link bandwidth 10, input network card 20), the third to computations (stage weight 17 divided
by speed 45), the fourth and the last to output data (size 3, sent 4 times, link bandwidth

4 A. Benoit, H. L. Bouziane, Y. Robert

10, output network card 20). Similarly, CT2 = CT3 = CT4 = 0.6, CT5 = CT6 = 0.57,
CT7 = CT8 = CT9 = CT10 = 0.91 and CT11 = CT12 = 0.42. Note that P7, . . . , P10 are
critical resources, as they reach the largest cycle time. This time determines the period
reachable in the case where for instance processors P4 and P5 fail (see Figure 2).

S1

S1

S1

S1

S2

S2

S2

S2

S3

S3

S3

S3

P1

P2

P3

P4

P11

P12

P7

P8

P5

P6

P9

P10

S1

S1

S1

S1

S2

S2

S2

S2

S3

S3

S3

S3

P1

P2

P3

P4

P11

P12

P7

P8

P5

P6

P9

P10

Figure 2: An interval mapping with a failure configuration reaching the worst-case period: P8, P9 and P10

have failed. Colored processors are elected.

P1

S1

P2

S1

P3

S1

P4

S4

P5

S1

P6

S1

P1

S3

P2

S3

P3

S3

P4

S3

P5

S3

P6

S3

P7

S2

P8

S2

P9

S2

P10

S2

P11

S2

P12

S4

P7

S2

P8

S2

P11

S2

P12

S4
P6

S1

P5

S1

P4

S4

P3

S1

P2

S1

P6

S3

P5

S3

P4

S3

P3

S3

P2

S3

P1

S1
P1

S3

P10

S2

P9

S2

Figure 3: A general mapping, where the worst-case period is reduced by electing different processors for S1

and S3. Colored processors are elected.

For the optimal general mapping shown in Figure 3, stages are partitioned into 2 subsets
{S1, S3} and {S2}. At first sight, the period of the mapping could be thought to be the
maximum cycle time of all processors, as for interval mappings. For instance, we compute
CT1 = max

(
2
10 ,

4
10 ,

2+4
20 ,

17+23
45 , 3

10 ,
1
10 ,

3∗6+1
20

)
= 0.95. The first three terms correspond to input

data (size 2 for S1 and 4 for S3, link bandwidth 10, input network card 20). The fourth term
corresponds to computations (sum of stage weights 17+23 divided by speed 45), while the last
terms correspond to output data (size 3 for S1 and 1 for S3, sent 6 times, link bandwidth 10,
output network card 20). Similarly, we obtain CTi = 0.95 if i ≤ 6 and and CTi = 0.91 if
i ≥ 7. But these times assume that the same processor is elected to send the results of both
S1 and S3. If different processors are elected for both stages, outgoing communication times
may be reduced. Indeed, see Figure 3, where the maximum cycle time becomes CT1 = 0.9
rather than 0.95. In fact, computing the period of a given general mapping will be shown
NP-complete in Section 4 (as opposed to interval mappings, where identifying the critical
resource is easy).

5

The failure probability F for both interval and general mappings is computed as 1 minus
the probability that the execution is successful. This happens if and only if all subsets are
successful. In turn, a given subset fails if and only if all its assigned processors fail. For the
interval mapping of Figure 2, Fint = 1− (1− 0.154) ∗ (1− 0.154) ∗ (1− 0.154) = 0.0015, and
for the general mapping of Figure 3, Fgen = 1− (1− 0.156) ∗ (1− 0.156) = 0, 000023. These
values are the smallest that can be obtained among the exponential number of all possible
interval and general mapping solutions. The general mapping reaches a better result, as it
enables the assignment of both S1 and S3 on the same processors, thereby allowing to explore
a larger solution space. At the same time, it better exploits the target platform capabilities
(processors and links), while satisfying the period constraint. Altogether, general mappings
turn out much more complicated than interval mappings, but may considerably improve the
performance results for the bi-criteria period/reliability optimization problem.

3 Framework

3.1 Applicative framework

A pipelined application is composed of n ordered stages Si, 1 ≤ i ≤ n, which continuously
operate on a stream of data. When input data are fed into the pipeline, they are processed
from stage to stage, until they exit the last stage Sn. In other words, each stage Si receives an
input data, of size δi−1, from the previous stage Si−1, performs a computation composed of wi
operations, and produces an output data, of size δi. The computation of a stage is periodically
repeated on each input data in the pipeline stream. The input (respectively output) of the
stream is initially produced (finally consumed) by an extra stage S0 (respectively Sn+1). A
graphical representation of a pipelined application is shown in Figure 4.

... ...S2 Sk SnS1

δ1 δk−1 δk

wnwkw2w1

δ0 δn

Figure 4: Overview of a pipelined application.

3.2 Target platform

The target platform is composed of p+2 processors: p computing processors Pu (1 ≤ u ≤ p) are
dedicated to host stages Si (1 ≤ i ≤ n), while P0 (also denoted as Pin) and Pp+1 (also denoted
as Pout) are special processors devoted to host the extra stages S0 and Sn+1. Therefore, Pin
is dedicated to store initial input data sets of the pipeline and Pout to receive and store the
final results. Each processor Pu (1 ≤ u ≤ p) has a speed denoted as su. That means Pu takes
X/su time units to execute X operation units. Processors may have identical speeds (su = s
for 1 ≤ u ≤ p). In this case a platform is said to be SpeedHom (homogeneous in speed). On
the opposite, the platform is SpeedHet .

As shown in Figure 5, all processors are interconnected as a virtual clique. A link between
any two processors Pu, Pv (0 ≤ u, v ≤ p + 1) is bidirectional and has a bandwidth denoted
as bu,v. Note that a physical link between any processor pair is not required. Instead, the
connection of Pu to Pv may be done through a switch or a path composed of several physical

6 A. Benoit, H. L. Bouziane, Y. Robert

links. In this latter case, bu,v is the bandwidth of the slowest physical link in the path. When
the links are identical (bu,v = b for all 0 ≤ u, v ≤ p+ 1), the platform is said to be LinkHom.
This is the case for instance in parallel machines. Alternatively, the platform is LinkHet , like
in grid infrastructures.

In addition to link bandwidths, the total communication capacity of a processor is limited
by its own input/output network card capacity. Formally, we denote by Bi

u and Bo
u the

input and output card capacity of processor Pu. Thus, Pu cannot receive more than Bi
u data

units nor send more than Bo
u data units per time unit. When all processors have same card

capacities (Bi
u = Bi, Bo

u = Bo, for all 1 ≤ u ≤ p), the platform is said to be CardHom.
This is often true when processors are identical (parallel machines, homogeneous clusters).
Otherwise, the platform is said to be CardHet .

The platform is assumed to be subject to failures. We consider only fail-silent processor
failures without recovering. Thus, a processor can only perform correct actions before even-
tually crashing (no transient errors). In addition, communication links are assumed to be
reliable, hence no data is lost. For the mapping optimization problem, we need to measure
the reliability of used processors. This is given by the failure probability fu (0 < fu < 1)
of each processor Pu (1 ≤ u ≤ p). This failure probability is assumed to be constant, i.e.,
the same during the whole execution time of a pipelined application. This is because we tar-
get a steady-state execution, for instance a scenario with resources loaning/renting. In such
a scenario, resources could be suddenly reclaimed by their owners, as during an episode of
cycle-stealing [2, 5, 11]. Also, there is no time upper bound for the execution of a streaming
application which may involve an arbitrary number of data sets, so the failure probability
cannot depend upon execution time. As a consequence, the failure probability should be seen
as a global indicator of the reliability of a processor. When the failure probabilities of all
processors are identical (fu = f for all 1 ≤ u ≤ p), the platform is said FailHom. Otherwise,
it is said FailHet .

Finally, a target platform can be specified according to different combinations of processors
and links properties. In this work we consider the most general case of Fully Heterogeneous
platforms (FullHet). These platforms are both SpeedHet , CardHet , LinkHet and FailHet .

3.3 Communication model

In the present work, we assume that communications between processors follow the bounded
multi-port model [9]. In other words, multiple communications can take place simultaneously
on a same communication link. This assumes the ability to initiate multiple concurrent
incoming and outgoing communications, and to share the link bandwidth. This can be done by
using multi-threaded communication libraries like MPICH2 [10]. The bounded characteristic

PvPu

bv,outbin,u

su bu,v sv

P0 Pp+1

Figure 5: The target platform.

7

of simultaneous communications is related to the fact that each communication is allotted a
bandwidth fraction of the network card, and the sum of these fractions cannot exceed the total
capacity of the card. Moreover, we assume full overlap of communications and computations:
a stage can simultaneously receive, compute and send independent data. This assumption is
reasonable as most state-of-the-art processors are running multi-threaded operating systems
capable of such an overlap.

3.4 Mapping problem

Mapping a pipelined application is the process of allocating target execution processors to
the pipeline stages. To decide how the stages are assigned to processors, different rules may
be adopted. For instance, in a one-to-one mapping, each stage is assigned to a distinct
processor, and each processor processes only one single stage. A less restrictive rule, interval
mapping, is such that a processor may process a consecutive subset of stages. Last, the general
mapping allows a processor to be assigned any subset of stages. In this section we introduce
both interval and general mappings. Whe then focuses on general mappings to extend our
previous study of interval mappings presented in [3].

In the following, a formal definition is given for interval and general mappings as well
as for the adopted replication model to deal with processors failures. The period and failure
probability of a pipelined application are then expressed for a given mapping.

Interval and general mappings: in an interval or a general mapping (with replication),
stages Si (1 ≤ i ≤ n) are partitioned into m ≤ n intervals and each interval is assigned to
a distinct set of processors. This consists in partitioning the interval of stages indices [1..n]
into m intervals Ij = [dj , ej], where dj ≤ ej for 1 ≤ j ≤ m, d1 = 1, dj+1 = ej + 1 for
1 ≤ j ≤ m− 1 and em = n. Each interval Ij is mapped to one set of processors whose indices
belong to alloc(dj). In such a mapping, alloc(i) = alloc(dj) for dj ≤ i ≤ ej . The difference
between interval mapping and general mapping comes from the fact that in interval mapping,
a processor can not be assigned more than one interval, i.e., alloc(dj) ∩ alloc(dj′) = ∅ for
1 ≤ j, j′ ≤ m, j 6= j′. While in a general mapping, a processor can process multiple intervals.
The set of intervals {[dj , ej]|1 ≤ j ≤ m} is then partinionned into l subsets (l ≤ m). We denote
by subSetk (k ≤ l) a set of intervals, and by allocS(subSetk) = alloc(dj) (Ij ∈ subSetk) the
set of processors assigned to subSetk. Finally, a processor can not be assigned more than one
subset, i.e., allocS(subSetk) ∩ allocS(subSetk′) = ∅ for 1 ≤ k, k′ ≤ l, k 6= k′.

Replication model: as discussed in Section 3.2, processors are subject to failures. To deal
with such failures, we adopt an active replication protocol. In more details, all processors
Pu (u ∈ allocS(subSetk), 1 ≤ k ≤ l) process the same assigned subset of intervals on the
same input data. Therefore, the output data of an interval Ij ∈ subSetk has to be sent to all
processors Pv with v ∈ alloc(dj+1). To avoid redundant input data, a consensus protocol [14]
is executed by surviving processors Pu (u ∈ allocS(subSetk)) after the execution of each in-
terval Ij ∈ subSetk on an input data. The consensus aims at electing a processor per interval
Ij ∈ subSetk as the sole one that will send the output data of Ij to all surviving processors
Pv. Note that if |subSetk| ≥ 2 and |allocS(subSetk) ≥ 2, different processors may be elected
for different intervals in subSetk. The replication protocol is illustrated in Figure 6, where
all processors are surviving. This protocol allows to pay at most

∑
Ij∈subSetk |alloc(dj+1)|

8 A. Benoit, H. L. Bouziane, Y. Robert

outgoing communications by an elected processor (according to the bounded multi-port com-
munication model) and |subSetk′ | incoming communications by Pv, where Ij+1 ∈ subSetk′ .
In the scope of this report, we assume that communications intrinsic to the consensus have a
negligible overhead. Hence, only the multiple outgoing communications executed by elected
processors are accounted for in the performance model.

δ2

P1

P2

S3

S4, S5
S3P4

S1, S2

S3

S4, S5

δ3
S3
P8P0

S0

δ0

δ5

S1, S2
P1

P4

P3

P5

Figure 6: Replication model. Each processor periodically receives input data from elected predecessors (on
the plain incoming arrow), executes all assigned intervals, exchanges extra messages (on dashed vertical arrows)
with processors allocated to the same intervals, agrees upon which processor (filled circle) for each assigned
interval has to send the result (on plain outgoing arrows) to all the successors allocated to the next interval.

Period: as stated and proved after in Section 4, computing the period P of a given mapping
in the most general case of general mapping with replication on Fully Heterogeneous platforms
is NP-complete. Therefore, computing the period will rely on a linear programming and
heuristics based solutions (Section 5 and Section 6.1). However, we note that in the restrictive
case of interval mapping, P can be computed by the following formula:

P = max
1≤j≤m

max
u∈alloc(dj)

max

{
δdj−1

min
v∈alloc(dj−1)

min(bv,u,Bi
u)
,

Pej
i=dj

wi

su
,

δej

min
v∈alloc(dj+1)

(bu,v) ,
|alloc(dj+1)|δej

Bo
u

}
.

(1)

This formula considers the worst case scenario, where only one processor Pu allocated
to interval Ij (u ∈ alloc(dj)) is surviving, while all processors allocated to Ij+1 are alive.
The formula for Pu accounts for input data (one communication from the slowest processor
assigned to interval Ij−1, hence the minimum taken on link and network card bandwidths), for
computations, and for output data (constraint on each communication link, on the network
card, and there is a total of |alloc(dj+1)| communications). Last, by considering the maximum
of these cycle times for u ∈ alloc(dj), the period is the global maximum over all intervals.

For general mapping, a similar principle for computing the cycle time of a processor is
reused later, but with considering multiple intervals assignment to a same processor as well
as possibly crached processors.

Failure probability: the failure probability F of a pipelined application in the most general
situation of general mapping on Fully Heterogeneous platforms is computed by the following

9

formula:

F = 1−
∏

1≤k≤l

(
1−

∏
u∈allocS(subSetk)

fu

)
. (2)

This formula is obtained from the fact that the execution of an application is successful if
and only if there remains at least one surviving processor among processors allocated to each
set subSetk of intervals, i.e., for 1 ≤ k ≤ l.

In the rest of this report, our aim is to determine a general mapping minimizing the failure
probability F given a threshold period Pmax. The mapping must be such that P ≤ Pmax.
Note that such a constraint may reduce the solution space of this optimization problem to a
subset of available processors. In fact, a processor may not satisfy this constraint, in which
case, we assume that this processor is not assigned any interval.

4 Complexity results

Consider a given general mapping, and assume (for the sake of the analysis) that we know
which processors have failed. The following result shows that computing the resulting period
is NP-complete.

Definition 1. Consensus problem. Given a mapping, a set of failing processors, and a
bound on the period P, select one sending processor per interval so that the achieved period
is less than or equal to P.

Theorem 1. Consensus is NP-complete.

Considering a general mapping again, assume now that the set of failing processors is not
known in advance (which is the realistic hypothesis in practice). For each failure configuration,
there is a period that can be achieved. It is natural to ask what is the worst-case period, defined
as the largest of these periods, over all possible failure configurations. However, depending
upon the mapping, we may have an exponential number of such configurations, so we don’t
even know whether the worst-case period problem belongs to the class NP. However, consider
a no-failure mapping, defined as a mapping where no processor can fail for the execution to
be successful. It turns out that even for such (expectedly simpler) mappings, computing the
period (which is then also the worst-case period, as the empty set is the only possible failure
configuration), remains an NP-complete problem:

Theorem 2. Computing the (worst-case) period of a no-failure mapping is NP-complete.

Note that Theorem 1 is a consequence of Theorem 2, hence we only provide the proof of
the latter.

Proof. The decision problem is obviously in NP. For the completeness, we use a reduction
from an instance I1 of 3-Partition [7]: given 3n positive integers a1, a2, . . . , a3n whose sum
is nB, such that B

4 < ai <
B
2 for all i, can we partition them into n triples Tj of sum

B? The instance I2 of our problem is given by the following mapping of 7n + 1 stages (of
identical weight 1/4) onto 4n+ 1 unit-speed processors labeled K1 to Kn and U0 to U3n. All
communication cards have capacity B + 1, and all links have bandwidth B. For i ≤ n, stage

10 A. Benoit, H. L. Bouziane, Y. Robert

Si is assigned to processor Ki. Then for 0 ≤ i ≤ 3n, stage Sn+2i+1 is assigned to processor Ui,
while in alternation for 1 ≤ i ≤ 3n, stage Sn+2i is assigned to the set K = {K1,K2, . . . ,Kn}
(replication on all processors Ki). Finally, δi = 1 for 0 ≤ i ≤ n, δn+2i+1 = B

n for 0 ≤ i ≤ 3n
(outgoing communication from Ui), and δn+2i = ai for 1 ≤ i ≤ 3n (outgoing communication
from the i-th instance of K). Here is an example with n = 2:

1→ K1
1→ K2

1→ U0

B
n→ K a1→ U1

B
n→ K a2→ U2

B
n→ K

a3→ U3

B
n→ K a4→ U4

B
n→ K a5→ U5

B
n→ K a6→ U6

B
n→

Because of the first n stages, no Ki can fail. Since each Ui is the unique processor assigned
to its stage, no processor can fail during a successful execution, and we do have a no-failure
mapping. We ask whether we can achieve a period P = 1.

Suppose first that I1 has a solution with n triples Tj . For ai ∈ Tj , we elect Kj for the
outgoing communication of size ai (that is also the communication incoming to Ui). Each Kj

has a total outgoing volume of B + 1: the first communication of size 1, and the three of size
ai, whose sum is B. Each Kj is assigned 4 stages of weight 1/4. We easily check that the
resulting period is P = 1, hence a solution to I2.

Suppose now that I2 has a solution with P = 1. The total volume outgoing of the set K
is n(B + 1). No Ki can send more than B + 1, so they all send exactly B + 1. This leads to
the desired partition for the solution of I2.

5 Mixed integer linear program formulation to compute the
period

This section studies an optimal solution to the Consensus problem. As stated in Section 4,
this problem is NP-complete for general mappings on FullHet platforms. Thus, we introduce
a mixed integer linear program that computes a consensus reaching the minimum period for
a given general mapping and for a configuration of processors failures.

We recall that a pipelined application is composed of n stages to be mapped onto a target
platform of p processors, plus two fictitious extra stages S0 and Sn+1 respectively assigned to
two extra processors P0 and Pp+1. We start by introducing the parameters of the program
and its variables. Then, we describe the linear constraints of the problem:

Parameters:

• n: number of application stages, except S0, Sn+1.

• p: number of target platform processors, except P0, Pp+1.

• δi (i ∈ [0..n]): the size of output data of stage Si.

• wi (i ∈ [1..n]): the workload of stage Si.

• su (u ∈ [1..p]): the speed of processor Pu.

• Bi
u (u ∈ [1..p]): the input network card capacity of processor Pu.

• Bo
u (u ∈ [1..p]): the output network card capacity of processor Pu.

11

• bu,v (u, v ∈ [0..p+ 1], u 6= v): the bandwidth of link Pu ↔ Pv.

• surviving = {u|Pu is surviving (0 ≤ u ≤ p + 1)}: the set determining the surviving
processors in the input mapping. All processors Pv (1 ≤ v ≤ p) with v /∈ surviving are
assumed to be crashed. Hypothesis: 0 ∈ surviving and p+ 1 ∈ surviving.

• ∆i,u (i ∈ [0..n + 1] and u ∈ surviving): a boolean variable equal to 1 if stage Si is
assigned to surviving processor Pu. Hypothesis: ∆0,0 = ∆n+1,p+1 = 1, ∆0,u = 0 for
(1 ≤ u ≤ p+1), ∆n+1,u = 0 for (0 ≤ u ≤ p), ∆i,0 = 0 for (1 ≤ i ≤ n+1) and ∆i,p+1 = 0
for (0 ≤ i ≤ n).

Decision variables:

• P : the period to minimize.

• xi,u (i ∈ [0..n], u ∈ surviving): a boolean variable equal to 1 if Pu is elected for stage Si
(i ∈ [0..n]). Hypothesis: x0,0 = 1, x0,u = 0 for (1 ≤ u ≤ p+ 1), xi,0 = 0 for (1 ≤ i ≤ n)
and xi,p+1 = 0 for (0 ≤ i ≤ n).

Constraints:

• Conditions to elect a processor:

– A processor Pu may be elected for stage Si if it is allocated to this stage:

∀i ∈ [1..n],∀u ∈ surviving, xi,u ≤ ∆i,u

– Only one processor is elected for each stage of the pipeline:

∀i ∈ [1..n],
∑
u

∆i,uxi,u = 1

• Cycle time of processors:

– The computation load of each surviving processor is expressed as:

∀u ∈ surviving,
∑
i

wi
su

∆i,u ≤ P

– Outgoing communications1 are done by an elected processor and are expressed as:

∀u, v ∈ surviving,
∑
i

δi∆i+1,v(1−∆i,v)
bu,v

xi,u ≤ P

∀u ∈ surviving,
∑
i

δi
∑

v ∆i+1,v(1−∆i,v)
Bo
u

xi,u ≤ P

Note that these constraints assume an elected processor to be aware about crashing
processors. Thus output data are sent to surviving processors only.

1Recall that communications follow the multi-port model with overlap.

12 A. Benoit, H. L. Bouziane, Y. Robert

– Incoming communications1 done by any surviving processor are expressed as:

∀u, v ∈ surviving,
∑
i

δi−1∆i,u(1−∆i−1,u)
bv,u

xi−1,v ≤ P

∀u ∈ surviving,
∑
i

δi−1∆i,u(1−∆i−1,u)
Bi
u

≤ P

Objective function: we aim at finding values for each variable xi,u in order to minimize P ,
given that all constraints are satisfied.

6 Heuristics

In this section, we first propose heuristics for computing (in fact, approximating) the period
of a given general mapping with replication. Then, we propose heuristics for determining
a mapping which optimizes the failure probability F under a fixed period bound Pmax. We
study several strategies to partition application stages into subsets of intervals which will be
assigned to processor sets. We propose two classes of mapping heuristics. In the first class
(Section 6.2), interval subsets are computed before addressing their mapping. In the second
class (Section 6.3), processors are grouped into sets before addressing their assignment, and
interval subsets are computed on the fly during the mapping process. We aim at exploring
quite a large set of mapping solutions, in order to produce a final mapping with small failure
probability.

6.1 Heuristics for period computation

As stated in Section 4, computing the worst-case period for general mapping on FullHet
platforms with replication is NP-complete. For a given mapping and a failure configuration,
this period depends on elected processors performing remote outgoing communications over
all interval subsets. We thus propose four heuristics2 that explore different election strategies.
Once a processor is elected for each interval in each interval subsets, the cycle-time of surviving
processors can be computed, thus a corresponding period. The heuristics aim at computing
a small reachable worst-case period.

Before presenting heuristics, we introduce how the cycle-time of a processor is computed.
According to the communication and replication models introduced in Section 3.3, the cycle-
time of a surviving processor Pu allocated to an interval subset subSetk is computed as the
maximum between the time needed to 1) compute intervals in subSetk, 2) to receive input
data from each remote elected processor assigned to an interval Ij−1 with Ij assigned to Pu,
and 3) to send output data to remote surviving successors of Pu allocated to each interval
Ij+1 such that Pu is elected for Ij . Algorithm 1 details how the cycle-time of a processor is
computed. This algorithm is applied by the following heuristics when computing the period
for a given mapping. We recall that the period is defined as the biggest cycle-time over all
surviving processors (denoted by surviving).

2Heuristics computing the period are designed for general mappings with replication and without any
processor allocation constraints (a same processor may be allocated to different interval subsets).

13

Algorithm 1: Compute the cycle-time of a surviving processor Pu given a mapping, a
failure configuration and an elected processor by each stage of the pipeline.

begin
// Workload
Initialize a set Stagesu with all stages Si (1 ≤ i ≤ n) assigned to Pu
loadu =

P
Si∈Stagesu

wi

su

// Outgoing communications
Initialize a set Electedforu with all stages Si (1 ≤ i ≤ n) for which Pu is elected
and such that u /∈ alloc(i+ 1). For each stage in Electedforu, Pu performs a
remote outgoing communication
sentu =

P
i∈Electedforu

δi|alloc(i+1)∩surviving|
Bo

u

foreach surviving processor Pv successor of Pu do
// a successor Pv is such that v ∈ alloc(i+ 1), i ∈ Electedforu
commo

u,v =
∑

i∈Electedforu
δimapping[i+1][v]

bu,v

// mapping[j][r] = 1 if stage Sj is assigned to processor Pr
end
Set commo

u to the maximum obtained value commo
u,v

// Incoming communications
recvu =

∑
i∈Stagesu

δi−1(1−mapping[i−1][u])
Bi

u

foreach elected processor Pv predecessor of Pu do
// a predecessor Pv is such that v ∈ alloc(i− 1) and i− 1 /∈ Stagesu
Initialize a set Electedforv with all stages Si (0 ≤ i ≤ n) for which Pv is elected
and such that v /∈ alloc(i+ 1).
commi

v,u =
∑

i∈Electedforv
δi(mapping[i+1][u])

bv,u

end
Set commi

u to the maximum obtained value commi
v,u

return max(loadu, commo
u, comm

i
u)

end

14 A. Benoit, H. L. Bouziane, Y. Robert

Random: random election – For each stage of a pipeline, this heuristic randomly elects a
surviving assigned processor. Once all stages are treated, the heuristic returns the biggest
cycle time of surviving processors as the period of the mapping. This heuristic is detailed
in Algorithm 2. Note that only the election for the last stage of an interval assigned to a
processor accounts for a remote communication. All local communications are negligible.

Algorithm 2: Random heuristic: greedy election of processors for a given mapping
and a given failure configuration (crashed processors). The heuristic returns the resulted
mapping period.

begin
for i = 1 to n do

Perform a random election of a surviving processor Pu (1 ≤ u ≤ p) allocated to
stage Si
Mark this processor as elected for Si

end
foreach u ∈ surviving do

Compute the cycle-time of Pu by applying Algorithm 1
end
return the biggest resulted cycle-time (equal to the period)

end

MaxBout: biggest Bout – For each stage of a pipeline, this heuristic elects the surviving
assigned processor with the biggest Bout (for fast data emission). Once all stages are treated,
the heuristic returns the biggest cycle time of surviving processors as the period of the map-
ping. This heuristic is detailed in Algorithm 3. Only the election for the last stage of an
interval assigned to a processor accounts for a remote communication.

Algorithm 3: MaxBout heuristic: greedy election of processors with the biggest Bo.
The heuristic returns the resulted mapping period.

begin
for i = 1 to n do

Elect a surviving processor Pu (1 ≤ u ≤ p) allocated to stage Si, having the
biggest Bo

u

Mark this processor as elected for Si
end
foreach u ∈ surviving do

Compute the cycle-time of Pu by applying Algorithm 1
end
return the biggest resulted cycle-time (equal to the period)

end

MinComm: minimum communication time – This heuristic attempts to minimize output
communications of elected processors in a set allocS(subSetk). It starts by considering each
stage which is allocated to only one processor, and this processor is elected for this stage
(no other alternative). In a second step, the heuristic repeatedly elects a processor for the

15

stage Si with the biggest time needed to send its output data on a communication link to
another surviving processor. The elected processor is one of those achieving the smallest
outgoing communication time. This time considers all other stages for which this processor is
already elected. If a stage Si and its successor Si+1 are assigned to exactly the same surviving
processors, a processor is randomly elected for Si and results to negligible communications.
Once all stages are treated, the heuristic computes and returns the period of the mapping.
This heuristic is detailed in Algorithm 4.

MinNbProcs: smallest number of processors – This heuristic gives a priority to stages
with less alternatives to design an elected processor. It also attempts to minimize output
communications of elected processors. The heuristic repeatedly elects a processor for the
stage Si with the smallest number of assigned processors (surviving ones). If equality, the
stage with largest output data messages (δi(|alloc(i+1)∩surviving)\alloc(i)|) has the priority.
The elected processor is one of those achieving the smallest outgoing communication time.
This time considers all other stages for which this processor is already elected. In addition,
if a stage Si and its successor Si+1 are assigned to exactly the same surviving processors, a
processor is randomly elected for Si and results to negligible communications. Once all stages
are treated, the heuristic computes and returns the period of the mapping. This heuristic is
detailed in Algorithm 5.

In the following, both Random, MaxBout, MinComm and MinNbProcs heuristics
are applied when computing a mapping. The smallest result provided by these heuristics is
defined as the period of the mapping.

6.2 Mapping heuristics, class 1: partitioning stages then mapping

This class of mapping heuristics extends heuristics defined for interval mappings [3] to the
case of general mappings. As in [3] there are two steps: first, a pipeline is partitioned into
subsets of intervals. Then, these subsets are mapped onto the platform in such a way that
the period bound is satisfied, and the reliability of the mapping is computed. We try several
partitioning techniques, and keep the solution which returns the most reliable mapping.

6.2.1 Partitioning stages

The partitioning phase returns different partitions created by varying the number of target
interval subsets and some partitioning criteria. In more details, stages are distributed over
k subsets of intervals, with 1 ≤ k ≤ min(n, p), according to one of the following criteria:

• Communication cost: the stage with smallest output data size (δi) is affected to the inter-
val subset minimizing the maximum between the workload (

∑
Ij=[dj ,ej]∈subSetk

∑
i∈Ij wi)

of the subset and its output data size (
∑

Ij=[dj ,ej]∈subSetk δej). Thus, costly computations
can be avoided and longest remote communications can be replaced by local memory
accesses on a processor. Heuristics using this partitioning criteria are identified by a
prefix PartStc.

• Computation cost: stages are distributed over l interval subsets such that the computa-
tion load of each subset approximates the average

Pn
i=1 wi

l . Then, costly interval subsets
in terms of computation may be reduced. Heuristics using this partitioning criteria are
identified by a prefix PartStw.

16 A. Benoit, H. L. Bouziane, Y. Robert

Algorithm 4: MinComm heuristic: election of processors resulting to fastest outgoing
communications. The heuristic returns the resulted mapping period.

begin
foreach surviving processor Pu (1 ≤ u ≤ p) do

Initialize a set Setu of stages to empty. This set will contain stages for which Pu
is elected
foreach Si assigned to Pu do

if alloc(i) = {u} then
Add Si to Setu

end
end

end
foreach Si /∈ Setu (1 ≤ u ≤ p) do

if alloc(i) ∩ surviving = alloc(i+ 1) ∩ surviving then
// no remote outgoing communications are needed
Add Si to Setv, where v ∈ alloc(i) ∩ surviving is randomly chosen to be
elected

end
end
Order all stages not belonging to a set Setu (1 ≤ u ≤ p) by decreasing order of
output data transfer times in list Li. This time is expressed as:

δi
min(u∈alloc(i)∩surviving, v∈(alloc(i+1)∩surviving)\alloc(i))(bu,v)

foreach Si ∈ Li in order do
Add Si to Setu such that processor Pu (1 ≤ u ≤ p) results to the smallest value:

max(
|(alloc(i+1)∩surviving)\alloc(i)|∗δi+

P
Sk∈Setu

|(alloc(k+1)∩surviving)\alloc(k)|∗δk
Bo

u
,

maxv∈(alloc(i+1)∩surviving)\alloc(i)
δi+

P
Sk∈Setu

δkmapping[k+1][v](1−mapping[k][v])
bu,v

)

Pu becomes elected for Si
end
foreach u ∈ surviving do

Compute the cycle-time of Pu by applying Algorithm 1
end
return the biggest resulted cycle-time (equal to the period)

end

17

Algorithm 5: MinNbProcs heuristic: election of processors with fastest outgoing
communications and with election priority for stages assigned to smallest number of
surviving processors. The heuristic returns the resulted mapping period.

begin
foreach surviving processor Pu (1 ≤ u ≤ p) do

Initialize a set Setu of stages to empty. This set will contain stages for which Pu
is elected

end
foreach Si /∈ Setu (1 ≤ u ≤ p) do

if alloc(i) ∩ surviving = alloc(i+ 1) ∩ surviving then
// no remote outgoing communications are needed
Add Si to Setv, where v ∈ alloc(i) ∩ surviving is randomly chosen to be
elected

end
end
Order all stages not belonging to a set Setu (1 ≤ u ≤ p) by increasing order of
|alloc(i) ∩ surviving| in list Li. In the case of equivalent values, order concerned
stages by decreasing order of (δi(|alloc(i+ 1) ∩ surviving) \ alloc(i)|)
foreach Si ∈ Li in order do

Add Si to Setu such that processor Pu (1 ≤ u ≤ p) results to the smallest value:

max(
|(alloc(i+1)∩surviving)\alloc(i)|∗δi+

P
Sk∈Setu

|(alloc(k+1)∩surviving)\alloc(k)|∗δk
Bo

u
,

maxv∈(alloc(i+1)∩surviving)\alloc(i)
δi+

P
Sk∈Setu

δkmapping[k+1][v](1−mapping[k][v])
bu,v

)

Pu becomes elected for Si
end
foreach u ∈ surviving do

Compute the cycle-time of Pu by applying Algorithm 1
end
return the biggest resulted cycle-time (equal to the period)

end

18 A. Benoit, H. L. Bouziane, Y. Robert

• Random partitioning: each stage is randomly affected to one of the k interval subsets.
Heuristics using this criteria are identified by a prefix PartStr.

These different ways adopted for creating interval subsets aim at providing a good trade-
off when mapping costly stages, in terms of computations and/or communication, on FullHet
platforms.

6.2.2 Heuristics for mapping pre-defined subsets of intervals

In this section, we propose four heuristics and derive some variants. These heuristics differ in
the way processors are allocated over input subsets of intervals and in the priority to order
the assignment of these subsets. Input subsets are formed according to one of the previous
partitioning criteria.

Small: smallest fu – This greedy heuristic starts by randomly assigning each subset of
intervals to one processor satisfying the period constraint. Then, it repeatedly assigns the
subset with the highest failure probability to the more reliable processor. After all proces-
sors are considered, the heuristic attempts to improve the global failure probability. For
that, it repeatedly performs a fusion of the subset having the highest failure probability with
another subset such that the resulting failure probability is smaller than the original one
(Algorithm 10). The fusion process is done as long as the failure probability of the whole
mapping can be decreased and the period bound is still satisfied. The Small heuristic is
further detailed in Algorithm 6.

Algorithm 6: Small heuristic: greedy mapping of l given subsets of intervals to most
reliable processors, under a fixed period Pmax.

begin
for k = 1 to l do

Assign subSetk to a non-used processor Pu randomly selected and satisfying the
period Pmax. The period of the current mapping is computed by applying
Random, MaxBout, MinComm, MinNbProcs heuristics and by retaining
the smallest result
If success, mark Pu as used

end
Order remaining non-used processors Pu by increasing failure probability fu in
list Lp
foreach Pu ∈ Lp in order do

Allocate Pu to the set subSetk with the highest failure probability and for
which Pu satisfies the period Pmax (application of Random, MaxBout,
MinComm, MinNbProcs heuristics)
If success, mark Pu as used

end
Apply Algorithm 10 (fusion) to improve the failure probability of the current
mapping

end

19

Snake: snake allocation – This heuristic starts by assigning each subset of intervals to the
most reliable processor satisfying the period constraint. In a second step, each subset is as-
signed to the least reliable processor, and steps are repeatedly alternated. After all subsets
and processors are treated, the heuristic attempts to improve the failure probability of the
resulting mapping. For that, it performs the same fusion step as done by the Small heuristic
(application of Algorithm 10). The Snake heuristic is further detailed in Algorithm 7. From
this heuristic, we can derive some variants, depending upon the order in which subsets of inter-
vals are considered for assignment. We define two variants Snake-c and Snake-w. Snake-c
considers a decreasing order of output data size (

∑
Ij=[dj ,ej]∈subSetk δej), while Snake-w con-

siders subsets in a decreasing order of their workload (
∑

Ij=[dj ,ej]∈subSetk
∑ej

i=dj
wi). Therefore,

the mapping priority is given to costly subsets in terms of either output communications or
workload.

Algorithm 7: Snake heuristic: snake allocation of p processors to l given subsets of
intervals, under a fixed period Pmax.

begin
Order processors Pu, 1 ≤ u ≤ p by increasing failure probability fu in list Lp
Order input sets subSetk (1 ≤ k ≤ l) by decreasing workload
(
∑

Ij=[dj ,ej]∈subSetk
∑ej

i=dj
wi) in list Ls (or decreasing output data size, i.e.,

(
∑

Ij=[dj ,ej]∈subSetk δej))
for i = 1 to roundUpInt(pl) do

foreach subSetk ∈ Ls in order do
Assign subSetk to the first processor Pu found in Lp that satisfies the period
Pmax. The mapping period is computed by applying Random, MaxBout,
MinComm, MinNbProcs heuristics and by retaining the smallest result
If success, remove Pu from Lp

end
Inverse the order of processors in Lp

end
Order remaining non-used processors Pu by increasing failure probability fu in
list Lp
foreach Pu ∈ Lp in order do

Allocate Pu to the set subSetk with the biggest failure probability and for which
Pu satisfies the period Pmax (application of Random, MaxBout, MinComm,
MinNbProcs heuristics)

end
Apply Algorithm 10 (fusion) to improve failure probability of the resulted mapping

end

BCT: biggest cycle-time – this heuristic repeatedly considers each subset of intervals and
searches the most critical processor, i.e., the processor with the longest cycle-time satisfying
the period constraint, and allocates it to this subset. Once all subsets and processors have been
treated, the heuristic attempts to improve the failure probability of the resulting mapping: it
applies Algorithm 10, as done by previous heuristics. The BCT heuristic is further detailed in
Algorithm 8. We can also derive some variants, depending upon the order in which subsets of
intervals are treated. As for the Snake heuristic, we define two variants BCT-c and BCT-

20 A. Benoit, H. L. Bouziane, Y. Robert

w. BCT-c (respectively BCT-w) considers a decreasing order of output data size (resp.
workload). We recall that the objective of such variants is to give a priority for mapping
costly subsets of intervals.

Algorithm 8: BCT heuristic: mapping l given subsets of intervals on critical proces-
sors, under a fixed period Pmax.

begin
Order input sets subSetk (1 ≤ k ≤ l) by decreasing computation load
(
∑

Ij=[dj ,ej]∈subSetk
∑ej

i=dj
wi) in list Ls (or decreasing output data size, i.e.

(
∑

Ij=[dj ,ej]∈subSetk δej))
for i = 1 to roundedToUpperInt(pl) do

// p is the number of processors.
foreach subSetk ∈ Ls in order do

Assign subSetk to the non-used processor Pu resulting to biggest cycle-time
and satisfying the period Pmax. The mapping period is computed by
applying Random, MaxBout, MinComm, MinNbProcs heuristics and
by retaining the smallest result
If success, mark Pu as used

end
end
Order remaining non-used processors Pu by increasing failure probability fu in
list Lp
foreach Pu ∈ Lp in order do

Allocate Pu to the set subSetk with the biggest failure probability and for which
Pu satisfies the period Pmax (application of Random, MaxBout, MinComm,
MinNbProcs heuristics)

end
Apply Algorithm 10 (fusion) to improve failure probability of the resulted mapping

end

Bal: balancing failure probabilities – This heuristic assigns each subset of intervals to a set
of most critical processors, i.e., with the longest cycle-time satisfying the period constraint.
A set allocS(subSetk) of processors allocated to a subset subSetk of intervals is such that the
product of processors failure probabilities

∏
u∈allocS(subSetk) fu approximates the average value

(l

√∏
u∈[1..p] fu) (p is the number of all processors and l the number of all subsets subSetk).

When all subsets of intervals are assigned, the heuristic attempts to improve the failure
probability of the computed mapping by applying the fusion algorithm (Algorithm 10). The
Bal heuristic is further detailed in Algorithm 9. As for Snake and BCT heuristics, we
define two variants of the Bal one: Bal-c and Bal-w. Bal-c (respectively Bal-w) treats the
subsets of intervals in a decreasing order of their output data size (resp. their workload). The
objective is still to provide a mapping priority for costly subsets of intervals.

21

Algorithm 9: Bal heuristic: mapping l given subsets of intervals with balancing their
failure probabilities, under a fixed period Pmax.

begin
Order input sets subSetk (1 ≤ k ≤ l) by decreasing computation load
(
∑

Ij=[dj ,ej]∈subSetk
∑ej

i=dj
wi) in list Ls (or decreasing output data size, i.e.,

(
∑

Ij=[dj ,ej]∈subSetk δej))
foreach subSetk ∈ Ls in order do

Assign subSetk to a set of non-used processors procs of Pu(1 ≤ u ≤ p) with∏
u∈allocS(subSetk) fu ≈ (l

√∏
u∈[1..p] fu) and which result to the largest

cycle-times satisfying the period Pmax. The mapping period is computed by
applying Random, MaxBout, MinComm, MinNbProcs heuristics and by
retaining the smallest result
If success, mark each processor in procs as used

end
Order remaining non-used processors Pu by increasing failure probability fu in
list Lp
foreach Pu ∈ Lp in order do

Allocate Pu to the set subSetk with the highest failure probability and for
which the period Pmax is satisfied (application of Random, MaxBout,
MinComm, MinNbProcs heuristics)

end
Apply Algorithm 10 (fusion) to improve failure probability of the resulted mapping

end

22 A. Benoit, H. L. Bouziane, Y. Robert

Algorithm 10: Fusion of subsets of intervals for a given mapping with initially l subsets
to decrease failure probability F , under a fixed period Pmax.

begin
while it is possible to decrease F and there are at least 2 subsets of intervals do

// Step 1
Find subSetk (1 ≤ k ≤ l) in the current mapping with the highest failure
probability
// Step 2
repeat

Fusion subSetk with any non tested subSetk′ (subSetk 6= subSetk′)
Discard processors among those initially assigned to subSetk and subSetk′

and non-used ones that do not satisfy the period Pmax (application of
Random, MaxBout, MinComm, MinNbProcs heuristics) after fusion
Discarded processors become non-used
Mark subSetk′ as tested for fusion with subSetk
if the fusion decreases the failure probability of the initial mapping then

Retain the new resulting mapping
end
else

Ignore the fusion
Mark subSetk′ as tested

end
until the fusion decreases the failure probability OR there is another non tested
subset

end
Order remaining non-used processors Pu by increasing failure probability fu in
list Lp
foreach Pu ∈ Lp in order do

Allocate Pu to the set subSetk with the biggest failure probability and for which
Pu satisfies the period Pmax (application of Random, MaxBout, MinComm,
MinNbProcs heuristics)

end
end

23

6.2.3 Partitioning stages then mapping heuristics

Once interval subsets for a pipelined application have been created according to a partitioning
criterion, they are mapped by using one of the mapping heuristics. With three partitioning
criteria and four proposed mapping strategies, each one with eventually three variants, we
obtain a total of 21 heuristics. Algorithm 11 details the PartStr-Snake-c heuristic. The
other heuristics work in a similar way, with different variants.

Algorithm 11: PartStr-Snake-c heuristic: computing a general mapping optimiz-
ing F , under a fixed period Pmax.

begin
Initialize the failure probability of the application F to 1
for l = 1 to min(n, p) do

// Step 1: create subsets of intervals according to a random affectation.
Initialize l subsets of intervals to empty
repeat

foreach subSetk (1 ≤ k ≤ l) do
Add a stage randomly chosen among those not yet affected to a subset

end
until all stages are affected to a subset
// Step 2: compute a mapping for the created subsets of intervals.
Apply Algorithm 7 on the l created subsets ordered according to their output
data size
Compute the failure probability Ft of the resulted mapping (if a subset is not
assigned to any processor, set Ft to 1)
Accept the mapping with min(Ft,F) and set F to this value

end
// Step 3: return a mapping solution.
if Ft = 1 then

return ”failure”
end
Return a mapping solution among the min(n, p) computed ones with the final
failure probability F
return ”success”

end

6.3 Mapping heuristics, class 2: partitioning processors then mapping

Differently from the previous class, heuristics in class 2 start by partitioning the available
processors into disjoint sets. Then, stages are assigned to these sets in such a way the pe-
riod bound is satisfied. The objective of partitioning processors before mapping is to group
processors according to close speeds that may respond to performance requirement for exe-
cuting a same interval subset. Different partitions of processors are explored and the mapping
resulting to the smallest failure probability is retained.

24 A. Benoit, H. L. Bouziane, Y. Robert

6.3.1 Partitioning processors

This partitioning phase returns different partitions of the platform processors P1, ..., Pp. Each
partition groups a set of processors with close speeds and such that the failure probability
of each set approximates the average failure probability of the p processors. In more details,
processors are handled in decreasing (or increasing) order of their speeds and then, are split
into q sets, with 1 ≤ q ≤ min(n, p). Each set has a failure probability close to (q

√∏
u∈[1..p] fu).

This partitioning solution aims at enabling maximum processor speed exploitation when
sets of stages will be assigned, while promoting the balancing of failure probabilities for final
interval subsets.

6.3.2 Partitioning processors then mapping

Mapping heuristics follow a same principle. Each heuristic repeatedly attempts to assign a
stage Si (1 ≤ i ≤ n) to a set of processors created by the partition phase. The chosen processor
set is the one achieving the smallest period and such that the bound Pmax is satisfied. Once
all stages are treated, mapped interval subsets are resulted. Heuristics attempt to improve
the failure probability of derived mapping. For that, they repeatedly try to allocate the
most reliable processor among possibly not assigned ones to the interval subsets with the
biggest failure probability. They also apply the fusion process as done by heuristics in class 1
(Algorithm 10). Finally, different partitions of processors are explored and the mapping
reaching to the smallest failure probability is returned.

The difference between heuristics in this class resides in the mapping order of stages. In the
present work, we define two heuristics according to two orders. The first order gives a mapping
priority to stages with biggest output data size. Associated heuristic is named PartPrc. The
second order gives the priority to stages with biggest workload (wi). Associated heuristic is
named PartPrw. Without lost of generality, Algorithm 12 details the principle of PartPrw
heuristic.

25

Algorithm 12: PartPrw heuristic: computing a general mapping optimizing F , under
a fixed period Pmax.

begin
Sort processors P1, ..., Pp by decreasing order of their speed in list Lp
Sort stages S1, ..., Sn by decreasing order of their workload (wi) in list Ls
Initialize the failure probability of the application F to 1
for q = 1 to min(n, p) do

Initialize sets SetPr (1 ≤ r ≤ q) of processors to empty
// Distribute processors over SetPr sets.
foreach SetPr do

repeat
Add the first processor in Lp that is not yet affected to a set

until SetPr verifies
∏
u∈SetPr

fu ≈ (q

√∏
u∈[1..p] fu)

end
// Assign stages to SetPr sets.
foreach Si ∈ Ls in order do

Assign Si to the set SetPr resulting to the smallest period satisfying Pmax.
The period is computed by applying Random, MaxBout, MinComm,
MinNbProcs heuristics and by retaining the smallest result

end
// At this point, some processor sets may be allocated no stage.
Order remaining non-used processors Pu by increasing failure probability fu in
list Lp
foreach Pu ∈ Lp in order do

Allocate Pu to the set subSetk with the biggest failure probability and for
which Pu satisfies the period Pmax (application of Random, MaxBout,
MinComm, MinNbProcs heuristics)

end
// Try to improve the current mapping.
Apply Algorithm 10 (fusion) to improve failure probability of the resulted
mapping
// Compute current F .
Compute the failure probability Ft of the resulted mapping (if some stages are
not assigned to any processor, set Ft to 1)
Accept the mapping with min(Ft,F) and set F to this value

end
// Return a mapping solution.
if Ft = 1 then

return ”failure”
end
Return a mapping solution among the min(n, p) computed ones with the final
failure probability F
return ”success”

end

26 A. Benoit, H. L. Bouziane, Y. Robert

7 Experiments

This section reports experimental results assessing the performance of the heuristics. We first
focus on heuristics solving the Consensus problem. Then, we deal with mapping heuristics.
All the heuristics have been developed using C/C++ and the gcc compiler version 4.3.2. The
reader can find the corresponding source code at:
http://graal.ens-lyon.fr/~hbouzian/code/gen-FT-FullHet.tgz.

7.1 Heuristics computing the period vs linear program

To measure the performance of the Random, MaxBout, MinComm and MinNbProcs
heuristics, we have simulated consensus scenarios on randomly generated mappings (with
randomly generated applications and heterogeneous platforms). We compare the results with
the optimal period obtained by the mixed integer linear program presented in Section 5. For
implementing and executing this program, we used the CPLEX Interactive Optimizer version
11.2.0.

In more details, we have simulated scenarios for applications with n stages, where n is
varying from 2 to 120, and platforms with 10, 30 and 100 processors. The workload wi of
stages have been set to double values chosen in interval [1, 20] and input/output data sizes
δi to integer values in [1, 25]. For processors, the speed (su) has been set to double values
belonging to interval [1, 20], and the input/output network card capacity (Bi

u, B
o
u) to double

values chosen in [1, 10], like the links bandwidths (bu,v). Last, to generate a mapping, we
have randomly chosen a placement for each stage on a randomly chosen set of processors.
Experiments have been executed on a 32-bit Pentium 1.6 GHz processor with 1GB of RAM.

 10

 20

 30

 40

 50

 60

 70

 2 4 6 8 10 12 14 16 18 20

P
er

io
d

nb stages (10 processors)

(s:[1,20], b:[1,10], w:[1,20], d:[1,25])

Random
MaxBout
MinCom

MinNbProcs
Linear p

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 10 20 30 40 50

P
er

io
d

nb stages (30 processors)

(s:[1,20], b:[1,10], w:[1,20], d:[1,25])

Random
MaxBout

MinComm
MinNbProcs

Linear p

 100

 1000

 20 40 60 80 100 120

P
er

io
d

nb stages (100 processors)

(s:[1,20], b:[1,10], w:[1,20], d:[1,25])

Random
MaxBout

MinComm
MinNbProcs

Linear p

Figure 7: Heuristics vs linear program to solve the Consensus problem. Comparison of the
average behavior for randomly generated mappings on FullHet platforms.

Figure 7 shows the average behavior of the heuristics and the linear program when the
size of applications and platforms varies. The relative deviation of the periods returned by

http://graal.ens-lyon.fr/~hbouzian/code/gen-FT-FullHet.tgz

27

 1

 10

 100

 1000

 20 40 60 80 100 120

E
x
ec

u
ti

o
n

 t
im

e
in

 m
se

c
nb stages (100 processors)

(s:[1,20], b:[1,10], w:[1,20], d:[1,25])

Random
MaxBout

MinComm
MinNbProcs

Linear p

Figure 8: Average execution duration of the linear program and heuristics for the experiment
done on 100 processors (Figure 7).

heuristics compared to the optimal result, for all simulated scenarios, are also reported in
Table 1. We see that Random and MaxBout diverge from the optimal solution when the
processor number increases. However, heuristics MinComm and MinNbProcs are still
close to the optimal solution (with a small difference). The good performance of these latter
two heuristics shows the relevance of considering the costs of outgoing communications (both
emission and transfer times). Attempting to minimize costly communications, and electing
more than one surviving processor per assigned subset of intervals, proves very effective in
reducing the cycle time of a processor, thus the period.

We have also measured the execution times of heuristics and linear program, in particular,
for large simulated platforms (p = 100) and for applications with n = 20, 40, ...120 (Figure 8).
We have observed that the linear program is on average between 527 and 627 times slower
than the fastest heuristics MaxBout and Random, while it is between 9 and 13 (resp.
12 and 22) times slower than MinComm (resp. MinNbProcs) heuristics. These latter
heuristics require more complex operations (browsing multiple tables) in the implementation
for processor election.

Finally, we conclude that we can reach satisfying results to the consensus problem with
small execution costs, thanks to the proposed heuristics. For the rest of the experiments, we
execute the previous four heuristics and retain the smallest result to estimate the period of a
given mapping.

7.2 General vs interval mapping heuristics

The second set of experiments aims at evaluating the performance of general mapping heuris-
tics proposed in Section 6.2 and Section 6.3. This evaluation is done through the simulation
of several mapping scenarios for applications, and for heterogeneous platforms with different
sizes. The performance of the heuristics is expressed by their ability to achieve a small failure
probability, under a period bound Pmax. We compare the results with those obtained by
interval mapping heuristics presented in [3].

In more details, we have generated applications with 16 and 24 stages. The workload
of these stages has been set to double values randomly chosen in interval [1, 100] and in-
put/output data sizes to integer values in [1, 5]. The mapping is determined on platforms
with 16, 32 and 64 processors. Processor speeds have been set to double values randomly
chosen in interval [10, 20], the input/output network card capacity and the links bandwidths
to double values chosen in [1, 10]. The failure probabilities have been randomly generated

28 A. Benoit, H. L. Bouziane, Y. Robert

max av. stdv. best rate
Random 9.082 0.342 0.873 62.20%

p = 10 MaxBout 3.903 0.049 0.225 86.80%
500 MinComm 3.196 0.049 0.279 92.80%

scenarios MinNbProcs 0.217 0.001 0.015 99.00%
Linear p 0.000 0.000 0.000 100.00 %

Random 6.157 0.768 1.068 26.00%
p = 30 MaxBout 1.641 0.138 0.253 57.60%

250 MinComm 3.674 0.032 0.263 95.20%
scenarios MinNbProcs 0.209 0.001 0.013 99.60%

Linear p 0.000 0.000 0.000 100.00 %

Random 11.861 1.769 1.501 1.17%
p = 100 MaxBout 4.870 1.573 0.800 2.50%

600 MinComm 0.631 0.007 0.047 94.83%
scenarios MinNbProcs 0.208 0.002 0.015 95.67%

Linear p 0.000 0.000 0.000 100.00 %

Table 1: Heuristics vs linear program to solve the Consensus problem (maximum, average
and standard relative deviation of the period for 1350 consensus instances).

between 0.05 and 0.3. Lastly, we have selected different period bounds varying between 1.5
and 12.5. The simulations have been executed on four machines: a quad-processor machine
(64-bit AMD Opteron at 2.2GHz) with 32 GB of RAM, two quad-processor machines (64-bit
AMD Opteron at 2.3GHz) with 32 GB of RAM and a quad-processor machine (64-bit AMD
Opteron at 2.4GHz) with 80 GB of RAM.

Results over different configurations: Figures 9, 10, 11, 12 and 13 compare the variants
of heuristics using general mapping and interval mapping models. There are six pairs of plots
in each Figure. Each pair reports the average results obtained for a set of given configuration
of applications and platforms and for different period bounds. It compare the average failure
probabilities obtained by interval (on the left) and general mapping (on the right) heuristics
using a similar mapping approach (except for the heuristics belonging to class 2). Recall that
general mapping heuristics in class 1 extend previously designed interval mapping heuris-
tics [3]. While in class 2, different mapping strategies are adopted, even if they both rely on
progressive partitioning and mapping.

From each figure, we first observe that general mapping heuristics can behave better when
the number of processors increases. In fact, in such a situation, enabling non consecutive inter-
vals to be mapped on a larger set of processors have a more relevant impact on decreasing the
final failure probability. In addition, the improvement resulted by general mapping heuristics
appears when the period bound is not too small (failure probability close to 1) nor too large
(failure probability close to 0). In fact, a small period bound can easily lead to costly intervals
(in term of workloads) or subsets of intervals (in terms of workloads and communications).
Therefore, both interval and general mapping models may fail to find a solution. The opposite
situation appears for large period bounds, where all heuristics may reach very small failure
probabilities. However, when the number of processors increases, general mapping heuristics
are able to reach such results earlier (according to the period bound evolution) than interval
mapping heuristics.

Summary: Table 2 sums up the behavior of interval and general mapping heuristics, over
all conducted experiments (5650 scenarios). For each interval (respectively general) mapping
heuristic, the table represents the relative failure probability compared to the smallest prob-

29

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Small
IPartr−Small

IPartw−Small
 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Small
GPartr−Small

GPartw−Small

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Small
IPartr−Small

IPartw−Small
 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y
Period (16 stages, 16 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Small
GPartr−Small

GPartw−Small

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Small
IPartr−Small

IPartw−Small

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Small
GPartr−Small

GPartw−Small

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[5,10], w:[1,100], d:[1,5])

IPartc−Small
IPartr−Small

IPartw−Small

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[5,10], w:[1,100], d:[1,5])

GPartc−Small
GPartr−Small

GPartw−Small

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Small
IPartr−Small

IPartw−Small

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Small
GPartr−Small

GPartw−Small

 0

 0.2

 0.4

 0.6

 0.8

 1

 4.5 5 5.5 6 6.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (24 stages, 64 processors)

(f:[0.15,0.3], s:[15,20], b:[5,10], w:[1,100], d:[1,5])

IPartc−Small
IPartr−Small

IPartw−Small

 0

 0.2

 0.4

 0.6

 0.8

 1

 4.5 5 5.5 6 6.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (24 stages, 64 processors)

(f:[0.15,0.3], s:[15,20], b:[5,10], w:[1,100], d:[1,5])

GPartc−Small
GPartr−Small

GPartw−Small

Figure 9: Comparison of {PartStc|PartStr|PartStw}-Small heuristic variants on FullHet
platforms. On the left column (respectively the right column), the results for interval mapping
(resp. general mapping)

30 A. Benoit, H. L. Bouziane, Y. Robert

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Snake−c
IPartc−Snake−w
IPartr−Snake−c

IPartr−Snake−w
IPartw−Snake−c

IPartw−Snake−w
 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Snake−c
GPartc−Snake−w
GPartr−Snake−c

GPartr−Snake−w
GPartw−Snake−c

GPartw−Snake−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Snake−c
IPartc−Snake−w
IPartr−Snake−c

IPartr−Snake−w
IPartw−Snake−c

IPartw−Snake−w
 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y
Period (16 stages, 16 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Snake−c
GPartc−Snake−w
GPartr−Snake−c

GPartr−Snake−w
GPartw−Snake−c

GPartw−Snake−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Snake−c
IPartc−Snake−w
IPartr−Snake−c

IPartr−Snake−w
IPartw−Snake−c

IPartw−Snake−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Snake−c
GPartc−Snake−w
GPartr−Snake−c

GPartr−Snake−w
GPartw−Snake−c

GPartw−Snake−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[5,10], w:[1,100], d:[1,5])

IPartc−Snake−c
IPartc−Snake−w
IPartr−Snake−c

IPartr−Snake−w
IPartw−Snake−c

IPartw−Snake−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[5,10], w:[1,100], d:[1,5])

GPartc−Snake−c
GPartc−Snake−w
GPartr−Snake−c

GPartr−Snake−w
GPartw−Snake−c

GPartw−Snake−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Snake−c
IPartc−Snake−w
IPartr−Snake−c

IPartr−Snake−w
IPartw−Snake−c

IPartw−Snake−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Snake−c
GPartc−Snake−w
GPartr−Snake−c

GPartr−Snake−w
GPartw−Snake−c

GPartw−Snake−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 4.5 5 5.5 6 6.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (24 stages, 64 processors)

(f:[0.15,0.3], s:[15,20], b:[5,10], w:[1,100], d:[1,5])

IPartc−Snake−c
IPartc−Snake−w
IPartr−Snake−c

IPartr−Snake−w
IPartw−Snake−c

IPartw−Snake−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 4.5 5 5.5 6 6.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (24 stages, 64 processors)

(f:[0.15,0.3], s:[15,20], b:[5,10], w:[1,100], d:[1,5])

GPartc−Snake−c
GPartc−Snake−w
GPartr−Snake−c

GPartr−Snake−w
GPartw−Snake−c

GPartw−Snake−w

Figure 10: Comparison of {PartStc|PartStr|PartStw}-Snake-{c|w} heuristic variants on
FullHet platforms. On the left column (respectively the right column), the results for interval
mapping (resp. general mapping)

31

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−BCT−c
IPartc−BCT−w
IPartr−BCT−c

IPartr−BCT−w
IPartw−BCT−c

IPartw−BCT−w
 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−BCT−c
GPartc−BCT−w
GPartr−BCT−c

GPartr−BCT−w
GPartw−BCT−c

GPartw−BCT−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−BCT−c
IPartc−BCT−w
IPartr−BCT−c

IPartr−BCT−w
IPartw−BCT−c

IPartw−BCT−w
 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y
Period (16 stages, 16 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−BCT−c
GPartc−BCT−w
GPartr−BCT−c

GPartr−BCT−w
GPartw−BCT−c

GPartw−BCT−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−BCT−c
IPartc−BCT−w
IPartr−BCT−c

IPartr−BCT−w
IPartw−BCT−c

IPartw−BCT−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−BCT−c
GPartc−BCT−w
GPartr−BCT−c

GPartr−BCT−w
GPartw−BCT−c

GPartw−BCT−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[5,10], w:[1,100], d:[1,5])

IPartc−BCT−c
IPartc−BCT−w
IPartr−BCT−c

IPartr−BCT−w
IPartw−BCT−c

IPartw−BCT−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[5,10], w:[1,100], d:[1,5])

GPartc−BCT−c
GPartc−BCT−w
GPartr−BCT−c

GPartr−BCT−w
GPartw−BCT−c

GPartw−BCT−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−BCT−c
IPartc−BCT−w
IPartr−BCT−c

IPartr−BCT−w
IPartw−BCT−c

IPartw−BCT−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−BCT−c
GPartc−BCT−w
GPartr−BCT−c

GPartr−BCT−w
GPartw−BCT−c

GPartw−BCT−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 4.5 5 5.5 6 6.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (24 stages, 64 processors)

(f:[0.15,0.3], s:[15,20], b:[5,10], w:[1,100], d:[1,5])

IPartc−BCT−c
IPartc−BCT−w
IPartr−BCT−c

IPartr−BCT−w
IPartw−BCT−c

IPartw−BCT−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 4.5 5 5.5 6 6.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (24 stages, 64 processors)

(f:[0.15,0.3], s:[15,20], b:[5,10], w:[1,100], d:[1,5])

GPartc−BCT−c
GPartc−BCT−w
GPartr−BCT−c

GPartr−BCT−w
GPartw−BCT−c

GPartw−BCT−w

Figure 11: Comparison of {PartStc|PartStr|PartStw}-BCT-{c|w} heuristic variants on
FullHet platforms. On the left column (respectively the right column), the results for interval
mapping (resp. general mapping)

32 A. Benoit, H. L. Bouziane, Y. Robert

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Bal−c
IPartc−Bal−w
IPartr−Bal−c

IPartr−Bal−w
IPartw−Bal−c

IPartw−Bal−w
 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Bal−c
GPartc−Bal−w
GPartr−Bal−c

GPartr−Bal−w
GPartw−Bal−c

GPartw−Bal−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Bal−c
IPartc−Bal−w
IPartr−Bal−c

IPartr−Bal−w
IPartw−Bal−c

IPartw−Bal−w
 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y
Period (16 stages, 16 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Bal−c
GPartc−Bal−w
GPartr−Bal−c

GPartr−Bal−w
GPartw−Bal−c

GPartw−Bal−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Bal−c
IPartc−Bal−w
IPartr−Bal−c

IPartr−Bal−w
IPartw−Bal−c

IPartw−Bal−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Bal−c
GPartc−Bal−w
GPartr−Bal−c

GPartr−Bal−w
GPartw−Bal−c

GPartw−Bal−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[5,10], w:[1,100], d:[1,5])

IPartc−Bal−c
IPartc−Bal−w
IPartr−Bal−c

IPartr−Bal−w
IPartw−Bal−c

IPartw−Bal−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[5,10], w:[1,100], d:[1,5])

GPartc−Bal−c
GPartc−Bal−w
GPartr−Bal−c

GPartr−Bal−w
GPartw−Bal−c

GPartw−Bal−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

IPartc−Bal−c
IPartc−Bal−w
IPartr−Bal−c

IPartr−Bal−w
IPartw−Bal−c

IPartw−Bal−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartc−Bal−c
GPartc−Bal−w
GPartr−Bal−c

GPartr−Bal−w
GPartw−Bal−c

GPartw−Bal−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 4.5 5 5.5 6 6.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (24 stages, 64 processors)

(f:[0.15,0.3], s:[15,20], b:[5,10], w:[1,100], d:[1,5])

IPartc−Bal−c
IPartc−Bal−w
IPartr−Bal−c

IPartr−Bal−w
IPartw−Bal−c

IPartw−Bal−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 4.5 5 5.5 6 6.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (24 stages, 64 processors)

(f:[0.15,0.3], s:[15,20], b:[5,10], w:[1,100], d:[1,5])

GPartc−Bal−c
GPartc−Bal−w
GPartr−Bal−c

GPartr−Bal−w
GPartw−Bal−c

GPartw−Bal−w

Figure 12: Comparison of {PartStc|PartStr|PartStw}-Bal-{c|w} heuristic variants on
FullHet platforms. On the left column (respectively the right column), the results for in-
terval mapping (resp. general mapping)

33

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

ISplitc−c
ISplitc−w
ISplitr−c

ISplitr−w
 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartProcs−c
GPartProcs−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 16 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

ISplitc−c
ISplitc−w
ISplitr−c

ISplitr−w
 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y
Period (16 stages, 16 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartProcs−c
GPartProcs−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

ISplitc−c
ISplitc−w
ISplitr−c

ISplitr−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartProcs−c
GPartProcs−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[5,10], w:[1,100], d:[1,5])

ISplitc−c
ISplitc−w
ISplitr−c

ISplitr−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5 12.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.15,0.3], s:[10,20], b:[5,10], w:[1,100], d:[1,5])

GPartProcs−c
GPartProcs−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

ISplitc−c
ISplitc−w
ISplitr−c

ISplitr−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 10.5 11.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (16 stages, 32 processors)

(f:[0.05,0.3], s:[10,20], b:[1,10], w:[1,100], d:[1,5])

GPartProcs−c
GPartProcs−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 4.5 5 5.5 6 6.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (24 stages, 64 processors)

(f:[0.15,0.3], s:[15,20], b:[5,10], w:[1,100], d:[1,5])

ISplitc−c
ISplitc−w
ISplitr−c

ISplitr−w

 0

 0.2

 0.4

 0.6

 0.8

 1

 4.5 5 5.5 6 6.5

F
ai

lu
re

 p
ro

b
ab

il
it

y

Period (24 stages, 64 processors)

(f:[0.15,0.3], s:[15,20], b:[5,10], w:[1,100], d:[1,5])

GPartProcs−c
GPartProcs−w

Figure 13: Comparison of {Splitc|Splitr}-{c|w} (for interval mapping) heuristic and Part-
Prc, PartPrw (for general mapping) on FullHet platforms.

34 A. Benoit, H. L. Bouziane, Y. Robert

Interval mappings General mappings
max av. stdv. best rate max av. stdv. best rate

PartStc-Small 925 2.2 14.8 28.8% 959 5.9 29.0 28.3%
PartStr-Small 135 1.7 5.2 1.6% 1001 4.5 26.6 3.2%
PartStw-Small 113 1.4 3.4 1.8% 65 0.7 2.2 4.8%
PartStc-Snake-c 677 2.3 13.8 1.1% 7269 7.4 101.9 5.5%
PartStc-Snake-w 269 1.7 7.3 2.4% 2830 6.9 56.6 4.9%
PartStr-Snake-c 257 2.1 7.5 1.6% 1924 5.1 37.6 2.6%
PartStr-Snake-w 241 1.4 5.5 2.5% 2804 4.6 43.7 4.0%
PartStw-Snake-c 161 1.9 5.4 1.0% 310 1.2 5.1 2.3%
PartStw-Snake-w 175 1.4 4.8 1.9% 219 1.1 4.2 1.5%
PartStc-BCT-c 2356 2.6 33.2 1.4% 5291 6.9 80.9 3.1%
PartStc-BCT-w 968 2.1 18.4 2.5% 2952 6.9 59.1 3.4%
PartStr-BCT-c 940 1.8 13.4 2.1% 3395 4.9 52.5 5.0%
PartStr-BCT-w 216 1.4 5.9 3.6% 2718 4.7 46.1 4.8%
PartStw-BCT-c 542 1.9 9.4 1.6% 77 1.0 3.1 1.2%
PartStw-BCT-w 234 1.7 6.1 2.5% 76 1.0 3.1 2.7%
PartStc-Bal-c 3539 4.2 48.9 1.4% 3196 7.3 60.4 3.0%
PartStc-Bal-w 1297 4.3 30.6 1.7% 4496 7.3 72.9 3.5%
PartStr-Bal-c 158 2.7 7.4 2.7% 2941 4.7 46.1 4.4%
PartStr-Bal-w 623 3.0 13.6 2.3% 1090 4.3 29.6 4.7%
PartStw-Bal-c 2238 3.9 36.4 2.9% 213 0.9 4.8 7.5%
PartStw-Bal-w 620 3.6 18.1 2.3% 186 0.9 4.1 11.5%
Splitc-c 175115 54.6 2359.5 5.9% no equivalent
Splitc-w 65161 46.4 1241.1 4.8% no equivalent
Splitr-c 482 1.3 7.5 11.4% no equivalent
Splitr-w 289 1.2 6.0 11.8% no equivalent
PartPrc no equivalent 298 2.4 8.5 2.8%
PartPrw no equivalent 90 0.4 1.7 22.6%

Table 2: Behavior of mapping heuristics across all experiments for interval and general map-
pings (maximum, average and standard relative deviation for 5650 mapping instances).

ability reached by an interval (respectively a general) mapping heuristic for each simulated
scenario. From the table, several conclusions may be drawn.

First, for class 1 heuristics, it can be noted that partitioning stages according to the
computation cost criterion (prefix PartStw) reaches better results when using a general
mapping model. In fact, when the workload of stages considerably varies, and when Pmax is
well chosen, using this criterion allows for a better grouping of less costly stages, possibly not
consecutive ones, in the same subset. This situation corresponds to the introductory example
in Section 2.

Next we observe that the majority of the heuristics has a much better rate of reaching the
smallest failure probability in the general mapping context. This is the case even if the rate
is quite low. However, the standard deviation does not follow this improvement. This may
be explained by the fact that heuristics may well considerably fail to reach a satisfying result
(column “max”). For example, the maximum relative value 175115, obtained for Splitc-
c heuristic, corresponds to a failure probability F = 0.2665271 against a minimum F =
0.0000015 reached by the PartStc-Bal-w heuristic. Several complex factors can explain these
results. In particular, all the mapping heuristics are based on the knowledge of only partial
properties of both applications and platforms. Another difficulty is added to the general
mapping heuristics, for which the estimation of the minimum worst-case period satisfying the
period bound may be less accurate.

Finally, it is difficult to distinguish dominant heuristics. A better approach to solve the
present optimization problem seems to use several heuristics, and to retain the best returned

35

max av. stdv. best rate
p = 16 Interval 1.824 0.063 0.170 67.15 %

2000 scenarios General 2.359 0.074 0.183 32.85 %

p = 32 Interval 27.169 0.298 1.066 57.84 %
3200 scenarios General 6.188 0.152 0.447 42.16 %

p = 64 Interval 17.788 2.193 2.770 27.11 %
450 scenarios General 10.690 0.030 0.508 72.89 %

Table 3: Interval vs general mapping: comparison of respective smallest failure probabilities
(F), over all experiments (maximum, average and standard relative deviation for 5650 results).

result. Following such an approach, Table 3 reports the results for interval and general
mappings over all experiments. For each model, all proposed heuristics are used. From this
table, it can be noted that a general mapping is able to achieve dramatically better mapping
results on large platforms.

8 Conclusion

This report contributes to the design of efficient scheduling and mapping strategies for
pipelined applications, on heterogeneous and failure-prone computational platforms. We have
focused on the most relevant bi-criteria optimization problem, namely computing a reliable
mapping while guaranteeing a given throughput. The main contribution is the study of gen-
eral mapping solutions, which extends the more limited interval mapping class considered
in [3].

We have first presented complexity results, that show a significant increase in the dif-
ficulty of the problem. In particular, computing the period of a given general mapping is
NP-complete even in the simplest case of no-failure mappings, while it is polynomial for in-
terval mappings in all cases. This led us to introduce polynomial algorithms to approximate
the period, and to develop a mixed linear program to compute the optimal solution. Exper-
imental results have shown the efficiency of our heuristics to approach the optimal period
for various problems sizes. Building upon these heuristics, we have addressed the bi-criteria
period/reliability optimization problem. We have designed polynomial general mapping al-
gorithms, and we have assessed, through an extensive set of experiments, their ability to
significantly improve the reliability of the solution returned by the best interval mapping.

The superiority of general mapping heuristics comes with a price in terms of execution
time. We typically report a few minutes for medium-size application/platform instances, as
opposed to a few seconds for interval mapping heuristics. Given the efficiency of the new
heuristics, it seems worth investigating more efforts to improve their design and decrease
their execution time. It would be also be very interesting to experiment our solutions for real
life applications and platforms.

36 A. Benoit, H. L. Bouziane, Y. Robert

References

[1] I. Assayad, A. Girault, and H. Kalla. A bi-criteria scheduling heuristics for distributed
embedded systems under reliability and real-time constraints. In Int. Conf. on Depend-
able Systems and Networks, DSN’04, pages 347–356. IEEE CS Press, 2004.

[2] B. Awerbuch, Y. Azar, A. Fiat, and F. Leighton. Making commitments in the face of
uncertainty: how to pick a winner almost every time. In 28th ACM Symp. on Theory of
Computing, pages 519–530. ACM Press, 1996.

[3] A. Benoit, H. L. Bouziane, and Y. Robert. Optimizing the reliability of pipelined appli-
cations under throughput constraints. In The 9th International Symposium on Parallel
and Distributed Computing (ISPDC 2010). IEEE CS Press, 2010. To appear; available
at graal.ens-lyon.fr/~abenoit.

[4] A. Benoit and Y. Robert. Mapping pipeline skeletons onto heterogeneous platforms. J.
Parallel and Distributed Computing, 68(6):790–808, 2008.

[5] S. Bhatt, F. Chung, F. Leighton, and A. Rosenberg. On optimal strategies for cycle-
stealing in networks of workstations. IEEE Trans. Computers, 46(5):545–557, 1997.

[6] A. Dogan and F. Özgüner. Matching and scheduling algorithms for minimizing execution
time and failure probability of applications in heterogeneous computing. IEEE Trans.
Parallel Dist. Systems, 13(3):308–323, 2002.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability, a Guide to the Theory of
NP-Completeness. W.H. Freeman and Company, 1979.

[8] A. Girault and H. Kalla. A novel bicriteria scheduling heuristics providing a guaranteed
global system failure rate. IEEE Trans. Dependable Secure Computing, 6(4):241–254,
2009.

[9] B. Hong and V. Prasanna. Bandwidth-aware resource allocation for heterogeneous com-
puting systems to maximize throughput. In Proceedings of the 32th International Con-
ference on Parallel Processing (ICPP’2003). IEEE Computer Society Press, 2003.

[10] N. Karonis, B. Toonen, and I. Foster. MPICH-G2: A grid-enabled implementation of the
message passing interface. J. Parallel and Distributed Computing, 63(5):551–563, 2003.

[11] A. Rosenberg. Optimal schedules for cycle-stealing in a network of workstations with
a bag-of-tasks workload. IEEE Trans. Parallel and Distributed Systems, 13(2):179–191,
2002.

[12] J. Subhlok and G. Vondran. Optimal mapping of sequences of data parallel tasks. In Proc.
5th ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming,
1995.

[13] J. Subhlok and G. Vondran. Optimal latency-throughput tradeoffs for data parallel
pipelines. In ACM Symposium on Parallel Algorithms and Architectures, 1996.

[14] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press, 2000.

graal.ens-lyon.fr/~abenoit

	1 Introduction
	2 Motivating example
	3 Framework
	3.1 Applicative framework
	3.2 Target platform
	3.3 Communication model
	3.4 Mapping problem

	4 Complexity results
	5 Mixed integer linear program formulation to compute the period
	6 Heuristics
	6.1 Heuristics for period computation
	6.2 Mapping heuristics, class 1: partitioning stages then mapping
	6.2.1 Partitioning stages
	6.2.2 Heuristics for mapping pre-defined subsets of intervals
	6.2.3 Partitioning stages then mapping heuristics

	6.3 Mapping heuristics, class 2: partitioning processors then mapping
	6.3.1 Partitioning processors
	6.3.2 Partitioning processors then mapping

	7 Experiments
	7.1 Heuristics computing the period vs linear program
	7.2 General vs interval mapping heuristics

	8 Conclusion

