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Abstract. One of the most promising technical innovations in present-
day computing is the invention of grid technologies which harness the
computational power of widely distributed collections of computers. How-
ever, the programming and optimisation burden of a low level approach
to grid computing is clearly unacceptable for large scale, complex appli-
cations. The development of grid applications can be simplified by using
high-level programming environments. In the present work, we address
the problem of the mapping of a high-level grid application onto the
computational resources. In order to optimise the mapping of the appli-
cation, we propose to automatically generate performance models from
the application using the process algebra PEPA. We target in this work
applications written with the high-level environment ASSIST, since the
use of such a structured environment allows us to automate the study of
the application more effectively.
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1 Introduction

A grid system is a geographically distributed collection of possibly parallel, in-
terconnected processing elements, which all run some form of common grid mid-
dleware (e.g. Globus services) [15]. The key idea behind grid-aware applications
is to make use of the aggregate power of distributed resources, thus benefiting
from a computing power that falls far beyond the current availability threshold
in a single site. However, developing programs able to exploit this potential is
highly programming intensive. Programmers must design concurrent programs
that can execute on large-scale platforms that cannot be assumed to be ho-
mogeneous, secure, reliable or centrally managed. They must then implement
these programs correctly and efficiently. As a result, in order to build efficient



grid-aware applications, programmers have to address the classical problems of
parallel computing as well as grid-specific ones:

1. Programming: code all the program details, take care about concurrency
exploitation, among the others: concurrent activities set up, mapping/scheduling,
communication/synchronisation handling and data allocation.

2. Mapping & Deploying: deploy application processes according to a suitable
mapping onto grid platforms. These may be highly heterogeneous in architecture
and performance. Moreover, they are organised in a cluster-of-clusters fashion,
thus exhibiting different connectivity properties among all pairs of platforms.

3. Dynamic environment: manage resource unreliability and dynamic avail-
ability, network topology, latency and bandwidth unsteadiness.

Hence, the number and quality of problems to be resolved in order to draw a
given QoS (in term of performance, robustness, etc.) from grid-aware applications
is quite large. The lesson learnt from parallel computing suggests that any low-
level approach to grid programming is likely to raise the programmer’s burden
to an unacceptable level for any real world application.

Therefore, we envision a layered, high-level programming model for the grid,
which is currently pursued by several research initiatives and programming envi-
ronments, such as ASSIST [21], eSkel [10], GrADS [19], ProActive [7], Ibis [20],
Higher Order Components [12, 13]. In such an environment, most of the grid
specific efforts are moved from programmers to grid tools and run-time systems.
Thus, the programmers have only the responsibility of organising the applica-
tion specific code, while the programming tools (i.e. the compiling tools and/or
the run-time systems) deal with the interaction with the grid, through collective
protocols and services [14].

In such a scenario, the QoS and performance constraints of the application
can either be specified at compile time or varying at run-time. In both cases, the
run-time system should actively operate in order to fulfil QoS requirements of
the application, since any static resource assignment may violate QoS constraints
due to the very uneven performance of grid resources over time. As an example,
ASSIST applications exploit an autonomic (self-optimisation) behaviour. They
may be equipped with a QoS contract describing the degree of performance the
application is required to provide. The ASSIST run-time environment tries to
keep the QoS contract valid for the duration of the application run despite pos-
sible variations of platforms’ performance at the level of grid fabric [6, 5]. The
autonomic features of an ASSIST application rely heavily on run-time applica-
tion monitoring, and thus they are not fully effective for application deployment
since the application is not yet running. In order to deploy an application onto
the grid, a suitable mapping of application processes onto grid platforms should
be established, and this process is quite critical for application performance.

This problem can be addressed by defining a performance model of an AS-
SIST application in order to statically optimise the mapping of the application
onto a heterogeneous environment, as shown in [1]. The model is generated from
the source code of the application, before the initial mapping. It is expressed
with the process algebra PEPA [17], designed for performance evaluation. The



use of a stochastic model allows us to take into account aspects of uncertainty
which are inherent to grid computing, and to use classical techniques of resolu-
tion based on Markov chains to obtain performance results. This static analysis
of the application is complementary with the autonomic reconfiguration of AS-
SIST applications, which works on a dynamic basis. In this work we concentrated
on the static part to optimise the mapping, while the dynamic management is
done at run-time. It is thus an orthogonal but complementary approach.

Structure of the paper. The next section introduces the ASSIST high-level
programming environment and its run-time support. Section 3 introduces the
Performance Evaluation Process Algebra PEPA, which can be used to model
ASSIST applications. These performance models help to optimise the mapping
of the application. We present our approach in Section 4, and give an overview
of future working directions. Finally, concluding remarks are given in Section 5.

2 The ASSIST environment and its run-time support

ASSIST (A Software System based on Integrated Skeleton Technology) is a pro-
gramming environment aimed at the development of distributed high-perfor-
mance applications [21, 3]. ASSIST applications should be compiled in binary
packages that can be deployed and run on grids, including those exhibiting het-
erogeneous platforms. Deployment and run is provided through standard mid-
dleware services (e.g. Globus) enriched with the ASSIST run-time support.

2.1 The ASSIST coordination language

ASSIST applications are described by means of a coordination language, which
can express arbitrary graphs of modules, interconnected by typed streams of
data. Each stream realises a one-way asynchronous channel between two sets
of endpoint modules: sources and sinks. Data items injected from sources are
broadcast to all sinks. All data items injected into a stream should match the
stream type.

Modules can be either sequential or parallel. A sequential module wraps a
sequential function. A parallel module (parmod) can be used to describe the
parallel execution of a number of sequential functions that are activated and
run as Virtual Processes (VPs) on items arriving from input streams. The VPs
may synchronise with the others through barriers. The sequential functions can
be programmed by using a standard sequential language (C, C++, Fortran).
A parmod may behave in a data-parallel (e.g. SPMD/for-all/apply-to-all) or
task-parallel (e.g. farm) way and it may exploit a distributed shared state that
survives the VPs lifespan. A module can nondeterministically accept from one or
more input streams a number of input items, which may be decomposed in parts
and used as function parameters to instantiate VPs according to the input and
distribution rules specified in the parmod. The VPs may send items or parts of
items onto the output streams, and these are gathered according to the output
rules. Details on the ASSIST coordination language can be found in [21, 3].
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Fig. 1. An ASSIST application and a QoS contract are compiled in a set of executable
codes and its meta-data [3]. This information is used to set up a processes network at
launch time.

2.2 The ASSIST run-time support

The ASSIST compiler translates a graph of modules into a network of processes.
As sketched in Fig. 1, sequential modules are translated into sequential processes,
while parallel modules are translated into a parametric (w.r.t. the parallelism
degree) network of processes: one Input Section Manager (ISM), one Output
Section Manager (OSM), and a set of Virtual Processes Managers (VPMs, each
of them running a set of Virtual Processes). The number of VMPs gives the
actual parallelism degree of a parmod instance. Also, a number of processes are
devoted to application QoS control, e.g. a Module Adaptation Manager (MAM),
and an Application Manager (AM) [6].

The processes that compose an ASSIST application communicate via AS-
SIST support channels. These can be implemented on top of a number of grid
middleware communication mechanisms (e.g. shared memory, TCP/IP, Globus,
CORBA-IIOP, SOAP-WS). The suitable communication mechanism between
each pair of processes is selected at launch time depending on the mapping of
the processes.

2.3 Towards fully grid-aware applications

ASSIST applications can already cope with platform heterogeneity [2], either
in space (various architectures) or in time (varying load) [6]. These are defi-
nite features of a grid, however they are not the only ones. Grids are usually
organised in sites on which processing elements are organised in networks with
private addresses allowing only outbound connections. Also, they are often fed
through job schedulers. In these cases, setting up a multi-site parallel application
onto the grid is a challenge in its own right (irrespectively of its performance).
Advance reservation, co-allocation, multi-site launching are currently hot topics
of research for a large part of the grid community. Nevertheless, many of these
problems should be targeted at the middleware layer level and they are largely



independent of the logical mapping of application processes on a suitable set of
resources, given that the mapping is consistent with deployment constraints.

In our work, we assume that the middleware level supplies (or will supply)
suitable services for co-allocation, staging and execution. These are actually the
minimal requirements in order to imagine the bare existence of any non-trivial,
multi-site parallel application. Thus we can analyse how to map an ASSIST
application, assuming that we can exploit middleware tools to deploy and launch
applications [11].

3 Introduction to performance evaluation and PEPA

In this section, we briefly introduce the Performance Evaluation Process Algebra
PEPA [17], with which we can model an ASSIST application. The use of a process
algebra allows us to include the aspects of uncertainty relative to both the grid
and the application, and to use standard methods to easily and quickly obtain
performance results.

The PEPA language provides a small set of combinators. These allow lan-
guage terms to be constructed defining the behaviour of components, via the
activities they undertake and the interactions between them. We can for in-
stance define constants, express the sequential behaviour of a given component,
a choice between different behaviours, and the direct interaction between compo-
nents. Timing information is associated with each activity. Thus, when enabled,
an activity a = (α, r) will delay for a period sampled from the negative ex-
ponential distribution which has parameter r. If several activities are enabled
concurrently, either in competition or independently, we assume that a race con-
dition exists between them.

The dynamic behaviour of a PEPA model is represented by the evolution of
its components, as governed by the operational semantics of PEPA terms [17].
Thus, as in classical process algebra, the semantics of each term is given via a
labelled multi-transition system (the multiplicity of arcs are significant). In the
transition system a state corresponds to each syntactic term of the language,
or derivative, and an arc represents the activity which causes one derivative to
evolve into another. The complete set of reachable states is termed the deriva-
tive set and these form the nodes of the derivation graph, which is formed by
applying the semantic rules exhaustively. The derivation graph is the basis of
the underlying Continuous Time Markov Chain (CTMC) which is used to derive
performance measures from a PEPA model. The graph is systematically reduced
to a form where it can be treated as the state transition diagram of the under-
lying CTMC. Each derivative is then a state in the CTMC. The transition rate
between two derivatives P and Q in the derivation graph is the rate at which
the system changes from behaving as component P to behaving as Q. Examples
of derivation graphs can be found in [17].

It is important to note that in our models the rates are represented as ran-
dom variables, not constant values. These random variables are exponentially
distributed. Repeated samples from the distribution will follow the distribution



and conform to the mean but individual samples may potentially take any pos-
itive value. The use of such distribution is quite realistic and it allows us to use
standard methods on CTMCs to readily obtain performance results. There are
indeed several methods and tools available for analysing PEPA models. Thus,
the PEPA Workbench [16] allows us to generate the state space of a PEPA model
and the infinitesimal generator matrix of the underlying Markov chain. The state
space of the model is represented as a sparse matrix. The PEPA Workbench can
then compute the steady-state probability distribution of the system, and per-
formance measures such as throughput and utilisation can be directly computed
from this.

4 Performance models of ASSIST applications

PEPA can easily be used to model an ASSIST application since such applications
are based on stream communications, and the graph structure deduced from
these streams can be modelled with PEPA. Given the probabilistic information
about the performance of each of the ASSIST modules and streams, we then
aim to find information about the global behaviour of the application, which
is expressed by the steady-state of the system. The model thus allows us to
predict the run-time behaviour of the application in the long time run, taking
into account information obtained from a static analysis of the program. This
behaviour is not known in advance, it is a result of the PEPA model.

4.1 PEPA model and performance results

The technical report [1] exposes in details how to model an ASSIST application
with PEPA in order to optimise the static mapping of the application. We give in
this paper only the general ideas of the approach, and we focus on the on-going
and future work, while technical results can be found in the report.

Each ASSIST module is represented as a PEPA component, and the different
components are synchronised through the streams of data to model the overall
application. The performance results obtained are the probabilities to be in
either of the states of the system. From this information, we can determine the
bottleneck of the system and decide the best way to map the application onto
the available resources.

The PEPA model is generated automatically from the ASSIST source code,
during a pre-compilation phase. This task is simplified thanks to some informa-
tion provided by the user directly in the source code, and particularly the rates
associated to the different activities of the PEPA model.

This approach has been introduced on an example of Data Mining classifi-
cation algorithm [18]. The structure of the application can be represented as a
graph, where the ASSIST modules are the nodes and the data streams the arcs.
The graph representing this application is displayed in Fig. 2 ➊. The algorithm
is designed according to the Divide&Conquer paradigm; all algorithms following
the same paradigm could be similarly implemented. It is implemented by means



of four modules: the start module is generating the inputs, while the end mod-
ule is collecting outputs. Modules DC c45 and CS c45 represent the core of the
algorithm. The DC c45 drives both Divide and Conquer phases: it outputs data
items, which are obtained from the split (Divide) or join (Conquer) of input
stream items. The CS c45 module behaves as “co-processor” of the first module:
it receives a data item and sorts it out in such a way that it can be split trivially.
Notice that this last module is the only computationally intensive module, while
the three others are not.

We have studied the behaviour of the application when mapped in two dif-
ferent ways.

– In the first case (Fig. 2 ➋), we map the loop onto the same cluster, and the
start and end modules onto another. This means that communications on
streams s1 and s4 are slow, while they are fast on s2 and s3.

– In the second case (Fig. 2 ➌), we split the loop into two parts, thus start,
end and DC c45 are on the same cluster while the computational part CS c45

is on the other cluster by itself. In this case, communications on s1 and s4
are fast, while they are slow on s2 and s3.
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Fig. 2. Graph representation of the classification algorithm (➊) and two different multi-
site deployments (➋, ➌).

The results allow us to determine the most efficient mapping, which is the
first one, since in this case most of the time is spend in the computational part
of the application. The performance results in the second case show that lot of
time is spent in the non-computationally intensive modules. This shows that the
computational intensive module is constantly waiting for data.

Notice however that it is up to the user to decide which mappings to study,
and an exhaustive study of all mappings is probably useless and may cost a lot.
The performance models help then to determine, between the mappings chosen
by the user, which one is the best.



4.2 Alternative approach to this analysis

The main aim of the analysis performed on the classification algorithm was to
compare alternative mappings. In fact, communication and computation rates
already include mapping peculiarities (speed of individual links and processors).
With the same technique it is also possible to conduct a predictive analysis.

Rates are assigned to the PEPA model solely on the basis of the application
logical behaviour, assuming uniform speed of connections and processors. In this
way, the result of the analysis is not representing a particular mapping, but it
rather highlights individual resources (links and processors) requirements, that
are used to label the application graph.

These labels represent the expected relative requirements of each module
(stream) with respect to other modules (streams) during the application run.
In the case of a module the described requirement can be interpreted as the
aggregate power of the site on which it will be mapped. On the other hand, a
stream requirement can be interpreted as the bandwidth of the network link on
which it will be mapped. The relative requirements of parmods and streams may
be used to implement mapping heuristics which assign more demanding parmods
to more powerful sites, and more demanding streams to links exhibiting higher
bandwidths. Whether a fully automatic application mapping is not required,
modules and streams requirements can be used to drive a user-assisted mapping
process.

Moreover, each parmod exhibits a structured parallelism pattern (a.k.a. skele-
ton). In many cases, it is thus possible to draw a reliable relationship between
the site fabric level information (number and kind of processors, processors and
network benchmarks) and the expected aggregate power of the site running
a given parmod exhibiting a parallelism pattern [5, 4, 9]. This may enable the
development of a mapping heuristic, which needs only information about sites
fabric level information, and can automatically derive the performance of a given
parmod on a given site.

4.3 Future work

The approach described here considers the ASSIST modules as blocks and does
not model the internal behaviour of each module. A more sophisticated approach
might be to consider using known models of individual modules and to integrate
these with the global ASSIST model, thus providing a more accurate indication
of the performance of the application. At this level of detail, distributed shared
memory and external services (e.g. DB, storage services, etc) interactions can
be taken into account and integrated to enrich the network of processes with
dummy nodes representing external services. PEPA models have already been
developed for pipeline or deal skeletons [8, 9], and we could integrate such models
when the parmod module has been adapted to follow such a pattern.

Analysis precision can be improved by taking into account historical (past
runs) or synthetic (benchmark) performance data of individual modules and their
communications. This kind of information should be scaled with respect to the



expected performances of fabric resources (platform and network performances),
which can be retrieved via the middleware information system (e.g. Globus GIS).

5 Conclusions

In this paper we have presented a way to automatically generate PEPA models
from an ASSIST application with the aim of improving the mapping of the
application. This is an important problem in grid application optimisation.

It is our belief that having an automated procedure to generate PEPA models
and obtain performance information may significantly assist in taking mapping
decisions. However, the impact of this mapping on the performance of the ap-
plication with real code requires further experimental verification. This work is
ongoing, and is coupled with further studies on more complex applications.

This ongoing research should be performed between two CoreGRID partners:
the ISTI CNR in Pisa, Italy (WP3 - Programming Model), and the ENS (CNRS)
in Lyon, France (WP6 - Institute on Resource Management and Scheduling).
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