
Salable Computing: Pratie and ExperieneVolume 6, Number 4, pp. 1�16. http://www.spe.org ISSN 1895-1767© 2005 SWPSEVALUATING THE PERFORMANCE OF PIPELINE-STRUCTURED PARALLELPROGRAMS WITH SKELETONS AND PROCESS ALGEBRA∗ANNE BENOIT† , MURRAY COLE , STEPHEN GILMORE , AND JANE HILLSTONAbstrat. We show in this paper how to evaluate the performane of pipeline-strutured parallel programs with skeletonsand proess algebra. Sine many appliations follow some ommonly used algorithmi skeletons, we identify suh skeletons andmodel them with proess algebra in order to get relevant information about the performane of the appliation, and to be ableto take good sheduling deisions. This onept is illustrated through the ase study of the pipeline skeleton, and a tool whihgenerates automatially a set of models and solves them is presented. Some numerial results are provided, proving the e�ay ofthis approah.Key words. Algorithmi skeletons, pipeline, high-level parallel programs, performane evaluation, proess algebra, PEPAWorkbenh.1. Introdution. One of the most promising tehnial innovations in present-day omputing is the in-vention of grid tehnologies whih harness the omputational power of widely distributed olletions of om-puters [8℄. Designing an appliation for the Grid raises di�ult issues of resoure alloation and sheduling(roughly speaking, how to deide whih omputer does what, and when, and how they interat). These issuesare made all the more omplex by the inherent unpreditability of resoure availability and performane. Forexample, a superomputer may be required for a more important task, or the Internet onnetions required bythe appliation may be partiularly busy.In this ontext of grid programming, a skeleton-based approah [5, 16, 7℄ reognizes that many real ap-pliations draw from a range of well-known solution paradigms and seeks to make it easy for an appliationdeveloper to tailor suh a paradigm to a spei� problem. Powerful struturing onepts are presented to theappliation programmer as a library of pre-de�ned `skeletons'. As with other high-level programming modelsthe emphasis is on providing generi polymorphi routines whih struture programs in learly-delineated ways.Skeletal parallel programming supports reasoning about parallel programs in order to remove programmingerrors. It enhanes modularity and on�gurability in order to aid modi�ation, porting and maintenane ativ-ities. In the present work we fous on the Edinburgh Skeleton Library (eSkel) [6℄. eSkel is an MPI-based librarywhih has been designed for SMP and luster omputing and is now being onsidered for grid appliations usinggrid-enabled versions of MPI suh as MPICH-G2 [14℄.The use of a partiular skeleton arries with it onsiderable information about implied sheduling depen-denies. By modelling these with stohasti proess algebras suh as Performane Evaluation Proess Algebra[13℄, and thereby being able to inlude aspets of unertainty whih are inherent to grid omputing, we believethat we will be able to underpin systems whih an make better sheduling deisions than less sophistiated ap-proahes. Most signi�antly, sine this modelling proess an be automated, and sine grid tehnology providesfailities for dynami monitoring of resoure performane, our approah will support adaptive resheduling ofappliations.Stohasti proess algebras were introdued in the early 1990s as a ompositional formalism for performanemodelling. Sine then they have been suessfully applied to the analysis of a wide range of systems. In generalanalysis is based on the generation of an underlying ontinuous time Markov hain (CTMC) and derivation ofits steady state probability distribution. This vetor reords the likelihood of eah potential state of the system,and an in turn be used to derive performane measures suh as throughput, utilisation and response time.Several stohasti proess algebras have appeared in the literature; we use Hillston's Performane EvaluationProess Algebra (PEPA) [13℄.Some related projets obtain performane information from the Grid using benhmarking and monitoringtehniques [4, 17℄. In the ICENI projet [9℄, performane models are used to improve the sheduling deisions,but these are just graphs whih approximate data obtained experimentally. Moreover, there is no upper-levellayer based on skeletons in any of these approahes.
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2 A. Benoit et al.Other reent work onsiders the use of skeleton programs within grid nodes to improve the quality of ostinformation [1℄. Eah server provides a simple funtion apturing the ost of its implementation of eah skeleton.In an appliation, eah skeleton therefore runs only on one server, and the goal of sheduling is to selet themost appropriate servers within the wider ontext of the appliation and supporting grid. In ontrast, ourapproah onsiders single skeletons whih span the Grid. Moreover, we use modelling tehniques to estimateperformane.Our main ontribution is based on the idea of using performane models to enhane the performane ofgrid appliations. We propose to model skeletons in a generi way to obtain signi�ant performane resultswhih may be used to reshedule the appliation dynamially. To the best of our knowledge, this kind of workhas not been done before. We show in this paper how we an obtain signi�ant results on a �rst ase studybased on the pipeline skeleton. An earlier version of this paper is published in the proeedings of the workshopon Pratial Aspets of High-level Parallel Programming (PAPP04), part of the International Conferene onComputational Siene (June 7-9, 2004, Kraków, Poland) [2℄. In this extended version a presentation of PEPAis inluded; the model resolution and the tool AMoGeT are desribed more preisely; and more experimentalresults are exposed.In the next setion, we present the pipeline and a model of the skeleton. Then we explain how to solvethe model with the PEPA Workbenh in order to get relevant information (Setion 3). In Setion 4 we presenta tool whih automatially determines the best mapping to use for the appliation, by �rst generating a setof models, then solving them and omparing the results. Some numerial results on the pipeline appliationare provided in Setion 5, and the feasibility of this approah is disussed in Setion 6. Finally we give someonlusions.2. The pipeline skeleton. Many parallel algorithms an be haraterized and lassi�ed by their adhereneto one or more of a number of generi algorithmi skeletons [16, 5, 7℄. We fous in this paper on the onept ofpipeline parallelism, whih is of well-proven usefulness in several appliations. We reall brie�y the priniple ofthe pipeline skeleton. Then we introdue the proess algebra PEPA [13℄ and we explain how we an model thepipeline with PEPA. Finally, we show in Setion 2.4 the state transition diagram of a three stage pipeline.2.1. The priniple of pipeline. In the simplest form of pipeline parallelism [6℄, a sequene of Ns stagesproess a sequene of inputs to produe a sequene of outputs (Fig. 2.1).
...Stage 1 Stage 2 Stage Ns

inputs outputsFig. 2.1. The pipeline appliationEah input passes through eah stage in the same order, and the di�erent inputs are proessed one afteranother (a stage annot proess several inputs at the same time). Note that the internal ativity of a stage maybe parallel, but this is transparent to our model. In the remainder of the paper we use the term �proessor�to denote the hardware responsible for exeuting suh ativity, irrespetive of its internal design (sequential orparallel).We onsider this appliation lass in the ontext of omputational grids, and so we want to map it toour omputing resoures, whih onsist of a set of potentially heterogeneous proessors interonneted by aheterogeneous network.It is well known that a omputing pipeline performs most e�etively when the workload is well balanedaross stages and there are a large enough number of inputs to amortize the osts of �lling and draining. Ourwork diretly addresses the �rst of these issues, by failitating exploration of the stage-to-proessor mappingspae. The seond issue remains the responsibility of the programmer: our approah assumes that running theappliation will take long enough for the system to reah an equilibrium behaviour. The models help us tostudy this steady state behaviour.Considering the pipeline appliation in the eSkel library [6℄, we fous here on a pipeline variant whihrequires that eah stage produes exatly one output for eah input.We now go on to present the PEPA language whih we will use to model the pipeline appliation. Thepresentation below is neessarily brief and rather informal. For full details the reader is referred to [13℄. Theoperational semantis an also be found in Appendix A.



Evaluating The Performane of Pipeline-strutured Parallel Programs 32.2. Introdution to PEPA. The PEPA language provides a small set of ombinators. These allowlanguage terms to be onstruted de�ning the behaviour of omponents, via the ativities they undertake and theinterations between them. Timing information is assoiated with eah ativity. Thus, when enabled, an ativity
a = (α, r) will delay for a period sampled from the negative exponential distribution whih has parameter r.If several ativities are enabled onurrently, either in ompetition or independently, we assume that a raeondition exists between them. The omponent ombinators, together with their names and interpretations,are presented informally below.Pre�x: The basi mehanism for desribing the behaviour of a system is to give a omponent a designated�rst ation using the pre�x ombinator, denoted by a full stop. For example, the omponent (α, r).S arriesout ativity (α, r), whih has ation type α and an exponentially distributed duration with parameter r, and itsubsequently behaves as S.Choie: The hoie ombinator aptures the possibility of ompetition between di�erent possible ativities.The omponent P + Q represents a system whih may behave either as P or as Q. The ativities of both Pand Q are enabled. The �rst ativity to omplete distinguishes one of them: the other is disarded. The systemwill behave as the derivative resulting from the evolution of the hosen omponent.Constant: It is onvenient to be able to assign names to patterns of behaviour assoiated with omponents.Constants are omponents whose meaning is given by a de�ning equation. For example, P

def
= (α, r).P de�nesa omponent whih performs ativity α at rate r, forever.Hiding: The possibility to abstrat away some aspets of a omponent's behaviour is provided by the hidingoperator, denoted P/L. Here, the set L of visible ation types identi�es those ativities whih are to beonsidered internal or private to the omponent and whih will appear as the unknown type τ .Cooperation: In PEPA diret interation, or ooperation, between omponents is the basis of ompositionality.The set whih is used as the subsript to the ooperation symbol, the ooperation set L, determines thoseativities on whih the o-operands are fored to synhronise. For ation types not in L, the omponentsproeed independently and onurrently with their enabled ativities. However, an ativity whose ation typeis in the ooperation set annot proeed until both omponents enable an ativity of that type. The twoomponents then proeed together to omplete the shared ativity. The rate of the shared ativity may bealtered to re�et the work arried out by both omponents to omplete the ativity (for details see [13℄). Wewrite P ‖ Q as an abbreviation for P ⊲⊳

L
Q when L is empty.In some ases, when an ativity is known to be arried out in ooperation with another omponent, aomponent may be passive with respet to that ativity. This means that the rate of the ativity is leftunspei�ed (denoted ⊤) and is determined upon ooperation, by the rate of the ativity in the other omponent.All passive ations must be synhronised in the �nal model.The dynami behaviour of a PEPA model is represented by the evolution of its omponents, either individ-ually or in ooperation. The form of this evolution is governed by a set of formal rules whih give an operationalsemantis of PEPA terms (see [13℄). Thus, as in lassial proess algebra, the semantis of eah term in PEPA isgiven via a labelled multi-transition system (the multipliities of ars are signi�ant). In the transition system astate orresponds to eah syntati term of the language, or derivative, and an ar represents the ativity whihauses one derivative to evolve into another. The omplete set of reahable states is termed the derivative setof a model and these form the nodes of the derivation graph whih is formed by applying the semanti rulesexhaustively.The derivation graph is the basis of the underlying Continuous Time Markov Chain (CTMC) whih is usedto derive performane measures from a PEPA model. The graph is systematially redued to a form where itan be treated as the state transition diagram of the underlying CTMC. Eah derivative is then a state in theCTMC. The transition rate between two derivatives P and Q in the derivation graph is the rate at whih thesystem hanges from behaving as omponent P to behaving as Q. It is the sum of the ativity rates labellingars onneting node P to node Q.2.3. Pipeline model. To model a pipeline appliation, we deompose the problem into the stages, theproessors and the network. The model is expressed in PEPA (f. Setion 2.2).



4 A. Benoit et al.The stagesThe �rst part of the model is the appliation model, whih is spei�ed independently of the resoures on whihthe appliation will be omputed. We de�ne one PEPA omponent per stage. For i = 1..Ns, the omponentStagei works sequentially. At �rst, it gets data (ativity movei), then proesses it (ativity proessi), and �nallymoves the data to the next stage (ativity movei+1).Stagei

def
= (movei,⊤).(proessi,⊤).(movei+1,⊤).StageiAll the rates are unspei�ed, denoted by the distinguished symbol ⊤, sine the proessing and move timesdepend on the resoures where the appliation is running. These rates will be de�ned later, in another part ofthe model.The pipeline appliation is then de�ned as a ooperation of the di�erent stages over the movei ativities,for i = 2..Ns.The ativities move1 and moveNs+1 represent, respetively, the arrival of an input in the appliation andthe transfer of the �nal output out of the pipeline. They do not represent any data transfer between stages, sothey are not synhronizing the pipeline appliation. Finally, we have:Pipeline def
= Stage1 ⊲⊳

{move2}
Stage2

⊲⊳
{move3}

. . . ⊲⊳
{moveNs

}
StageNsThe proessorsWe onsider that the appliation must be mapped on a set of Np proessors. Eah stage is proessed by a given(unique) proessor, but a proessor may proess several stages (in the ase where Np < Ns). In order to keepthe model simple, we deide to put information about the proessor (suh as the load of the proessor or thenumber of stages being proessed) diretly in the rate µi of the ativities proessi, i = 1..Ns (these ativitieshave been de�ned for the omponents Stagei).Eah proessor is then represented by a PEPA omponent whih has a yli behaviour, onsisting ofproessing sequentially inputs for a stage. Some examples follow.

• In the ase when Np = Ns, we map one stage per proessor:Proessori
def
= (proessi, µi).Proessori

• If several stages are proessed by a same proessor, we use a hoie omposition. In the followingexample (Np = 2 and Ns = 3), the �rst proessor proesses the two �rst stages, and the seondproessor proesses the third stage.Proessor1 def
= (proess1, µ1).Proessor1 + (proess2, µ2).Proessor1Proessor2 def
= (proess3, µ3).Proessor2Sine all proessors are independent, the set of proessors is de�ned as a parallel omposition of the proessoromponents: Proessors def
= Proessor1||Proessor2|| . . . ||ProessorNpThe networkThe last part of the model is the network. We do not need to diretly model the arhiteture and the topologyof the network for what we aim to do, but we want to get some information about the e�ieny of the linkonnetion between pairs of proessors. This information is given by a�eting the rates λi of the movei ativities(i = 1..Ns + 1).� λ1 represents the onnetion between the user (providing inputs to the pipeline) and the proessor hostingthe �rst stage.� For i = 2..Ns, λi represents the onnetion between the proessor hosting stage i − 1 and the proessorhosting stage i.� λNs+1 represents the onnetion between the proessor hosting the last stage and the user (the site wherewe want the output to be delivered).



Evaluating The Performane of Pipeline-strutured Parallel Programs 5Note that λi will enode information both about the load on the links and the size of the data proessedby proessi−1. When the data is �transferred� on the same omputer, the rate is really high, meaning that theonnetion is fast (ompared to a transfer between di�erent sites).The network is then modelled by the following omponent:Network def
= (move1, λ1).Network + · · · + (moveNs+1, λNs+1).NetworkThe pipeline modelOne we have de�ned the di�erent omponents of our model, we just have to map the stages onto the proessorsand the network by using the ooperation ombinator. For this, we de�ne the following sets of ation types:� Lp = {proessi}i=1..Ns
to synhronize the Pipeline and the Proessors� Lm = {movei}i=1..Ns+1 to synhronize the Pipeline and the NetworkMapping def

= Network ⊲⊳
Lm

Pipeline ⊲⊳
Lp

ProessorsPEPA input �leAn example of an input �le for the PEPA Workbenh an be found in Appendix B.2.4. State transition diagram for the pipeline model. Figure 2.2 represents the state transitiondiagram of a three stage, three proess pipeline. This piture shows all of the possible interleavings of theomponents of the model with ars of various kinds showing the di�erent types of transitions from state tostate.In Table 2.1 we show the orrespondene between the state numbers in Figure 2.2 and the PEPA terms.Sine the PEPA terms are long we have omitted the ooperation sets, showing only the loal state of eahomponent. Moreover to keep the table ompat we have named the derivatives of the Stage omponents asfollows: Stagei0
def
= (movei,⊤).Stagei1Stagei1

def
= (proessi,⊤).Stagei2Stagei2
def
= (movei+1,⊤).Stagei03. Solving the models. One reason to work with a formal modelling language suh as PEPA is thatmodels are unambiguous and an serve to support reliable ommuniation between those who design systems,those who develop them and those who maintain them. Another reason to work with a formal modellinglanguage is that formal models an be automatially proessed by tools in order to derive information fromthem whih otherwise would have to be produed by manual alulation or reasoning.The tool whih we have used for proessing our PEPA models and omputing the steady-state probabilitydistribution of our system is the PEPA Workbenh. A full desription of the funtioning of this software an befound in [11℄; the referene manual for the latest release is [12℄. We inlude a brief desription of the funtioningof the Workbenh in Appendix C.1 in order to make the present paper self-ontained.Notie however that the steady-state probability distribution of the system is rarely the desired result ofthe performane analysis proess and so to progress we must identify a signi�ant performane result. Theperformane result that is pertinent for the pipeline appliation is the throughput of the proessi ativities(i = 1..Ns). Sine data passes sequentially through eah stage, the throughput is idential for all i, and we needto ompute only the throughput of proess1 to obtain signi�ant results. This is done by adding the steady-stateprobabilities of eah state in whih proess1 an happen, and multiplying this by µ1.We have made some hanges to the Java edition of the PEPA Workbenh in order to allow the user tospeify performane results whih will then be automatially omputed. This new funtionality is then used toompute numerial results from the pipeline models. Some more tehnial details are provided in Appendix C.2.
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Fig. 2.2. State transition diagram of a three stage, three proess pipeline with states numbered aording to Table 2.14. AMoGeT: The Automati Model Generation Tool. We investigate in this paper how to enhanethe performane of grid appliations with the use of algorithmi skeletons and proess algebras. To do this, wehave reated a tool whih automatially generates performane models for the pipeline ase study, and thensolves the models. These results ould be used to reshedule the appliation.We give at �rst an overview of the tool. Then we desribe the information whih is provided to the tool viaa desription �le. Finally, we explain the funtioning of the tool.
desription�le performaneinformation

PEPAmodels resultsAMoGeT CompareresultsmodelsGenerate WorkbenhPEPA
Fig. 4.1. The priniple of AMoGeT4.1. AMoGeT desription. Fig. 4.1 illustrates the priniple of the tool. In its urrent form, the toolis a generi, reusable software omponent. Its ultimate role will be as an integrated omponent of a run-time sheduler and re-sheduler, adapting the mapping from appliation to resoures in response to hanges inresoure availability and performane.



Evaluating The Performane of Pipeline-strutured Parallel Programs 7Table 2.1Correspondene between state numbers in Figure 2.2 and PEPA terms (ooperation sets are omitted but remain onstant)state no. PEPA state1 (Network, (Stage10,Stage20,Stage30), (Proessor1,Proessor2,Proessor3))2 (Network, (Stage11,Stage20,Stage30), (Proessor1,Proessor2,Proessor3))3 (Network, (Stage12,Stage20,Stage30), (Proessor1,Proessor2,Proessor3))4 (Network, (Stage10,Stage21,Stage30), (Proessor1,Proessor2,Proessor3))5 (Network, (Stage11,Stage21,Stage30), (Proessor1,Proessor2,Proessor3))6 (Network, (Stage12,Stage21,Stage30), (Proessor1,Proessor2,Proessor3))7 (Network, (Stage10,Stage22,Stage30), (Proessor1,Proessor2,Proessor3))8 (Network, (Stage11,Stage22,Stage30), (Proessor1,Proessor2,Proessor3))9 (Network, (Stage12,Stage22,Stage30), (Proessor1,Proessor2,Proessor3))10 (Network, (Stage10,Stage20,Stage31), (Proessor1,Proessor2,Proessor3))11 (Network, (Stage11,Stage20,Stage31), (Proessor1,Proessor2,Proessor3))12 (Network, (Stage12,Stage20,Stage31), (Proessor1,Proessor2,Proessor3))13 (Network, (Stage10,Stage21,Stage31), (Proessor1,Proessor2,Proessor3))14 (Network, (Stage11,Stage21,Stage31), (Proessor1,Proessor2,Proessor3))15 (Network, (Stage12,Stage21,Stage31), (Proessor1,Proessor2,Proessor3))16 (Network, (Stage10,Stage22,Stage31), (Proessor1,Proessor2,Proessor3))17 (Network, (Stage11,Stage22,Stage31), (Proessor1,Proessor2,Proessor3))18 (Network, (Stage12,Stage22,Stage31), (Proessor1,Proessor2,Proessor3))19 (Network, (Stage10,Stage20,Stage32), (Proessor1,Proessor2,Proessor3))20 (Network, (Stage11,Stage20,Stage32), (Proessor1,Proessor2,Proessor3))21 (Network, (Stage12,Stage20,Stage32), (Proessor1,Proessor2,Proessor3))22 (Network, (Stage10,Stage21,Stage32), (Proessor1,Proessor2,Proessor3))23 (Network, (Stage11,Stage21,Stage32), (Proessor1,Proessor2,Proessor3))24 (Network, (Stage12,Stage21,Stage32), (Proessor1,Proessor2,Proessor3))25 (Network, (Stage10,Stage22,Stage32), (Proessor1,Proessor2,Proessor3))26 (Network, (Stage11,Stage22,Stage32), (Proessor1,Proessor2,Proessor3))27 (Network, (Stage12,Stage22,Stage32), (Proessor1,Proessor2,Proessor3))Information is provided to the tool via a desription �le (f. Setion 4.2). This information an be gatheredfrom the Grid resoures and from the appliation de�nition. In the following experiments, it is provided by theuser, but we an also get it automatially from grid servies, for example from the Network Weather Servie [17℄.The tool allows everything to be done in a single step through a simple Perl sript (f. Setion 4.3): itgenerates the models, solves them with the PEPA Workbenh, and then ompares the results. This allows usto have feedbak on the appliation when the performane of the available resoures is modi�ed.4.2. Desription �le for AMoGeT. The aim of this �le is to provide information about the availablegrid resoures and the modelled appliation, in our ase the pipeline.This desription �le is named mymodel.des, where mymodel is the name of the appliation.
• The �rst information provided is the type of the model. Sine we study here the pipeline skeleton, the�rst line is

type = pipeline;

• We then have the information about the Grid resoures and Network links, as a list of parameters. Thenumber of proessors N must at �rst be spei�ed:
nbproc =N ;And then, for i = 1..N and j = 1..N , we speify the available omputing power of the proessor i (pi),and the performane of the network link between proessors i and j (nli-j):p1=10; p2=5;nl1-1=10000; nl1-2=8;pi aptures the fat that a proessor's full power may not be available to our appliation (e. g. beauseof time-sharing with other ativities).



8 A. Benoit et al.
• Conerning the appliation, we have some information about the stages of the pipeline. Ns is thenumber of stages.nbstage=Ns;The amount of work wi required to ompute one output for stage i must be spei�ed for i = 1..Ns:w1=2; w2=4; ...Finally, we need to speify the size of the data transferred to and from eah stage. For i = 1..Ns + 1,dsi is the size of the data transferred to stage i, with the boundary ase dsNs + 1 whih represents thesize of the output data.ds1=100; ds2=5; ...
• Next we de�ne a set of andidate mappings of stages to proessors. Eah mapping spei�es where theinitial data is loated, where the output data must be left and (as a tuple) the proessor where eahstage is proessed. For example, the tuple (1, 1, 2) means that the two �rst stages are on proessor 1,with the third stage on proessor 2. A mapping is then of the form [input, tuple, output]. The mappingde�nition is a set of mappings, it an be as follows:mappings=[1,(1,2,3),3℄,[1,(1,1,2),2℄,[1,(1,1,1),1℄;
• The last thing is the performane result we want to ompute. For the pipeline appliation, we an askfor the throughput with the line:throughput;4.3. The AMoGeT Perl sript. The tool allows everything to be done in a single step through a simplePerl sript. The model generation is done by alling an auxiliary funtion. Models are then solved with thePEPA Workbenh as seen in Setion 3. Finally, the results are ompared. This allows us to have feedbak onthe appliation when the performane of the available resoures is modi�ed.One model is generated from eah mapping of the desription �le. Eah model is as desribed in Setion 2.3.The di�ult point onsists of generating the rates from the information gathered before. The model generationitself is then straightforward.To ompute the rates of the proessi ativities for a given model (i = 1..Ns), we need to know how manystages are hosted on eah proessor, and we assume that the work sharing between the stages is equitable. Therate assoiated with the proessi ativity is then:

µi = wi ×
cpj

nbstjwhere j is the number of the proessor hosting the stage i, and nbstj is the number of stages being proessedon proessor j. In e�et, the available omputing power pj is further diluted by our own internal timesharingfator nbstj, before being applied to the workload assoiated with the stage, wi.The rates of ommuniation between stages depend on the mapping too, sine the rate of a movei ativitydepends on the onnetion link between the proessor j1 hosting stage i−1 and the proessor j2 hosting stage i,whih is given by nlj1-j2. Sine the mapping spei�es where the input and output data are, we an also �ndthe onnetion link for the data arriving into the pipeline and the data exiting the appliation. These ratesdepend also on the size of the data transferred from one stage of the pipeline to the next, given by dsi. Theboundary ases are applied to ompute the rates of the move1 and moveNs+1 ativities. The rate assoiatedwith the movei ativity is therefore:
λi =

nlj1−j2

dsiOne these rates are derived, generating the model is straightforward. We add into the �le the desriptionof the throughput of the proess1 ativity as a required result to allow an automati omputation of this result.The models an then be solved with the PEPA Workbenh, and the throughput of the pipeline is automatiallyomputed (Setion 3). During the resolution, all the results are saved in a single �le, and the last step of resultsomparison �nds out whih mapping produes the best throughput. This mapping is the one we should use torun the appliation.



Evaluating The Performane of Pipeline-strutured Parallel Programs 95. Numerial results. We present in this setion some numerial results. We explain through them howthe information obtained with AMoGeT an be relevant for optimizing the appliation.In the present paper we do not apply this method to a given �real-world� example. We use an abstratpipeline for whih we arbitrarily �x the time required to omplete eah stage. This is su�ient to show thatAMoGeT an help to optimize an appliation.5.1. Experiment 1: Pipeline with 3 stages��xed data size. We give here a few numerial resultson an example with 3 pipeline stages (and up to 3 proessors). The models that we need to solve are reallysmall (in this ase, the model has 27 states and 51 transitions, f. Figure 2.2).We suppose in this experiment that nli-i=10000 for i = 1..3, and that there is no need to transfer the inputor the output data. Moreover, we suppose that the network is symmetrial (nli-j=nlj-i for all i, j = 1..3).Conerning the pipeline parameters, the amount of work wi required to ompute eah stage is 1, as well as thesize of the data dsi whih is transferred from one stage to another. The relevant parameters are therefore nl1-2,nl2-3, nl1-3, and pi for i = 1..3. We ompare di�erent mappings, and just speify the tuple indiating whihstage is on whih proessor. We ompare the mappings (1,1,1), (1,1,2), (1,1,3), (1,2,1), (1,2,2), (1,2,3), (1,3,1),(1,3,2) and (1,3,3) (the �rst stage is always on proessor 1). The results are displayed in Table 5.1, and we onlyput the best of the mappings whih were investigated in the relevant line of the table.Table 5.1Result table for Experiment 1Set of results Parameters Mapping &nl1-2 nl2-3 nl1-3 p1 p2 p3 Throughput1 10000 10000 10000 10 10 10 (1,2,3): 5.63467
10000 10000 10000 5 5 5 (1,2,3): 2.818922 10000 10000 10000 10 10 1 (1,2,1): 3.36671

10 10 10 10 10 1 (1,1,2): 2.59914
1 1 1 10 10 1 (1,1,1): 1.879633 10 1 1 10 10 10 (1,1,2): 2.59914
10 1 1 1 1 100 (1,3,3): 0.49988In the �rst set of results, all the proessors are idential and the network links are really fast. In these ases,the best mapping always onsists of putting one stage on eah proessor (the results for the mapping (1, 3, 2)are idential to the best mapping). If we divide the time alloated by the proessor to the appliation by 2, theresulting throughput is also divided by 2, sine only the proessing power has an impat on the throughput.The seond set of results illustrates the ase when one proessor is beoming really busy, in this aseproessor 3. We should not use it any more, but depending on the network links, the best mapping may hange.If the links are not e�ient, we should indeed avoid data transfer and try to put onseutive stages on the sameproessor. When nl1-2 = nl2-3 = nl1-3 = 10, the mapping (1, 2, 2) provides the same results as (1, 1, 2).Finally, the third set of results shows what happens if the network link to proessor 3 is really slow. Inthis ase again, the use of the proessor should be avoided, and the best mappings are (1, 1, 2) and (1, 2, 2).However, if proessor 3 is a really fast proessor ompared to the other ones (last line), we proess stage 2 andstage 3 on the third proessor (mapping (1, 3, 3)).5.2. Experiment 2: Pipeline with 3 stages�data size hanging. The third experiment keeps the

3 stage pipeline, but onsiders hanges in the size of the data. The assumptions are the same as for Experiment 1,but more parameters have a �xed value.In this experiment, the network onnetion between proessors 1 and 2 is slightly less e�etive than theothers. So, we have nl1-2 = 100, nl2-3 = nl1-3 = 1000. Moreover, the omputing power of eah stage ispi = 10. The size of the data is now �xed to 100, exept from the data transiting from stage 1 to stage 2(ds2), whose size is varying.Figure 5.1 presents the throughput obtained with eah mapping, as a funtion of the data size ds2.Notie �rst that some of the mappings are not in�uened by the hange of the data size, i. e. (1,1,1), (1,1,2)and (1,1,3). This is due to the fat that the onnetion between stages 1 and 2 is good beause the data stayson the same proessor. The in�uene of the size of the data transferred is muh more important when theonnetion is less e�etive (mappings (1,2,2) and (1,2,3)), sine the move2 ativity is then the bottlenek of thesystem.
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Fig. 5.1. Experiment 2: Throughput funtion of ds2The best mapping is (1,3,2) when ds2 < 150, and (1,1,3) for greater values. Both of them avoid theslow onnetion nl1-2, and they use several proessors so the proessing power is better than for mappingslike (1,1,1). When the size of the data transferred between the �rst two stages beomes high, the bottlenek isthe onnetion link between them, so it is better to put them on the same proessor, even if we may lose someproessing power.5.3. Experiment 3: Pipeline with 8 stages. The last experiment onsiders a larger pipeline, omposedof 8 stages. We use up to 8 proessors, and ompare four di�erent mappings, depending on the number ofproessors we wish to use:
• 8 proessors, the mapping is [1, (1, 2, 3, 4, 5, 6, 7, 8), 8]
• 4 proessors, the mapping is [1, (1, 1, 2, 2, 3, 3, 4, 4), 4]
• 2 proessors, the mapping is [1, (1, 1, 1, 1, 2, 2, 2, 2), 2]
• 1 proessor, the mapping is [1, (1, 1, 1, 1, 1, 1, 1, 1), 1]The parameters are the same as for Experiment 1, with pi = 10, wi = 1, dsi=1 and nli-i = 10000 forall i. We vary the parameters nli-j, for i 6= j, assuming that all these links are equal, and we ompute thethroughput for the di�erent mappings. Figure 5.2 displays the results.The urves obtained on�rm that we should avoid data transfer when the network onnetions are lesse�ient. When nli-j > 7, the network performs well enough to allow the use of the 8 proessors. However,when the performane dereases, we should use only 4 proessors, then two, and only one when nli-j < 0.8.When we need to transfer the output data bak to the �rst proessor (for example, the mapping

[1, (1, 2, 3, 4, 5, 6, 7, 8), 1]for the ase with 8 proessors), we obtain almost the same results, with a slightly smaller throughput due tothis additional transfer.6. Feasibility of the approah. We envisage the use of our approah within a sheduling and reshedulingplatform for long-running grid appliations. In this ontext it is antiipated that after initial analysis andsheduling, the system would be monitored and that resheduling would be needed only relatively infrequently,for example, one an hour. Nevertheless it is important that the use of the tool does not ontribute an overheadwhih eliminates the bene�t to be obtained from its use. In this setion we present evidene whih suggeststhat this is not likely to be the ase in pratie. The reader should note that here we are re�eting on theperformane of the analysis tools themselves rather than on the performane of the appliation whih theymonitor (as presented in the previous setion).
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 1e+6

 8e+5

 6e+5

 4e+5

 2e+5

 0  2  4  8  10  12 6Number of StagesNumberofst
ates/transitio
ns statestransitions

Fig. 6.1. States and TransitionsThe time required to generate and solve the models must be arefully onsidered. The generation is alwaysvery quik: it takes less than 0.01 seonds to generate 20 models. The time required to solve the modelsis usually more important, espeially when the models have a large state spae. However, if we onsider onlyrelatively small models (up to 20, 000 states), the resolution with the PEPA workbenh takes only a few seonds.Fig. 6.1 shows that when the number of stages is less than 9, the size of the model is small enough to have a fastresolution. However, the model grows exponentially when the number of stages is inreased, making AMoGeTless e�etive for a large number of stages. Sine real appliations usually do not have very many stages, this isnot a limitation of the tool in pratie.



12 A. Benoit et al.The overall use of AMoGeT takes usually less than one minute for omplex appliations running on severalproessors, even when we onsider several models to solve.As stated earlier, in a senario of long omputing grid appliations, with eventually dynami reshedulingof the appliation, we onsider that the tool may be run one per hour. We therefore believe that the amountof time required may be quite negligible and that the gain obtained by using the best of the mappings whihwere investigated an outperform the ost of the use of the tool.7. Conlusions. In the ontext of grid appliations, the availability and performane of the resoureshange dynamially. We have shown through this study that the use of skeletons, and performane modelsof these, an produe some relevant information to improve the performane of the appliation. This hasbeen illustrated on the pipeline skeleton, whih is a ommonly used algorithmi skeleton. The models helpus to hoose the mapping, of the stages onto the proessors, whih will produe the best throughput. A toolautomates all the steps to obtain the result easily.The pipeline skeleton is a simple ontrol skeleton. The deal skeleton has already been modelled in a similarway [3℄, and experiments are ongoing using deal skeletons nested into a pipeline appliation. This approah willalso be developed on some other skeletons so it may be useful for a larger lass of appliations.Our reent work onsiders the generation of models whih take into aount information from the Gridresoures, whih is gathered with the help of the Network Weather Servie [17℄. This will allow us to havemodels �tted to the real-time onditions of the resoures. This �rst ase study has already shown that wean use suh information produtively and that we have the potential to enhane the performane of gridappliations with the use of skeletons and proess algebras.Having proess algebra models of our skeletons also potentially o�ers other bene�ts suh as the ability toformally verify the orret funtioning of the skeleton. We intend to explore this aspet in future work.Appendix A. Strutured Operational Semantis for PEPA.The semanti rules, in the strutured operational style, are presented in Figure A.1; the interested readeris referred to [13℄ for more details. The rules are read as follows: if the transition(s) above the inferene linean be inferred, then we an infer the transition below the line. The notation rα(E) whih is used in the thirdooperation rule denotes the apparent rate of α in E, i.e. the sum of the rates of all ativities of type α in
Act(E).Appendix B. Pipeline example: input �le for the PEPA Workbenh.The input �le for the PEPA Workbenh is displayed in Fig. B.1, for a small example with Ns = Np = 3,and where eah proessor is hosting one of the stages.Appendix C. The PEPA Workbenh.C.1. Funtioning of the Workbenh. The PEPA Workbenh begins by generating the reahable statespae of a PEPA model as found from all possible interleavings of its transitions from state to state. For a �nitestate model with n states we an enumerate this state spae as C = {C1, . . . , Cn}. As the workbenh arriesout this task it ompiles the in�nitesimal generator matrix Q of the ontinuous-time Markov proess underlyingthe PEPA model. The workbenh adds a transition rate r to Qij every time that it �nds a transition from state
Ci to Cj at rate r. Additionally it subtrats r from Qii in order that the row sum of the matrix remains inbalane.The onditions whih must be satis�ed in order to guarantee the existene of an equilibrium distributionfor a Markov proess, and for this to be the same as the limiting distribution, are well-known�a stationaryor equilibrium probability distribution, Π, exists for every time-homogeneous irreduible Markov hain whosestates are all positive-reurrent.The intuition behind this distribution is the obvious one, namely that in the long run the probability thatthe PEPA model is in state Ci is given by Π(Ci).For �nite state PEPA models whose derivation graph is strongly onneted, and whih therefore havegenerated an ergodi Markov proess, the equilibrium distribution of the model, Π, is found by solving thematrix equation

ΠQ = 0 (C.1)



Evaluating The Performane of Pipeline-strutured Parallel Programs 13Pre�x
(α, r).E

(α,r)
−−−→ ECooperation

E
(α,r)
−−−→ E′

E ⊲⊳
L

F
(α,r)

−−−→ E′ ⊲⊳
L

F

(α /∈ L)
F

(α,r)
−−−→ F ′

E ⊲⊳
L

F
(α,r)

−−−→ E ⊲⊳
L

F ′

(α /∈ L)

E
(α,r1)
−−−→ E′ F

(α,r2)
−−−→ F ′

E ⊲⊳
L

F
(α,R)
−−−→ E′ ⊲⊳

L
F ′

(α ∈ L) where R =
r1

rα(E)

r2

rα(F )
min(rα(E), rα(F ))Choie

E
(α,r)
−−−→ E′

E + F
(α,r)
−−−→ E′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′Hiding

E
(α,r)
−−−→ E′

E/L
(α,r)
−−−→ E′/L

(α /∈ L)
E

(α,r)
−−−→ E′

E/L
(τ,r)
−−−→ E′/L

(α ∈ L)Constant
E

(α,r)
−→ E′

A
(α,r)
−→ E′

(A
def
= E)Fig. A.1. The operational semantis of PEPAsubjet to the normalisation ondition whih ensures that Π is a well-formed probability distribution

∑
Π(Ci) = 1. (C.2)The equations C.1 and C.2 are ombined by replaing a olumn of Q by a olumn of ones and plaing a 1 inthe orresponding row of 0.Beause the onnetivity graph of the state transition system of the model will in general have low degree,the transition matrix of the Markov proess is best stored as a sparse matrix. The PEPA Workbenh usesa Java implementation of the preonditioned bionjugate gradient method. This is an iterative proedure asdesribed in [15℄ storing the in�nitesimal generator matrix in row-indexed sparse storage mode, a ompat storagemode whih requires storage of only about two times the number of nonzero matrix elements. An advantageof onjugate gradient methods for large sparse systems is that they referene the matrix only through itsmultipliation of a vetor, or the multipliation of its transpose and a vetor.C.2. Computing performane results with the PEPA Workbenh. The new funtionality of theworkbenh is desribed through a tiny example [10℄, whih we shall �rst desribe. We then explain how to addthe desription of the results in the PEPA input �le and how to ompute them.A tiny example. We desribe the omponents of the PEPA input language for the Workbenh via asimple example, desribed in the �le tiny.pepa:r1=2; r2=10; r3=1;P1=(start,r1).P2;



14 A. Benoit et al.// PIPELINE APPLICATION// 3 stages, 3 proessors (1 stage per proessor)// Variables delaration (all idential)mu1=10; mu2=10; mu3=10;la1=10; la2=10; la3=10; la4=10;// Definition of the StagesStage1 = (move1, infty).(proess1, infty).(move2, infty).Stage1;Stage2 = (move2, infty).(proess2, infty).(move3, infty).Stage2;Stage3 = (move3, infty).(proess3, infty).(move4, infty).Stage3;// Definition of the ProessorsProessor1 = (proess1, mu1).Proessor1;Proessor2 = (proess2, mu2).Proessor2;Proessor3 = (proess3, mu3).Proessor3;// Definition of the NetworkNetwork = (move1,la1).Network + (move2,la2).Network+ (move3,la3).Network + (move4,la4).Network;// The pipeline modelNetwork <move1,move2,move3,move4>(Stage1 <move2> Stage2 <move3> Stage3)<proess1,proess2,proess3> (Proessor1||Proessor2||Proessor3)Fig. B.1. The input �le for the PEPA Workbenh: pipeline.pepaP2=(run,r2).P3;P3=(stop,r3).P1;P1 || P1This model is omposed of two opies of a omponent, P1, exeuting in a pure parallel synhronization. P1is a simple sequential proess whih undergoes a start ativity with rate r1 to beome P2 whih runs with rate
r2 to beome P3 whih goes bak to P1 via a stop ativity with rate r3.The �rst line of the �le is de�ning the rates. Then the sequential proess is de�ned, and the �nal line is thesystem equation, whih desribes the behaviour of the modelled system.Adding results to the input �le. In order to automatially ompute some performane results, the userjust needs to speify them in the PEPA input �le, for example in the �le tiny.pepa presented before. This isdone by inluding at the end of the �le one line per result, of the form:result_name = {result_desription};result_name = rate * {result_desription};The name of the performane result that is desribed is result_name, and the desription of the result for thePEPA State Finder is result_desription.The states of interest are desribed through the use of a simple pattern language, with double stars (**)for wild ards, and double vertial bars (||) for separators between model omponents. The model omponentsare desribed in the order used in the system equation.A rate an be added; in this ase the �nal result obtained by the PEPA State Finder will be multiplied bythis rate. This is quite useful to ompute throughput.For our example, we an add some results onerning the �rst proess, independently of the state of theseond one:start1 = {P1 || **};
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