
Compact routing schemes

Mikkel Thorup
AT&T Labs - Research

180 Park Avenue
Florham Park, NJ 07932, USA

mthorup@research.att.com

Uri Zwick
�

School of Computer Science
Tel Aviv University

Tel Aviv 69978, Israel

zwick@post.tau.ac.il

ABSTRACT
We describe several compact routing schemes for general weighted
undirected networks. Our schemes are simple and easy to imple-
ment. The routing tables stored at the nodes of the network are all
very small. The headers attached to the routed messages, includ-
ing the name of the destination, are extremely short. The routing
decision at each node takes constant time. Yet, the stretch of these
routing schemes, i.e., the worst ratio between the cost of the path
on which a packet is routed and the cost of the cheapest path from
source to destination, is a small constant. Our schemes achieve a
near-optimal tradeoff between the size of the routing tables used
and the resulting stretch. More specifically, we obtain:

1. A routing scheme that uses only ~O(n1=2) bits of memory
at each node of an n-node network that has stretch 3. The
space is optimal, up to logarithmic factors, in the sense that
every routing scheme with stretch< 3 must use, on some net-
works, routing tables of total size
(n2), and every routing
scheme with stretch < 5 must use, on some networks, rout-
ing tables of total size
(n3=2). The headers used are only
(1 + o(1)) log2 n-bit long and each routing decision takes
constant time. A variant of this scheme with dlog2 ne-bit
headers makes routing decisions in O(log log n) time.

2. Also, for every integer k > 2, a general handshaking based
routing scheme that uses ~O(n1=k) bits of memory at each
node that has stretch 2k � 1. A conjecture of Erdős from
1963, settled for k = 3; 5, implies that the routing tables are
of near-optimal size relative to the stretch. The handshak-
ing is similar in spirit to a DNS lookup in TCP/IP. Headers
are o(log2 n) bits long and each routing decision takes con-
stant time. Without handshaking, the stretch of the scheme
increases to 4k � 5.

One ingredient used to obtain the routing schemes mentioned
above, may be of independent practical and theoretical interest:

�Work supported in part by the Israel Science Foundation
founded by The Israel Academy of Sciences and Humanities.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2001 ACM 0-89791-88-6/97/05 ...$5.00.

3. A shortest path routing scheme for trees of arbitrary degree
and diameter that assigns each vertex of an n-node tree a
(1 + o(1)) log2 n-bit label. Given the label of a source node
and the label of a destination it is possible to compute, in
constant time, the port number of the edge from the source
that heads in the direction of the destination.

The general scheme for k > 2 also uses a clustering technique
introduced recently by the authors. The clusters obtained using this
technique induce a sparse and low stretch tree cover of the network.
This essentially reduces routing in general networks into routing
problems in trees that could be solved using the above technique.

1. INTRODUCTION
Routing is one of the basic tasks that a distributed network of

processors must be able to perform. A routing scheme is a mecha-
nism that can deliver packets of information from any node of the
network to any other node of the network. Here, we consider undi-
rected weighted networks. We aim at routing along short paths.

More specifically, a routing scheme is a distributed algorithm.
Each processor in the network has a routing daemon running on
it. This daemon receives packets of information and has to decide
whether these packets have already reached their destination, and
if not, how to forward them towards their destination. Each packet
of information has a header attached to it. This header contains the
destination of the packet, and in some cases, some additional infor-
mation that can be used to guide the routing of this message towards
its destination. Each routing daemon has a local routing table at
its disposal. It has to decide, based on this table and on the packet
header, whether to pass the packet to its host, or whether to forward
the packet to one of its neighbors in the network. In either case, it
has to determine the relevant port number. The stretch of a routing
scheme is the worst ratio between the length (or cost) of a path on
which a message is routed and the length (or cost) of the shortest
(or cheapest) path in the network from the source to the destina-
tion. Unless otherwise specified, we measure size/space/memory as
number of machine words, where each word is assumed big enough
for, e.g. an edge weight or a node or port identifier. Thus a network
with n nodes and m edges can be represented in O(n+m) space.
In order to represent identifies, a word contains at least log2 n bits,
and typically, we think of a word as consisting of �(log n) bits.

Most of our routing schemes are labeling schemes that rename,
or label, the vertices. The header of a packet is then simply the label
of its destination. Some of our schemes use a more complicated
handshaking process to choose the header. How and where the
source finds the label of a desired destination is not the issue of this
paper. Typically, many packets would be sent from a source to a
destination using the same header. For us, the essential point is to

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
SPAA �01 Crete, Greece
© 2001 ACM ISBN 1-58113-409-6/01/07�$5.00

1

make sure that the router at each node can quickly forward packets
based on their headers. For our most compact headers/labels, we
assume that we can choose the port numbers of the edges incident
to a node. Without this assumption, our labels/headers may grow
in size by a factor O(log n= log log n) (c.f. Theorem 2.1 versus
Theorem 2.6).

The design of efficient routing schemes is a well studied subject.
For a general overview of this area, with many references, we refer
the reader to Peleg [22]. There are two extreme solutions to the
routing problem. The first is to store a complete routing table at
each node of the network. This table specifies, for any destination,
the link on which packets to that destination should be forwarded.
Packets could then be routed along shortest paths of the network.
The obvious drawback of this solution is that, in the worst case,
each node of the network would need a table of size
(n). In the
other extreme, of source directed routing, each packet carries in its
header a complete description of the path along which it should
be routed. Packets could again be routed along shortest paths, but
the headers attached to them may need to be of size
(n). Both
of these solutions do not scale well. It is desirable, therefore, to
find trade-off schemes with substantially smaller routing tables, yet
having headers of only logarithmic size. (Note that dlog2 ne bits in
the header are required just to specify the destination.) To obtain
routing schemes for general graphs that use o(n) of memory at each
node and only a small number of bits in each header, we have to
abandon the requirement that packets are always routed on shortest
paths, and settle instead for the requirement that packets are routed
on paths with relatively small stretch.

The first tradeoff between the size of the routing tables and the
stretch of the resulting routing scheme, for general network topolo-
gies, was obtained by Peleg and Upfal [23]. However, they only
dealt with unweighted networks and with the total size of the rout-
ing tables at all the nodes of the network. Weighted networks were
first considered by Awerbuch et al. [4] who obtained, for every
integer k � 1, a routing scheme that uses only ~O(n1=k) space
at each vertex, but has a huge stretch factor of O(k29k). A better
tradeoff was then obtained by Awerbuch and Peleg [5]; using tables
of size ~O(n1=k) they obtain stretch O(k2). A stretch 3 scheme that
uses local routing tables of size ~O(n2=3) was obtained by Cowen
[8], and a stretch 5 scheme that uses local routing tables of size
~O(n1=2) was obtained by Eilam et al. [11]. These results are sum-
marized in Table 1.

We substantially improve these results. We present, in particular,
a simple stretch 3 routing scheme that uses only ~O(n1=2) memory
at each node of the network. This solves an open problem of Cowen
[8], and the relation is essentially best possible: as mentioned, ev-
ery routing scheme with stretch< 3 must use a total space of
(n2)
bits on some n-node networks, and hence at least
(n) bits at some
node. (See Fraigniaud and Gavoille [14], Gavoille and Pérennès
[20], and Gavoille and Gengler [19]. The claim also follows easily
from the lower bounds given by us in [25].) Furthermore, any rout-
ing scheme of stretch < 5 must use a total space of
(n3=2) bits
on some n-node network, and hence at least
(n1=2) bits at some
node. (This follows again from [25].) The scheme is a labeling
scheme using (1 + o(1)) log2 n-bit labels. Each routing decision
takes constant time. A variant of this scheme, based on techniques
of Eilam et al. [11], uses consecutive dlog2 ne-bit labels, but rout-
ing decisions would then take non-constant time.

We also present a sequence of routing schemes that exhibit a
probably optimal trade-off between stretch and routing table size.
These schemes assume the existence of a handshaking mechanism
by which the source u and the destination v agree on an o(log2 n)-
bit header that is then attached to all packets sent from u to v. The

Authors Stretch Table size

Cowen [8] 3 ~O(n2=3)

Eilam, Gavoille, Peleg [11] 5 ~O(n1=2)

Awerbuch, Peleg [5] O(k2) ~O(kn1=k)

Awerbuch et al. [4] O(k29k) ~O(kn1=k)

Table 1: Previously available routing schemes

Stretch Table size Handshaking
required?

3 ~O(n1=2) no

5 ~O(n1=3) yes

7 ~O(n1=3) no

2k � 1 ~O(kn1=k) yes

4k � 5 ~O(kn1=k) no

Table 2: Our new routing schemes.

scheme uses labels of size o(k log2 n). Moreover, to perform the
handshaking, u sends O(log n) bits of information to v, and then v
sends O(log n) bits of information back to u. (This is similar to
DNS lookup in TCP/IP.) The overhead resulting from this hand-
shaking is not expected to be large as, typically, a long stream
of packets are to be sent from a given source to a given destina-
tion. Furthermore, the header obtained may be cached and reused.
We note that some sort of lookup mechanism may be needed, in
any case, in conjunction with any routing scheme that, like our
schemes, renames, or assigns labels, to the nodes of the network.
We also present routing schemes that do not require handshaking,
at a price of a slightly increased stretch. These schemes could be
used to implement handshaking processes.

For any integer parameter k > 2, our handshaking based routing
scheme uses routing tables of size ~O(n1=k) and has stretch 2k � 1.
Erdős [12] conjectured, in 1963, that for every k � 1, there is
an n-vertex graph with
(n1+1=k) edges whose girth is at least
2k + 2. (The conjecture is known to hold for k = 1; 2; 3; 5.) If
such graphs do exist, then every routing scheme of stretch< 2k+1
would have to use a tables of total bit-size
(n1+1=k) on at least
one subgraph of such a graph. (This again follows easily from [25].
Details would appear in the full version of the paper.) A variant of
the above scheme avoids the handshaking at the cost of an increased
stretch of 4k � 5.

A summary of our results appears in Table 2. Note that the
stretch 3, 5, and 7 schemes are all instantiations of the schemes
for general k. Our routing schemes, with or without handshaking,
substantially improve all previously available results. Furthermore,
our results are near-optimal in many respects.

An ingredient used in the above mentioned routing schemes, that
we believe is interesting in its own right, both from a theoretical
and a practical viewpoint, is a new routing scheme for trees of ar-
bitrary degree. Santoro and Khatib [24] introduced the notion of
interval routing using which shortest paths routing on tree can be
achieved by storing at each node u of the tree a local routing ta-
ble of size O(deg(u)), where deg(u) is the degree of u. (For
more on interval routing, see Fraigniaud and Gavoille [15] and
Gavoille [17].) Cowen [8] (see also Gavoille [17]) describes a sim-
ple way of reducing the size of the routing table used in each node
to O(minfdeg(u); n1=2g).

2

Our new tree routing scheme assigns to each node in an n-node
tree a (1+ o(1)) log2 n-bit label. Given the label of a source node,
and the label of the destination, and no additional information, it
is possible to compute, in constant time, the port number of the
link that heads from the source towards the destination. Thus, the
routing table of a node is simply its label, and the header of a packet
used in this scheme is simply the label of its destination. Simple
variants of this scheme are a expected to be of practical value.

Our routing scheme for general graphs are based on tree covers
which are family of induced trees such that for each pair of vertices,
there is a tree in the family containing a low-stretch path between
them. We can then apply our tree routing schemes within each
tree. The use of tree covers in routing is, in itself, standard (see,
e.g., Awerbuch and Peleg [5], Eilam et al. [11], Cowen [8] and
Peleg [22, Chapter 15]). For our general trade-offs with k > 2,
we can essentially just use the tree covers recently introduced by us
in [25]. However, for our stretch 3 result, we need a new simple,
but powerful, recursive sampling technique for selecting the tree
covers.

The rest of this paper is organized as follows. We begin in the
next section by describing our new routing scheme for trees. The
results presented will be used in the subsequent sections. In Sec-
tion 3 we then describe our stretch 3 scheme for general graphs. In
Section 4 we describe our schemes for general stretches.

2. ROUTING IN TREES
In this section we describe an extremely efficient routing scheme

for trees. Each vertex in an n-vertex graph is assigned a (1 +
o(1)) log2 n-bit label. This label is the only information stored
at the vertex. No additional routing tables are required. This la-
bel also serves as the header attached to messages sent to that ver-
tex. We describe this routing scheme in a gradual fashion. In Sec-
tion 2.1 we describe a scheme that uses labels of size O(log2 n).
The size of the labels is reduced to O(log n) in Section 2.2 and
then to (1 + o(1)) log2 n in Section 2.3. An important feature of
all there variants is that each routing decision takes constant time
using only elementary standard operations. The first two schemes
are expected to be of practical value. A somewhat similar scheme
was found, independently, by Gavoille [18]. (But, to the best of our
knowledge, it does not work with (1 + o(1)) log2 n-bit labels.)

Before describing our schemes, we recall the standard interval
routing technique as it applies to trees (Santoro and Khatib [24],
van Leeuwen and Tan [28]): We root the tree arbitrarily and per-
form a depth first enumeration of the vertices. We identify each
vertex with its depth first search number. For each vertex w, let fw
be the largest descendant of w. Then, a vertex v is a descendant
of w if and only v 2 [w; fw]. A packet destined for v that arrives
to w is routed as follows: If w = v, the packet has reached its des-
tination. If v 62 [w; fw], the packet is sent to the parent of w, using
the parent pointer of w. Otherwise, a predecessor search among
the children w1; :::; wd of w is performed. If wi is the last child
smaller than or equal to v, the packet is forwarded to wi.

The routing table used at a vertex w is of sizeO(deg(w)), where
deg(w) is the degree of w. (Each element in this table is dlog2 ne-
bit long.) Thus, very large routing tables are needed in high degree
vertices. Also, if for each vertex, we only allow space polynomial
in the degree, there are certain degrees for which the predecessor
search must take non-constant time (see Beame and Fich [6]). We
note that the degree distribution of many networks in the real world
was found to have heavy tails (see, e.g., Faloutsos et al. [13]),
meaning that some nodes have comparatively high degrees. A nat-
ural example is the star topology with a single center of degree
n � 1. The routing schemes described here are vastly superior. In

our theoretically strongest scheme, each vertex, irrespective of its
degree, only needs to store its (1+o(1)) log2 n-bit label. Yet, each
routing decision takes just constant time.

2.1 A compact scheme
We begin by describing, for every integer b > 1, a routing

scheme that uses routing tables consisting of O(b) words, and la-
bels (and therefore headers) consisting of O(logb n) words. Each
word here is O(log n)-bit long, where n is the number of vertices
in the tree. This scheme works with any assignment of port num-
bers. We later present a tuned version with b = 2 that could be
useful in practice, e.g., for cable networks.

The weight sv of a vertex v is the number of its descendants
in the tree. (A vertex is considered to be a descendant of itself.)
A child v0 of a vertex v is said to be heavy if sv0 � sv=b, and
light otherwise. In other words, the child v0 is heavy if a fraction
of at least 1=b of the descendants of v are also descendants of v0.
Obviously, each vertex can have at most b� 1 heavy children. For
convenience, we define r, the root of the tree, to be heavy. The light
level `v of a vertex v is defined as the number of light vertices on
the path from r to v, including v if it is light.

We again enumerate the vertices of the tree in depth first order,
where all the light children of a vertex are visited before its heavy
children, if any. As before, we identify a vertex v with the number
assigned to it, and let fv be the largest descendant of v. We let hv
be the first heavy child of v, if it exists, or fv + 1 otherwise. We
let Hv be an array containing in its first element the number of
heavy children that v has, and in its subsequent elements all the
heavy children of v. Finally, we let Pv be an array containing in
its first element Pv[0] the port number corresponding the the edge
from v to its parent, and then the port numbers corresponding to
the edges from v to its heavy children. The routing information
stored at v consists of (v; fv ; hv; Hv; Pv), requiring a total of at
most O(b) words.

Each time an edge from a vertex to one of its light children is
descended, the number of descendants in the corresponding subtree
decreases by a factor of at least b. Thus, the light level `v of every
vertex v is at most logb n. Let hv0; v1; : : : ; vki, where r = v0 and
vk = v, be the path from the root of the tree to v, and let ij , for
1 � j � `v be the index of the j-th light vertex on the path. We let

Lv = (port(vi1�1; vi1); port(vi2�1; vi2); : : : ; port(vi`v�1; v`v)):

In other words, Lv is an array of at most logb n words containing
the port numbers corresponding to the edges leading to the light
vertices on the path from r to v. We then let label(v) = (v;Lv) be
the label of v. A packet addressed to v would carry label(v) at its
header.

The routing algorithm should now be obvious. Suppose that a
packet with the header (v; Lv) arrives at w. If w = v, we are
done. Otherwise, we check whether v 2 [w; fw]. If not, then v
is not a descendant of w and the packet is forwarded to the par-
ent of w using port Pv[0]. Next, we check whether v 2 [hw; fw].
If so, then v is a descendant of a heavy child of w. We find the
appropriate heavy child by searching Hw , and then obtain the cor-
responding port number from Pw . Otherwise, v is a descendant of
a light child, in which case we use the port number given in Lv [`w].
(We assume that the indices of Lv start from 0.) As we shall see in
Theorem 2.6, even for non-constant b, we can avoid a non-constant
search time. The methods used to prove Theorem 2.6 are, however,
too complicated to be of practical interest.

Fine tuning Assuming that routing speed is the most critical
consideration, we suggest the following concrete implementation
of the scheme just described with b = 2. We suppose that each

3

router has a special link used for transferring packets of information
to its host. We let Lv [`v] be the port number corresponding to the
link from v to its host. With this arrangement we would not have
to check separately whether a packet has reached its destination.
Also, as b = 2, the array Pv now contains only two elements:
Pv[0] is the port number of the link from v to its parent, and Pv[1]
is the port number of the link from v to its heavy child, if there is
one. When a message with header (v; Lv) arrives at w, the router
can find the port number on which the packet should be forwarded
using the following simple C expression (see [21]):

((v>=w && v< h) ? L[l] : P[v>=h && v<=f]) ,

where v = v and L = Lv are taken from the header, and w = w,
l = `w, f = fw , h = hw and P = Pv are stored locally at the
router. It can hardly get any faster!

From a theoretical perspective, the above construction is cap-
tured as the case of b = 2 in Theorem 2.6.

2.2 A more compact scheme
As mentioned, the above scheme works with any assignment of

O(log n)-bit port numbers. However, if we are allowed to assign
the port numbers ourselves, then the size of the labels, and therefore
headers, used by the scheme of Section 2.1 can be easily reduced
to 3 log2 n.

We slightly change now the definition of heavy vertices. The
weight sv of a vertex v is the number of its descendants in the tree.
Each non-leaf vertex would now have a single heavy child which
is its child with the highest weight, ties broken arbitrarily. If v is a
non-leaf vertex, we let v0 be its heavy child, and v0; v1; : : : ; vd�1

be its light children in decreasing (or rather non-increasing) order
of weight, i.e., sv0 � sv0 � � � � � svd�1

. It is easy to see that
svi � sv=(i+ 2), for 0 � i < d. Assign the edge (v; vi), for 0 �
i < d, port number i, and assign the edge (v; v0) port number d.

As in the previous subsection, let `v be the light level of v, and let
Lv = (q1; q2; : : : ; q`�1) be the port numbers of the edges leading
to the light vertices on the path from r to v. It is easy to see that we
now have �`�1

i=0(qi+2) � n. Instead of storing each port number q
in a separate word, we now use only blog2 qc+1 bits, or a single bit
if q = 0, and concatenate all these bit strings. Thus, for example,
the sequence (2; 0; 5; 3) would yield the string 11’101’0’10.
The quotes are, of course, not part of this sequence and were added
for illustration purposes only. Also note that we have reversed the
order of the elements, this would come out handy later. Instead of
the quotes, we use a mask. Each ‘1’ in this mask would mark the
end of a string representing a number. Thus, the mask correspond-
ing to our string above would be 10’100’1’10. (Again, without
the quotes.) To each vertex v we therefore attach a bit string Lv
and a masking bit string Mv . The length of each one of them is

`�1X
i=1

(blog2 qic+ 1) � �

`�1X
i=1

log2(qi + 2) � � log2 n ;

where � = maxq(blog2 qc + 1)= log2(q + 2). It is not difficult
to check that � = 4= log2 10 ' 1:20412, where the maximum is
attained at q = 8. We let label(v) = (v; Lv;Mv) be the new label
attached to v. Thus, instead of O(log n) words, we now need only
one (log2 n)-bit word and two (1:21 log2 n)-bit words. Each one
of these would, most likely, fit into one machine word, and if not
into two.

When a packet with header (v; Lv ;Mv) reaches w, a vertex of
light level `w, we may have to extract the `w-th number coded in
Lv . We only have to do that, however, when v is a descendant ofw,
in which case we know that the first `w�1 numbers coded inLv are

exactly the same as those in Lw . We store with w the total length
kw of these `w � 1 numbers. Using a well known programming
trick, we can now easily extract the right number. The only change
needed in the code given in the previous subsection is replacing
L[l] by

(L>>k)&((M>>k)ˆ((M>>k)-1) ,

where L = Lv and M = Mv are extracted from the header, and
k = kw is a new piece of information stored locally at w. The
resulting code is still extremely fast, and the savings in the size of
the headers is substantial.

The combined length of Lv and Mv can be reduced to only
2 log2 n bits by noticing that the most significant bits of the strings
used in Lv are redundant for q � 2. (In our example above, we
could have used the bit string 1’01’0’0, together with the origi-
nal mask 10’100’1’10.) The C expression can be easily adapted
to this change but would be somewhat slower. In the next subsec-
tion, we will take things to an extreme, showing that the length of
the labels could be reduced to (1 + o(1)) log2 n, but this seems to
require additional ideas.

From a practical perspective, using 3:4 log2 n bits for the header
should be easily supported in hardware. The next generation IP
protocol [9] suggests 128-bit IP addresses, meaning that the next
generation routers will be tuned for this large headers. Our scheme
will then work for trees with more than 237 nodes, which is plenty
for any foreseeable future.

2.3 An extremely compact scheme
Let T be a tree. We say that the assignment of port num-

bers to the edges of T is canonical if it obtained in the follow-
ing way: Let v be a vertex of T whose parent, if it exists, is v0,
and whose children, arranged in non-increasing order of weight are
v1; v2; : : : ; vd, i.e., sv1 � sv2 � : : : � svd . Then port(v; v0) = 0
and port(v; vi) = i, for 1 � i � d. (There may be several canon-
ical assignments.) As the main result of this section, we obtain the
following results:

THEOREM 2.1. Let T be an n-vertex tree with a canonical as-
signment of port numbers. Then, in linear time, it is possible to
assign every vertex v of T a (1 + o(1)) log2 n-bit label label(v)
such that given label(u) and label(v), and nothing else, it is possi-
ble to determine, in constant time, the port number, at u, of the first
edge on the path in T from u to v.

This also provides a solution to a problem of Abiteboul et al.
[1] in which it is only required, given label(u) and label(v), to
determine whether u is an ancestor of v. They describe a solution
that uses (3=2 + o(1)) log2 n-bit labels. A solution to this more
restricted problem was found, independently, and slightly earlier,
by Alstrup [3].

Each of our labels is composed of a sequence s1; s2; : : : ; sk of
variable length strings of total length (1 + o(1)) log2 n. To form
the label we cannot just concatenate these strings, as we would not
know how to separate them. We need, therefore, a way of replacing
each string si by a string code(si), whose length is only slightly
longer than si, such that given the concatenation of code(s1);
code(s2); : : : ; code(sk), we could efficiently reconstruct the orig-
inal sequence.

We start, therefore, with a coding lemma. Let s 2 f0; 1g� be a
bit string. Let jsj be the length of s. If s1; s2 2 f0; 1g�, we let
s1:s2, or sometimes just s1s2, be the concatenation of s1 and s2.
We let " denote the empty string.

4

LEMMA 2.2. There is an efficient encoding scheme code :
f0; 1g�! f0; 1g� that satisfies: (i) The set fcode(s) j s 2
f0; 1g�g is an infinite suffix free code. (ii) For every s 2 f0; 1g�
we have jcode(s)j � jsj+O(log(jsj+ 2)). (iii) Given a machine
word that contains the string code(s) in its least significant bits, it
is possible to extract s and jsj using a constant number of standard
operations. It is also possible to remove code(s) from this word.

PROOF. Given an integer i � 0, we let bin(i) be the bit
string containing the binary representation of i, i.e., bin(0) = 0,
bin(1) = 1, bin(2) = 10, etc. We let `(i) = jbin(i)j, for i � 0.
It is not difficult to check that `(0) = 1, and j`(i)j = blog2 ic + 1,
for i > 0. If k � `(i), we let bin(k; i) = 0k�`(i)bin(i), i.e.,
the binary representation of i padded with leading 0’s, if necessary,
to make a string of length k. We also let m(i) = 2dlog2 `(i)e, for
i � 0. Note that `(i) � m(i) � 2`(i), for every i � 0. For
brevity, we let jjsjj = m(jsj). We then define

code(s) = s : bin(jjsjj; jsj) : bin(jjsjj; jjsjj) :
In other words, code(s) is the concatenation of three strings: (i) the
string s itself; (ii) the binary representation of jsj, the length of s;
and (iii) the binary representation of jjsjj, the number of bits in the
binary representation of the length of jsj, rounded up to the next
power of 2. The definition of code(s) includes padding that is used
to speed up the decoding. From the information theoretic point of
view, we could have used the more compact definition code0(s) =
s : bin(`(jsj); jsj) : bin(jjsjj).

It is easy to see that jcode(s)j = jsj + 2m(jsj) = jsj + 2 �
2dlog2(blog2 jsjc+1)e � jsj + 4(log2 jsj + 1), for jsj � 1, and
jcode(")j = j0100j = 4. (Note that `(0) = 1 and m(0) = 2.)

Suppose now that we have a bit string t = s0:code(s), where s0

is some other bit string. To extract s, we note that jjsjj is a power
of 2. Thus it is easily identified by finding the first 1 in t. We can
now ignore the first jjsjj bits of the string (including the `(jjsjj)
bits used to represent jjsjj). The next jjsjj bits then contain jsj, the
length of s. Finally, having jsj, we can extract s, and know exactly
where code(s) ends.

Suppose that x is a machine word containing the string t:code(s)
in its least significant portion. Then a= jjsjj, b= jsj and s= s
could be obtained using the following short sequence of C instruc-
tions:

#define suffix(x,i) (x & ((2<<i)-1))

a=x&-x; x=x>>a; b=suffix(x,a);
x=x>>a; s=suffix(x,b); x=x>>b;

Also note that after this sequence we have x= t.

We note that the main novelty of Lemma 2.2 is that decoding takes
constant time.

It follows easily from the Kraft inequality (see Cover and
Thomas [7]), that the encoding is almost optimal. No uniquely
decipherable encoding, for example, can have jcode(s)j � jsj +
log jsj, for every sufficiently long string s. If i is an integer, we let
bin(i) be the bit string containing the binary representation of i.
We let code(i) = code(bin(i)).

We let � be a total ordering on bit strings defined as follows:
For any strings s; t1; t2 2 f0; 1g� we have s0t1 � s � s1t2.
This ordering has the following natural interpretation. Imagine all
the binary strings arranged in an infinite binary tree in which the
root is labeled ", and in which the left child of a vertex labeled s is
labeled s0, and its right child labeled s1. The meaning of this order
should now suggest itself. For two strings s1; s2 2 f0; 1g� we have
s1 � s2, if s1 is “to the left of” s2 in this tree. It is not difficult

to check that given two machine words that contain code(s1) and
code(s2), it is possible to determine, using a constant number of
standard operations, whether s1 � s2.

LEMMA 2.3. Let p1; p2; : : : ; pk be a sequence of numbers sat-
isfying pi > 0, for 1 � i � k, and

Pk
i=1 pi = 1. Then, there

exist bit strings s1 � s2 � : : : � sk such that jsij � log2
1
pi

, for
1 � i � k.

PROOF. We prove the claim by induction on k. If k = 1, then
p1 = 1, and we simply let s1 = ". Then, js1j = log2 1 = 0, as
required. Otherwise, let 1 � r � k be such that

Pr�1
i=0 pi <

1
2

butPr
i=0 pi � 1

2
. Let q0 =

Pr�1
i=1 pi and q1 =

Pk
i=r+1 pi. Clearly

0 � q0; q1 � 1
2

. By the induction hypothesis, we can construct
s01 � s02 � � � � � s0r�1 such that js0ij � log2

q0
pi

, for 1 � i < r,
and s00r+1 � s00r+2 � � � � � s00k such that js00i j � log2

q1
pi

, for r <
i � k. Let si = 0s0i, for 1 � i < r, and si = 1s00i , for r < i � k.
Clearly, s1 � s2 � : : : � sk. Also, jsij � log2

q0
pi

+ 1 � log2
1
pi

,

for 1 � i < r, as q0 � 1
2

. Similarly, jsij � log2
1
pi

, for r < i � k,
as required.

We now describe the labeling scheme whose existence is asserted
in Theorem 2.1. Let b be a parameter. (We would later set b =
dplog2 n e.) Recall that the weight sv of a vertex v is the number
of descendant of v. We say, this time, that a vertex v is heavy
if sv � n=b, and light otherwise. Let Th be the subtree of T
spanning the heavy vertices. It is easy to see that the number of
leaves of Th is at most b. We break Th into a collection of paths
in the following way: If v has more than one child in Th, then we
remove the edges connecting it to all its children. This partitions Th
into at most 2b�1 heavy paths. Some of these paths may be single
vertices. By definition, if h�v1; �v2; : : : ; �vmi is a heavy path, and
�v1 is the vertex on this path closest to the root, then �vi+1 is the
only heavy child of �vi, and therefore the heaviest child of �vi. Thus
port(�vi; �vi+1) = 1. Furthermore, if u is in a heavy path P while v
is in a different heavy path P 0, then the path from u to v in the tree
passes through one of the endpoints of P . This process is depicted
in Figure 1. The filled vertices there are heavy, the rest are light.
The bold edges are part of heavy paths.

If v is a vertex of T and v1; v2; : : : ; vd are its light children, we
let tv = sv1 + sv2 + : : :+ svd be the light weight of v. (Note that
descendants of light vertices are also light.) The light weight of a
path P = h�v1; �v2; : : : ; �vmi is the sum of the light weights of the
vertices on that path, i.e., tP = t�v1+: : :+t�vm . LetP1; P2; : : : ; P`,
where 1 � ` � 2b � 1, be the heavy paths into which Th is de-
composed, arranged in non-increasing order of light weight, i.e.,
tP1 � tP2 � : : : � tPk .

Let v be a vertex of T . Let �v be the last heavy vertex on the path
from r, the root of the tree, to v. If v is not heavy then �v 6= v and
we let ��v be the child of �v that is an ancestor of v. (Note that ��v is
light.) Let Pi = h�v1; �v2; : : : ; �vmi be the heavy path containing �v.
For 1 � r � m, let pr = t�vr=tPi , i.e., the relative contribution
of �vr to the light weight of Pi. Let s1 � s2 � : : : � sm be
the strings corresponding to p1; p2; : : : ; pm as per Lemma 2.3. Let
1 � j � n be such that and assume that �v = �vj .

The label of a vertex v is composed of two components, an iden-
tity label, denoted ID(v) = ID(T; v), and a ‘mini’ routing ta-
ble, denoted RT(v). (We call it a mini routing table at its size
is o(log n).) The identity label ID(v) is composed of the follow-
ing items: (i) The binary representation of i, the index of the heavy
path containing �v. (ii) The string sj corresponding to �v = �vj in
Pi. (iii) The port number of the edge leading from �v to ��v, or an
indication that v = �v. (iv) If v 6= �v, the identifying label of v in the

5

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��
��
��

��
��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�
�
�
�

��
��
��

��
��
��

��
��
��
��

��
��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�
�

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���
���

��
��
��
��
��
��
��
��
��
��
��
��

��
��
��
��
��
��
��
��
��
��
��
��

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

u=u

v

v

�
�
�

�
�
�

v

�
�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

Figure 1: Decomposing a tree.

subtree T��v , the subtree of T rooted at ��v, defined recursively. More
formally,

ID(T; v) =�
ID(T��v; v):code(i):code(sj):code(port(�v; ��v)) if v 6= �v,
code(i):code(sj) otherwise.

It is easy to check that ID(v) uniquely identifies v, i.e., ID(v) 6=
ID(u), whenever v 6= u.

The mini routing table RT(v) is constructed as follows. Con-
sider the last iteration of the recursive process defining ID(v), i.e.,
the iteration in which v becomes heavy. Let v0 be the root of the tree
considered at that iteration, and let P1; P2; : : : ; P` be the heavy
paths into which (Tv0)h is decomposed, again in non-increasing
order of light weight. Recall that ` � 2b � 1. Assume that v is
contained in Pi = hv1; v2; : : : ; vmi. Note that for any j 6= i, the
same edge from v should be used for all destinations in Pj . Now
RT(v) is the table of ` (blog2 bc+1)-bit numbers where for j 6= i,
RT(v)[j] is the port number of the edge from v leading to Pj and
RT(v)[i] = ?. Since the numbers have the same length, the entry
RT(v)[j] is easily found in constant time. Note that if v 6= vm,
then all the port numbers in this table are either 0 or 1. The num-
ber of bits needed to code RT(v), including b and blog2 bc+ 1, is
O(b log b). Finally, we define

label(v) = code(ID(v)):code(RT(v)):code(pnt(v)) ;

where pnt(v) is the length of the first three code words in ID(v).
Note that these code words make up ID(T��v; v), where ��v is the root
of the subtree in which v becomes heavy. This pointer enables us to
extract ID(T��v; v) is constant time. Theorem 2.1 would now follow
from the following two lemmas:

LEMMA 2.4. Let T is an n-vertex tree. Then, for every vertex v
of T we have jlabel(v)j = (1 + o(1)) log2 n.

PROOF. The identifier ID(v) is composed of the concatenation
of the encodings of 3k bits c1; c2; : : : ; c3k, where k � logb n is the
number of iterations of the recursive process defining ID(v). Thus,
jID(v)j = P3k

i=1 jcode(ci)j =
P3k

i=1 jcij + O(
P3k

i=1 log(jcij +
2)). As b = dplog2 n e, we get that k = O(log n= log log n).
We shall show that

P3k
i=1 jcij � log2 n + O(k). It would then

follow easily, using the convexity of log x, that
P3k

i=1 log(jcij +
2)) = O(log n � log log log n= log log n). To see that

P3k
i=1 jcij �

log2 n+O(k), we show that jc1j+jc2j+jc3j = log2 b+O(1). The

same would hold for the other k � 1 triples and the claim would
follow. Let �v and ��v and the heavy paths P1; P2; : : : ; P` be as in
the construction of ID(v). Suppose �v is in Pi and that the string
corresponding to it is s. Let p = port(�v; ��v). Then, c1 = bin(i),
c2 = s, and c3 = bin(p). By the ordering of the heavy paths,

we have tPi � n=i. By the choice of s, we have jsj � log2
tPi
t�v

.
Finally, as the assignment of port numbers is canonical, we have
t��v � t�v=p. Thus,

jc1j+ jc2j+ jc3j � (log2
n
tPi

+ 1) + log2
tPi
t�v

+ (log2
t�v
t��v

+ 1)

� log2
n
t��v

+ 2 � log2 b+ 2 ;

as required. Thus,

jID(v)j � log2 n+O(log n � log log log n= log log n) :
As jcode(pnt(v))j = O(log log n), and jRT(v)j = O(b log b),
we also have jlabel(v)j � log2 n+O(log n�log log log n

log logn
).

LEMMA 2.5. Given label(u) and label(v), it is possible to de-
termine, in constant time, the port number, at u, of the first edge on
the path in T from u to v.

PROOF. If label(u) = label(v), we are done. Otherwise, we
extract ID(u), RT(u) and pnt(u) from label(u), and ID(v) from
label(v). Let T 0 be the subtree containing u in the last iteration of
the process defining ID(u). (Refer again to Figure 1.) Then, by the
definition of ID(u), we have ID(u) = ID(T 0; u):ID0(u), for some
string ID0(u). Using pnt(u), we can extract ID(T 0; u) and ID0(u),
in constant time. If it easy to see that if u is an ancestor of v, then
ID0(u) is a suffix of ID(v), and then ID(v) = ID(T 0; v):ID0(u).
If it is not, we use port 0 for the parent pointer. Otherwise, we can
extract from ID(T 0; u) the pair (iu; su), where iu is the index of
the heavy path to which u belongs, and su is the string correspond-
ing to u in this path. Let �v be the last heavy child on the path from
the root of T 0 to v. We can also extract from ID(T 0; v) the cor-
responding pair (iv; sv), or triple (iv; sv; pv). Here a triple means
that v is light in T 0, and then pv is the port leading from �v to v

If iv 6= iu, we just use port number RT(u)[iv]. If iv = iu and
su = sv , we know �v = u, and we use port number pv . Finally,
if iv = iu and su 6= sv , u is an ancestor of v if and only if su �
sv . If it is, the port number is 1, i.e. the port number of the edge
connecting u to its heaviest child; otherwise we use port 0 for the
parent pointer.

This completes the proof of Theorem 2.1. Using essentially the
same techniques, we can prove the following result:

THEOREM 2.6. Let T be an n-vertex tree with an arbitrary as-
signment of port numbers � n. Then, for any b, in linear time, it
is possible to assign every vertex v of T an ((b +O(1)) log n)-bit
router tabel tabel(v) and ((logb n+O(1)) log n)-bit label label(v)
so that given tabel(u) and label(v), and nothing else, it is possible
to determine, in constant time, the port number, at u, of the first
edge on the path in T from u to v.

PROOF. (sketch) Both tabel(v) and label(v) can store the labels
from the construction of Theorem 2.1, but this time letting b be a
parameter rather than fixing it to O(

p
log n). The size blows up

because we have to store dlog2 ne-bit port numbers. In tabel(v)
we need to store the port numbers to the parent, the heavy child,
and the ` � b real port numbers in RT(u). Similarly, in label(v),
we need to store the logb n port numbers to light nodes on the path
from the root.

6

algorithm center(G; s)

A ; ; W V ;

while W 6= ; do
f

A A [sample(W;s) ;
C(w) fv 2 V j �(w; v) < �(A; v)g, for every w 2 V ;
W fw 2 V j jC(w)j > 4n=s g ;

g
return A ;

Figure 2: Choosing a set of centers.

Viewing the tabel as part of the label, as in Theorem 2.1, we just
set b =

p
log n in Theorem 2.6, and get the following corollary:

COROLLARY 2.7. Let T be an n-vertex tree with an arbitrary
assignment of port numbers � n. In O(n) time, we can assign
every vertex v of T an O(log2 n= log log n)-bit label label(v) so
that given label(u) and label(v), and nothing else, it is possible to
determine, in constant time, the port number, at u, of the first edge
on the path in T from u to v.

3. STRETCH 3

We now present a stretch 3 routing scheme that uses only
~O(n1=2) bits of memory at each vertex of the network. Our scheme
improves upon a result of Cowen [8] that uses ~O(n2=3) bits of
memory at each vertex.

3.1 Centers and clusters
Let G = (V;E) be an undirected graph with positive edge

weights assigned to its edges. We let n = jV j and m = jEj. If
u; v 2 V , we let �(u; v) denote the (weighted) distance between u
and v in the graph. Let A � V be a subset of vertices referred to
as centers (or landmarks in the terminology of Cowen [8]). We let
�(A; v) = minf�(u; v) j u 2 Ag. For every w 2 V , we let

CA(w) = f v 2 V j �(w; v) < �(A; v) g
be the cluster of w with respect to the set A. Note that if w 2 A
then CA(w) = ;, as if w 2 A then �(w; v) � �(A; v), for every
v 2 V . Also note, that CA(w) \ A = ;, for every w 2 V , as if
v 2 A then �(w; v) � �(A; v) = 0. Clusters belonging to different
vertices are not necessarily disjoint. Finally, let centA(v) denote a
vertex from A nearest to v. We occasionally use cent(v) and C(w)
instead of CA(w) and centA(v), when the set A is clear from the
context.

Dor et al. [10] suggest the following way of getting a stretch 3
path from u to v: If v 2 CA(u), use a shortest path from u
to v. Otherwise, take a shortest path from u to centA(v), and then
a shortest path from there to v. Using symmetry and the trian-
gle inequality we get, if v 62 CA(u), that �(u; v) � �(A; v) =
�(centA(v); v), and hence

�(u; centA(v)) + �(centA(v); v)
� �(u; v) + 2�(centA(v); v) � 3�(u; v) :

Based on this, Cowen [8] showed that any set of centers A � V
gives rise to a routing scheme with stretch 3, where the size of the
routing table at each vertex w 2 V is O(jAj+ jCA(w)j). It is easy
to pick the set A so that the average size of the clusters CA(w) is
n=jAj. However, we want all routing tables to be of small, and
hence all clusters need to be small.

Cowen [8] describes a way of efficiently finding, in every
weighted undirected graph, a set A � V of size ~O(n2=3) such
that jCA(w)j = ~O(n2=3), for every w 2 V . As a result, she ob-
tains a stretch 3 routing scheme that uses only ~O(n2=3) memory
at each vertex. We improve Cowen’s construction by showing that
every weighted undirected graph has a set of centers A � V such
that jAj = ~O(n1=2) and jCA(w)j = ~O(n1=2) for every w 2 V .

It is shown in [25] that if we just pick A randomly of size s, we
get an expected average cluster size of n=s. Our contribution here
is the formulation and analysis of a recursive sampling algorithm
that brings the size of all clusters down to ~O(n=s).

Our recursive sampling algorithm center(G; s) is presented in
Figure 2. It receives a weighted undirected graph G = (V;E) and
a parameter 1 � s � n. We shall show that the algorithm returns
a set A � V of expected size O(s log n) such that all the clusters
CA(w), for w 2 V are of size at most 4n=s.

The algorithm center(G; s) uses a subroutine sample(W;s) that
receives a set W and returns a random subset of W obtained by se-
lecting each element, independently, with probability s=jW j. If
jW j � s, then sample(W;s) returns the set W itself. The ex-
pected size of the sample, if jW j � s, is therefore s. Algorithm
center(G; s) begins by letting A ; and W V . As long as W
is not empty, the algorithm chooses a random sample containing,
on average, s elements from W , and adds it to the set A. It then
recomputes the clusters C(w) = CA(w), for every w 2 V , and
redefines W to be the set of vertices w 2 V whose cluster C(w) is
too large, i.e., of size greater than 4n=s. A random sample is then
chosen from this set, and so on. We claim:

THEOREM 3.1. The expected size of the set A returned by al-
gorithm center(G; s) is at most 2s log n. For every w 2 V we then
have jCA(w)j � 4n=s.

The proof of Theorem 3.1 is facilitated by the introduction of the
following definition. The bunch BA(v) of a vertex v 2 V with
respect to the set A is defined as follows:

BA(v) = fw 2 V j �(w; v) < �(A; v) g :
It is easy to see that w 2 BA(v) if and only if v 2 CA(w). Thus,
bunches, in some sense, are the inverses of the clusters. It is easy
to see that if A0 � A, then for every w 2 V we have CA(w) �
CA0(w), and that for every v 2 V we have BA(v) � BA0(v). The
proof of Theorem 3.1 relies on the following lemma:

LEMMA 3.2. Let W � V , let 1 � s � n, and let A0
sample(W; s), i.e.,A0 is obtained by including each element of W ,
independently, with probability s=jW j, or A0 = W if jW j � s.
Then, for every v 2 V , we have E[jBA0(v) \W j] � jW j=s.

PROOF. Let v 2 V . If jW j � s, then A0 = W and
BA0(v) \W = ;. Otherwise, let w1; w2; : : : ; w` be the elements
of W in non-decreasing order of distance from v. If wi 2 A,
then BA0(v) \ W � fw1; w2; : : : ; wi�1g. Thus, the size of
BA0(v)\W is stochastically dominated by the index of the first el-
ement in this sequence that belongs toA0. This index is a geometric
random variable with success probability s=jW j, so its expectation
is jW j=s.

We now turn to the proof of Theorem 3.1

PROOF. (of Theorem 3.1) The termination condition of the
while loop ensures that jCA(w)j � 4n=s, for every w 2 V . All
that remains, therefore, is to show that the while loop does indeed
terminate, and to bound the expected size of the set A. We show

7

that the expected number of iterations performed is at most 2 log n.
In each iteration, we add to A a sample of expected size s. The
expected size of A at the end of the process is therefore at most
2s log n, as required. To show that the expected number of iter-
ations is at most 2 log n, we show that in each iteration, with a
probability of at least 1=2, the size of W is decreased by a factor
of at least 2.

Let Wi be the set W at the beginning of the i-th iteration. Let
A0 sample(Wi; s) be set of elements added to A during this
iteration. By Lemma 3.2, E[BA(v)\Wi] � E[jBA0(v)\Wij] �
jWij=s, for every v 2 V . Thus

E[
X
w2Wi

jCA(w)j] = E[
X
v2V

jBA(w) \Wij] � njWij
s

:

By Markov’s inequality, with a probability of at least 1=2, we haveP
w2Wi

jCA(w)j � 2njWi j
s

. We call iterations in which this hap-
pens successful iterations. (We can check whether this condition
holds and choose a new sample A0 sample(Wi; s) if it does
not. This would reduce the size of A by a constant factor but would
slightly complicate the algorithm.)

Let Wi+1 be the set of elements whose clusters, at the end of
the i-th iteration, are of size at least 4n=s. As the size of a clus-
ter cannot increase when elements are added to A, we must have
Wi+1 �Wi. If the i-th iteration is successful, then

4njWi+1j
s

�
X
w2Wi

jCA(w)j � 2njWij
s

;

and thus jWi+1j � jWij=2. This completes the proof.

Using some simple techniques from [25], it is possible to im-
plement algorithm sample(G; s) so that its expected running time
would be O(mn log n=s), where m is the number of edges of G.
It is also possible to derandomize it, though increasing the running
time to O(mn). We omit the details from this extended abstract.

By calling sample(G; s) with s = (n= log n)1=2, we get the
following corollary:

COROLLARY 3.3. Let G = (V;E) be a weighted undirected
graph. It is possible, in O(m

p
n log n) expected time, or O(mn)

worst-case time, to find a set A such that jAj � 2(n log n)1=2 and
jCA(w)j � 4(n log n)1=2, for every w 2 V .

3.2 The routing scheme
The stretch 3 routing scheme with local routing tables of size at

most O((n log n)1=2) is obtained by using the set of centers A of
size O((n log n)1=2) that induces clusters of size O((n log n)1=2)
(see Corollary 3.3) in conjunction with Cowen’s stretch 3 routing
scheme [8]. Below, we review Cowen’s routing scheme, based on
our set A, and later we show how the header size can be reduced
fromO(log n) bits to (1+o(1)) log2 n bits if we are free to rename
vertices and port numbers.

Recall that for every v 2 V , cent(v) 2 A is a vertex satisfy-
ing �(cent(v); v) = �(A; v). For every two vertices u; v 2 V , let
port(u; v) be the port corresponding to the first edge on a shortest
path from u to v. We assume that ports have consecutive num-
bers 0; 1; 2; : : : ; deg(u)� 1, hence that they can be described us-
ing at most dlog2 ne bits. Each vertex v 2 V is assigned a label
label(v) = (v; cent(v); port(cent(v); v)). As stated, each label is
d3 log ne-bit long. We improve on this later.

At each vertex w 2 V we keep a 2-level hash table TABw , that
holds for each v 2 A [C(w) the pair (v; port(w; v)). The size
of this table is O(jAj + jC(w)j) and for each v 2 A [C(w), the

pair (v; port(w; v)) can be located in worst-case constant time. The
implementation of such 2-level hash tables is described in Fredman
et al. [16]. A deterministic construction of such hash tables is
presented by Alon and Naor [2]. We shall denote by TABw(v) a
probe into this table that returns port(w; v), if v 2 A [C(w), and
returns ? (i.e., not found), if v 62 A [C(w).

A packet sent to destination v would carry label(v) in its header.
This header will never be changed. The routing decision at each
vertex is then extremely simple. Suppose that a packet with
label(v) at its header reaches a vertex w 2 V . (Initially w = u,
where u is the source of the message.) If w = v then the packet
reached its destination. Otherwise, if v 2 A [C(w), then the
packet is directly routed towards v via port(w; v). This port can
be obtained, in constant time, by accessing TABw . Otherwise, we
extract cent(v) from label(v) and check whether w = cent(v),
i.e., whether w is the center closest v. If w = cent(v), we again
route directly towards v using port(w; v) = port(cent(v); v). This
port number is also extracted from label(v). Finally, if none of
the previous cases applies, the packet is routed towards cent(v) on
port(v; cent(v)). Since cent(v) 2 A, this port number can be ob-
tained, in constant time, by accessing TABw .

The correctness of the above algorithm is proved in [8]. We want
to show that when a packet stops moving along a shortest path to-
wards cent(v), it will keep moving on a shortest path towards v.
This follows from two observations: (1) if v 2 C(w), we follow
an edge (w;w0) on a shortest path towards v, but then �(w0; v) <
�(w; v) � �(A; v), so v 2 C(w0), and we would continue directly
towards v. (2) when we use port(cent(v); v) from cent(v) to get to
a vertex w0, we have �(w0; v) < �(cent(v); v) = �(A; v).

3.3 Reducing the header size
To reduce the header size to (1 + o(1)) log2 n, we do as fol-

lows. For every center w 2 A, we let N(w) be the set of ver-
tices for whom w is the closest center. The centers are enumerated
in a non-increasing order of how many vertices they are centers
for. Now, the ports of w are enumerated in non-increasing order
of the number of vertices from N(w) they lead to. Let N(w; i) be
the set of vertices reached via port i. The vertices in N(w; i) are
now enumerated locally in any order. The above scheme assigns
three indices to each vertex. These three indices identify the vertex
uniquely. We will use the variable length encoding from Lemma
2.2 for each of these indices.

The enumeration orders imply that the number assigned tow is at
most n=jN(w)j, and that port i leads to at most jN(w)j=jN(w; i)j
vertices, each of which has a local number below jN(w; i)j. Hence
the total size is

(1 + o(1))(log2(n=jN(w)j) + log2(jN(w)j=jN(w; i)j)
+ log2(jN(w; i)j)) = (1 + o(1)) log2 n :

Alternatively, we can use the technique of Eilam et al. [11] to get
labels in the range f0; 1; : : : ; n�1g. We enumerate one set N(w)
at the time, in order of decreasing size of jN(w)j. The routing
decision is then a predecessor search in a universe of sizeO(n), and
can be done in O(log log n) using van Emde Boas’s data structure
[26],[27]. Summing up, we have shown

THEOREM 3.4. The routing scheme defined always routes
packages on simple paths of stretch at most 3, using routing tables
of sizeO(

p
n log n) and labels of (1+o(1)) log2 n bits. Each rout-

ing decision made between source and destination takes constant
time. We can also use consecutive labels getting routing decisions
in O(log log n) time.

4. STRETCH 2K�1 USING HANDSHAKING

8

We start by giving a routing oriented formulation of some of
our recent results from [25]. We then combine these results with
our new tree routing schemes to obtain new routing schemes for
general graphs.

In [25] we describe an efficient algorithm that, given an in-
teger parameter k � 1, produces a tree cover, i.e., a fam-
ily of induced subtrees, such that each vertex v is contained in
O(n1=k log1�1=k n) trees and such that each pair of vertices is con-
nected by a stretch 2k�1 path in one of these trees. From a routing
perspective, the challenge would be to identify this tree. We could
then route using the techniques of Section 2.3.

Each tree of the cover is a shortest path tree from some source to
the nodes it spans. No two trees have the same source. Each vertex
v stores, in a hash table, the set Bv of its sources, i.e., the sources
of the trees containing v.

In addition, each vertex v has a list centv of k special sources,
called its centers. (In the notation of [25], centv[0] = v and centv[i]
= pk�i(v).) For any pair of vertices (u; v), let i(u; v) be the small-
est i such that centv[i] 2 Bu, and let w(u; v) = centv[i(u; v)]. It
follows easily from the results of [25], that

i(u; v) � i(v; u))
�(u; w(u; v)) + �(w(u; v); v) � (2k � 1)�(u; v)

(1)

Thus w(u; v) is a source of a tree with a u-v path of the desired
stretch. In Appendix A we show that, in any case:

�(u; w(u; v)) + �(w(u; v); v) � (4k � 3)�(u; v) (2)

We let centv be part of the label of v. Then, with access to the
label of v, u can always compute w(u; v), thus giving it, by (2),
an immediate source for stretch 4k � 3 routing. However, to get
stretch 2k � 1 routing, using (1), u has to initiate a handshaking
process in which it asks v for i(v; u) and w(v; u), both of which
v can compute using u’s label. The handshaking could be done
using the stretch 4k � 3 scheme. Since we typically want to send
a stream of packets from u to v, the overhead of the handshaking
would usually be negligible.

We still need to describe, more precisely, how to perform the
routing in the selected tree. We assign the vertices of each tree of
the tree cover o(log2 n)-bit labels, as described in Corollary 2.7.
Note that we cannot specialize the port numbers because each link
may be contained in many trees. If w 2 Bv , let tree-labelv(w) be
the label of v in the tree whose source isw. We can store tree-labelv
in connection with the hash table for Bv . Also, we add a list
cent-tree-labelv of length k to the label of v with cent-tree-labelv[i]
= tree-labelv(centv[i]).

Now, the header attached to packets sent from u to v would be
of the form (w; tree-labelv(w)), where w is the source of the tree
in which we want to route. When the packet arrives a vertex x, it
can compute the appropriate port number using tree-labelv(w) and
tree-labelx(w), the latter of which is available locally.

For our stretch 4k � 3 scheme, u just computes the header

(w(u; v); cent-tree-labelv[i(u; v])

and sends the packet. For our stretch 2k � 1, we use the hand-
shaking described in full in Figure 3. The 4k � 3 scheme can be
combined with ideas from the previous section giving a quite sim-
ilar 4k � 5 scheme. Details are given, due to lack of space, in
Appendix A. We conclude:

THEOREM 4.1. Let k > 1 be integer. The above routing
schemes use ~O(n1=k)-bit space at the routers, o(k log2 n)-bit la-
bels and o(log2 n)-bit headers. They route directly with stretch

Protocol handshaking

1. Vertex u computes i(u; v) and w(u; v), and sends
them to v.

2. Upon receipt, v computes i(v; u) and w(v; u), and
sets w w(v; u) if i(v; u) < i(u; v), and
w w(u; v), otherwise. Now v sends w and
tree-labelv(w) to u.

3. Upon receipt, u creates the header (v; tree-labelv(w))
and sends the packets.

Figure 3: One round handshaking.

4k � 5. Moreover, after one round of handshaking, in which only
o(log2 n) bits are exchanged, they route with stretch 2k � 1.

5. CONCLUDING REMARKS AND OPEN
PROBLEMS

We presented very efficient routing schemes for trees and for
general graphs. Perhaps the most interesting open problem remain-
ing is the following: is there a stretch 2k � 1 routing scheme with
routing tables of size ~O(n1=k) and headers of size O(log n) that
does not use handshaking?

6. REFERENCES
[1] S. Abiteboul, T. Milo, and H. Kaplan. Compact labeling

schemes for ancestor queries. In Proceedings of the 12th
Annual ACM-SIAM Symposium on Discrete Algorithms,
Washington, D.C., pages 547–556, 2001.

[2] N. Alon and M. Naor. Derandomization, witnesses for
boolean matrix multiplication, and construction of perfect
hash functions. Algorithmica, 16:434–449, 1996.

[3] S. Alstrup. Personal communication, SODA 2001.
[4] B. Awerbuch, A. Bar-Noy, N. Linial, and D. Peleg. Improved

routing strategies with succinct tables. Journal of
Algorithms, 11(3):307–341, 1990.

[5] B. Awerbuch and D. Peleg. Routing with polynomial
communication-space trade-off. SIAM Journal on Discrete
Mathematics, 5(2):151–162, 1992.

[6] P. Beame and F. Fich. Optimal bounds for the predecessor
problem. In Proceedings of the 31th Annual ACM
Symposium on Theory of Computing, Atlanta, Georgia,
pages 295–304, 1999.

[7] T. Cover and J. Thomas. Elements of Information Theory.
John Wiley, 1991.

[8] L. Cowen. Compact routing with minimum stretch. Journal
of Algorithms, pages 170–183, 2001. Special issue for
SODA’99.

[9] S. Deering and R. Hinden. Internet protocol, version 6
(IPv6), specification. Network Working Group, Request for
Comments: 2460,
ftp://ftp.ipv6.org/pub/rfc/rfc2460.txt,
December 1998.

[10] D. Dor, S. Halperin, and U. Zwick. All pairs almost shortest
paths. SIAM Journal on Computing, 29:1740–1759, 2000.

[11] T. Eilam, C. Gavoille, and D. Peleg. Compact routing
schemes with low stretch factor. In Proceedings of the 17th

9

Annual ACM Symposium on Principles of Distributed
Computing, Puerto Vallarta, Mexico, pages 11–20, 1998.

[12] P. Erdős. Extremal problems in graph theory. In Theory of
Graphs and its Applications (Proc. Sympos. Smolenice,
1963), pages 29–36. Publ. House Czechoslovak Acad. Sci.,
Prague, 1964.

[13] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law
relationships of the internet topology. In Proc. ACM
SIGCOMM’99: Conf. Applications, Technologies,
Architectures, and Protocols for Computer Communications,
pages 251–262, 1999.

[14] P. Fraigniaud and C. Gavoille. Memory requirements for
univesal routing schemes. In Proceedings of the 14th Annual
ACM Symposium on Principles of Distributed Computing,
Ontario, Canada, pages 223–230, 1995.

[15] P. Fraigniaud and C. Gavoille. Interval routing schemes.
Algorithmica, 21(2):155–182, 1998.

[16] M. Fredman, J. Komlós, and E. Szemerédi. Storing a sparse
table with O(1) worst case access time. Journal of the ACM,
31:538–544, 1984.

[17] C. Gavoille. A survey on interval routing. Theoretical
Computer Science, 245(2):217–253, 2000.

[18] C. Gavoille. Personal communication at SODA, 2001.
[19] C. Gavoille and M. Gengler. Space-efficiency of routing

schemes of stretch factor three. Journal of Parallel and
Distributed Computing, 2000. To appear.

[20] C. Gavoille and S. Pérennès. Memory requirements for
routing in distributed networks. In Proceedings of the 15th
Annual ACM Symposium on Principles of Distributed
Computing, Philadelphia, Pennsylvania, pages 125–133,
1996.

[21] B. Kernighan and D. Ritchie. The C programming language.
Prentice Hall, second edition, 1988.

[22] D. Peleg. Distributed computing – A locality-sensitive
approach. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2000.

[23] D. Peleg and E. Upfal. A trade-off between space and
efficiency for routing tables. Journal of the ACM,
36(3):510–530, 1989.

[24] N. Santoro and R. Khatib. Labelling and implicit routing in
networks. The Computer Journal, 28(1):5–8, 1985.

[25] M. Thorup and U. Zwick. Approximate distance oracles. In
Proceedings of the 33th Annual ACM Symposium on Theory
of Computing, Crete, Greece, 2001. To appear.

[26] P. van Emde Boas. Preserving order in a forest in less than
logarithmic time and linear space. Information Processing
Letters, 6(3):80–82, 1977.

[27] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and
implementation of an efficient priority queue. Math. Syst.
Theory, 10:99–127, 1977.

[28] J. van Leeuwen and R. Tan. Computer networks with
compact routing tables. In G. Rozemberg and A. Salomaa,
editors, The book of L, pages 259–273. Springer-Verlag,
1986.

APPENDIX

A. STRETCH 4K � 3 AND 4K � 5 WITHOUT
HANDSHAKING

We start by presenting a proof of equation (2) on which the
stretch 4k � 3 routing scheme is based. We then sketch the de-

tails of a stretch 4k � 5 routing scheme.

LEMMA A.1. Given (u; v) 2 V 2, let i be the least index such
that centv[i] 2 Bu. Then �(u; centv[i]) + �(centv[i]; w) � (4k �
3)�(u; v).

PROOF. In the notation of [25], we have centx[i] = pk�i(x).
From the basic definitions in [25], we shall need for all u; v 2 V
and i � k � 1:

� if centv[i] 62 Bu, then �(u; centu[i + 1]) � �(u; centv[i]).

� �(u; centu[i]) � �(u; centv[i]).

� centv[k � 1] 2 Bu, so i � k � 1.

Let � = �(u; v). By induction, we will now prove

�(v; centv[i]) � 2i� (3)

�(u; centv[i]) � (2i+ 1)� (4)

Since i � k � 1, (3) and (4) imply the statement of the lemma.
For the base case with i = 0, we have centv[0] = v, so (3)

follows. Also, (3) implies (4) by triangle inequality for all i. Hence,
assuming (3) and (4) for i, we just need to prove (3) for i+ 1.

The condition for considering i+ 1 is that centv[i] 62 B(u). But
then �(u; centu[i+ 1]) � �(u; centv[i]) Hence,

�(v; centv[i+ 1]) � �(v; centu[i+ 1]) � �+ �(u; centu[i])
� �+ �(u; centv [i]) � (2i+ 2)� ;

as desired. The last inequality followed inductively from (4).

In order to get the 4k � 5 bound, we have to combine with
techniques from Section 3. In [25], there is a subset Ak�1 of
the vertices, including each vertex independently with probability
p = 1=n1=k , hence with Ak�1 of expected size n1�1=k . If we in-
stead apply the recursive sampling technique from Section 3 with
s = n1�1=k , we get what corresponds to a superset A�

k�1 of Ak�1

of expected sizeO(n1�1=k log n). Except for a log-factor in space,
the extension of Ak�1 to A�

k�1 does not affect the analysis of [25].
However, by Theorem 3.1, we now have jCA�

k�1
(u)j =

O(n1=k) for each vertex u. We can therefore, using hashing, store
Cu = CA�

k�1
(u) with each vertex u. The tree cover produced by

the algorithm in [25] will contain a shortest path tree sourced in u,
spanning at least Cu, and possibly more if u 2 A�

k�1. For each
destination v 2 Cu, we just want to route, with stretch 1, using the
shortest path in this tree, and hence, with u, we store tree-labelv(u)
for each v 2 Cu.

The stretch 4k � 5 algorithm is now a simple augmentation of
the stretch 4k � 3 algorithm from Section 4. When u wants to
send packets to v, if v 2 Cu, we use header (u; tree-labelv(u));
otherwise, if v 62 Cu, we use (w(u; v); cent-tree-labelv[i(u; v])
exactly as in Section 4.

The claimed stretch of 4k � 5 follows directly from the lemma
below.

LEMMA A.2. Given (u; v) 2 V 2 with v 62 Cu. Let i be the
least index such that centv[i] 2 Bu. Then

�(u; centv[i]) + �(centv[i]; w) � (4k � 5)�(u; v) :

PROOF. With the exception of the base case, the proof is identi-
cal to that of Lemma A.1. From the definitions in [25], the condi-
tion v 62 Cu implies that �(v; centv[1]) � � = �(u; v), whereas
in Lemma A.1, we had �(v; centv[1]) � 2�. In the induction, this
means that we save � in both (3) and (4), and hence we save 2�
in the final bound, reducing (4k � 3)� to (4k � 5)�.

10

