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Abstract

Let G = (V,E) be an undirected weighted graph with |V | = n and |E| = m. Let k ≥ 1 be an integer. We
show that G = (V,E) can be preprocessed in O(kmn1/k) expected time, constructing a data structure of
size O(kn1+1/k), such that any subsequent distance query can be answered, approximately, in O(k) time.
The approximate distance returned is of stretch at most 2k − 1, i.e., the quotient obtained by dividing
the estimated distance by the actual distance lies between 1 and 2k−1. A 1963 girth conjecture of Erdős,
implies that Ω(n1+1/k) space is needed in the worst case for any real stretch strictly smaller than 2k+1.
The space requirement of our algorithm is, therefore, essentially optimal. The most impressive feature
of our data structure is its constant query time, hence the name “oracle”. Previously, data structures
that used only O(n1+1/k) space had a query time of Ω(n1/k).

Our algorithms are extremely simple and easy to implement efficiently. They also provide faster con-
structions of sparse spanners of weighted graphs, and improved tree covers and distance labelings of
weighted or unweighted graphs.

1 Introduction

Consider the following interesting problem which is, perhaps, the most natural formulation of the classical
all-pairs shortest paths problem (APSP). We are given a description of a large network, such as the Internet,
or a large road network, such as the US road network1, with n nodes and m connections. Each connection
has a length, or weight, associated with it. Usually m ¿ n2. We are to preprocess the network, so that
subsequent distance queries or shortest path queries could be answered quickly, on-line.

This formulation seems to capture more accurately the real nature of the all-pairs shortest paths problem,
as in most applications we are not really interested in all distances, we just want the ability to retrieve them
quickly, if needed. For example, there are probably many pairs of addresses in the US whose distance is of
interest to no one. This is precisely the case with “sublinear” algorithms for static metric space problems.
The input to such a problem is usually a shortest paths metric. A “sublinear” algorithm attempts to solve
such problem while querying only some of the distances. For more details, see Indyk [Ind99].
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Using an APSP algorithm, we can do the preprocessing in Õ(mn) time, and produce a data structure of
size O(n2), an n× n matrix holding the distances, and perhaps a succinct representation of shortest paths
between all pairs of vertices of the graph. Any distance query can then be answered in O(1) time.

There are, however, several serious objections to this solution. First, a preprocessing time of Õ(mn) may
be too long. Second, even if we are willing to wait that long, the n× n matrix produced may be too large
to store efficiently (typically m¿ n2, and then this table is much larger than the network itself).

Here, we explore alternative solutions to this problem. We show that better solutions exist, if the network is
undirected, and if we are willing to settle for approximate distances, instead of exact ones. The approximate
distances produced by our algorithms are of a finite stretch. An estimate δ̂(u, v) to the distance δ(u, v)
from u to v is said to be of stretch t if and only if δ(u, v) ≤ δ̂(u, v) ≤ t · δ(u, v). Stretched distances may
be acceptable under some scenarios, while unacceptable in others. Many recent algorithms dealing with
finite metric spaces produce only approximate answers, even if exact distances are used. In particular, this
is the case with the above mentioned sublinear metric space algorithms of Indyk [Ind99]. Adapting these
algorithms to exploit our approximate distance oracles is therefore a straightforward task.

As stated in the abstract, we describe, for any integer k ≥ 1, a preprocessing algorithm that runs in
O(kmn1/k) time, producing a data structure of size O(kn1+1/k). Note that the preprocessing time is almost
linear in the size of the network, if k is a large constant, while the size of the data structure produced is
almost linear in the number of nodes. In particular, for dense enough graphs, the data structure produced
is much more compact than the network itself. Subsequent queries can then be answered, approximately,
in O(k) time. i.e., constant time. The stretch of the approximations returned is at most 2k−1. This result
is summarized in the following theorem.

Theorem 1.1 Let G = (V,E) be a weighted undirected graph with non-negative edge weights with |V | = n,
|E| = m. Let k ≥ 1 be an integer. Then, the graph G can be preprocessed in O(kmn1/k) expected time,
producing a data structure of O(kn1+1/k) size, such that subsequent distance queries can be answered,
approximately, in O(k) time. The stretch of the produced estimates is at most 2k − 1. Paths no longer
than the estimates returned can be produced in constant time per edge.

For k = 1, we simply get the APSP solution. When k = 2, we get a preprocessing time of O(mn1/2),
space O(n3/2), query time O(1), and stretch at most 3. When k = blog nc, we get a preprocessing time of
O(m log n), space O(n logn), query time O(logn), and stretch O(logn). Higher values of k do not improve
the space or preprocessing time.

The most interesting feature of our algorithms, we believe, is the fact that for every fixed k we get a
constant query time, hence the name distance oracles.

The space requirements of our oracles are essentially optimal. A 1963 girth conjecture of Erdős, and
others, implies that Ω(n1+1/k) bits of storage are needed, in the worst case, by any oracle, however slow,
that gives estimated distances with stretch strictly less than 2k+1. This girth conjecture is known to hold
for k = 1, 2, 3, 5. Thus, in particular, any oracle giving stretch 2.99 answers must use, on some graphs, at
least Ω(n2) bits of storage, and any oracle giving stretch 4.99 answers must use, on some graphs, at least
Ω(n3/2) bits of storage, almost the same amount of storage used by our stretch 3 oracle.

The oracle model of the shortest paths problem was considered before, at least implicitly, by Awerbuch
et al. [ABCP99], Cohen [Coh99], Dor et al. [DHZ00], and by Matoušek [Mat96]. (See discussion in the
next section.) Our results significantly improve, however, the previously available results. Most strikingly,
using slightly less space, we reduce the query time from Õ(kn1/k) to O(k).

Theorem 1.1 is proved in Section 4. Before that, in Section 3, we present a simplified version of our
algorithm for the the special case where the input is the complete distance matrix of a finite metric
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space. This version of the algorithm is faster (O(n2) time) and particularly suited for external memory
implementation.

As a byproduct of our oracle construction for graphs, we also get faster algorithms for constructing sparse
spanners and compact tree covers of weighted graphs (see Section 4.4), and near-optimal distance labelings
of graphs (see Section 3.5).

As mentioned in the abstract, all our algorithms are extremely simple and easy to implement efficiently.

The rest of the paper is organized as follows. In the next section, we compare our results with previously
available results. In Section 3 we construct approximate distance oracles for finite metric spaces. The input
in this setting is an n × n matrix giving the distance between any two points in the space. In Section 4
we adapt this construction to work on the shortest paths metric of a given input graph. The input this
time is the graph, and not an explicit representation of all the distances in it. Breaking the description
of our distance oracles in this way allows us to separate the metric aspects of our constructions from the
algorithmic graph techniques needed for efficient implementation. In Section 5 we describe almost matching
lower bounds on the space requirements of approximate distance oracles. We also show that essentially no
non-trivial distance oracles are possible for directed graphs. We end, in Section 6, with some concluding
remarks and open problems.

2 Comparison with previous results

A summary of previously published algorithms for computing exact or approximate distances in general
weighted undirected graphs, cast in our framework, is given in Table 1.

In more detail, the fastest solution for APSP for directed and undirected weighted graphs with non-
negative weights from an arbitrary (comparison based) domain is to run a single-source shortest paths
(SSSP) algorithm from each node. This takes O(m+n logn) time using the classical algorithm of Dijkstra
[Dij59], implemented using Fibonacci heaps [FT87] (see also Cormen et al. [?, Chapter 20]). In this
paper, we are only interested in undirected graphs, and then an improved running time of O(m) can be
obtained when the weights are integer [Tho99] (or floating point [Tho00b]). Consequently, the time bound
for APSP is O(mn). The O(m) time bound for SSSP has been incorporated in the other time bounds
below, so an Õ(·) time bound indicates the presence of logarithmic factors not stemming from Dijkstra’s
algorithm.

For completeness, we note that improved time bounds may be obtained if not all edges are part of shortest
paths [KKP93, McG95], or if the graph is dense and all weights are small integers [Zwi02, SZ99].

Zwick [Zwi02] has shown that if a stretch of 1 + ε, for some fixed ε > 0, is allowed, then APSP can be
solved in Õ(nω) time, where ω < 2.376 is the exponent of matrix multiplication. For stretches 2, 7/3,
and 3, Cohen and Zwick [CZ01] have shown that APSP can be solved in time Õ(m1/2n3/2), Õ(n7/3), and
Õ(n2), respectively.

The above Õ(n2) time bound is clearly near-optimal, if we insist on producing a complete table of distances.
It is interesting to note, however, that stretch 3 is also the smallest stretch for which one can hope to produce
distance oracles that use o(n2) space for all graphs. Indeed, Dor et al. [DHZ00] describe a stretch 3 oracle
that uses only Õ(m1/3n+n2/m1/3) space, which is always Õ(n5/3), has a preprocessing time of Õ(m2/3n),
and O(1) query time. The preprocessing time of this algorithm is o(n2) if m = o(n3/2). The ideas of Dor
et al. [DHZ00] do not extend, however, to larger stretches.

Our new stretch 3 oracle (Theorem 1.1 with k = 2) has a preprocessing time of O(mn1/2), optimal space
O(n3/2), and O(1) query time. The new preprocessing time is faster than all the other preprocessing times
when m = O(n3/2), in which case it achieves a preprocessing time of O(n2).
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Stretch Query time Space Preproc. time Reference Space lower-bound

1 O(1) O(n2) O(mn) [Tho99]

O(m) O(m) 0 [Tho99]

1 + ε O(1) O(n2) Õ(nω) [Zwi02] Ω(m) bits

2 O(1) O(n2) Õ(m1/2n3/2) [CZ01]

7/3 O(1) O(n2) Õ(n7/3) [CZ01]

O(1) O(n2) Õ(n2) [CZ01]

3 O(1) Õ(m1/3n+ n2/m1/3) Õ(m2/3n) [DHZ00] Ω(min{m,n3/2}) bits

[Rei58]
O(1) O(n3/2) O(mn1/2) This paper

O(n1+1/k) O(n1+1/k) O(mn1+1/k) [ADD+93]

2k − 1 Õ(kn1/k) Õ(kn1+1/k) Õ(mn1/k) [Mat96]

O(k) O(kn1+1/k) O(kmn1/k) This paper Ω(min{m,n1+1/k}) bits

Conjecture [Erd64]
2k + ε Õ(kn1/k) Õ(kn1+1/k) Õ(kmn1/k) [Coh99]

64k Õ(kn1/k) Õ(kn1+1/k) Õ(kmn1/k) [ABCP99]
Ω(min{m,n1+1/32k}) bits

Conjecture [Erd64]

Table 1: All available exact and approximate distance oracles for weighted undirected graphs

For general stretch, Awerbuch et al. [ABCP99] gave, for every integer k ≥ 1, a stretch 64k oracle with
space Õ(kn1+1/k), expected preprocessing time Õ(mn1/k), and Õ(kn1/k) query time. Cohen [Coh99] signif-
icantly improved this result, reducing the stretch to 2k+ ε while leaving the other parameters unchanged.
The stretch was further improved to 2k − 1, using entirely different techniques, by Matoušek [Mat96].

The main result of this paper is that we improve the query time time from Õ(kn1/k) to O(k). We also get
slightly improved space and preprocessing time. More precisely, we present a stretch 2k − 1 oracle with
space O(kn1+1/k), expected preprocessing time O(mn1/k), and O(k) query time.

Most work on distance oracles is closely related to spanners. A t-spanner of a weighted undirected graph G
is a subgraph H of G such that the distances in H are stretch t estimates of the distances in G (see Peleg
and Schäffer [PS89]). Clearly, a stretch t oracle, like ours, capable of producing paths witnessing the
estimated distances, must explicitly or implicitly contain a t-spanner. Hence, t-spanners provide a clean
mathematical view of compact distance oracles. Indeed, all of the above mentioned results providing o(n2)
space bounds [ABCP99],[Coh99],[DHZ00] can be viewed as producing spanners.

The sizes of spanners are closely related to the girth of a graph, which is the size of its smallest simple cycle.
Clearly, the girth of a graph is at least t+2 if and only if no proper subgraph of it is a t-spanner. A classical
result in extremal graph theory (see discussion and references in Section 5) states that an n-vertex graph
with at least n1+1/k edges is of girth at most 2k. As pointed out by Althöfer et al. [ADD+93], this implies
that every weighted undirected graph on n vertices has a (2k − 1)-spanner with O(n1+1/k) edges. Such a
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spanner can be constructed using an algorithm similar to Kruskal’s algorithm (see [Kru56] or Cormen et
al. [CLRS01, Chapter 23]) for constructing minimum spanning trees: Building the spanner from scratch,
consider the edges of the graph in a non-decreasing order of weight, adding each edge to the spanner if
its endpoints are not already connected, in the spanner, by a path using at most 2k − 1 edges. At any
stage, the spanner is a (2k−1)-spanner of the edges already considered, and its unweighted girth is at least
2k + 1, so it has only O(n1+1/k) edges. The fastest implementation of this algorithm that we are aware
of runs in O(mn1+1/k) time. Our preprocessing algorithm constructs a similar spanner much faster. The
expected construction time is now O(kmn1/k), instead of O(mn1+1/k). Very recently, Baswana and Sen
[BS03] found a randomized linear time algorithm for constructing such spanners, but their construction
does not support fast distance queries.

It is conjectured by many (e.g., Erdős [Erd64], equation 7 on p. 33, Bondy and Simonovits [BS74], remark 1
on p. 98 and Bollobás [Bol78], item 13 on p. 164), that there are n-vertex graphs with Ω(n1+1/k) edges that
are of girth 2k + 2. This conjecture is proved for k = 1, 2, 3, 5 (see Section 5). Since these graphs have no
proper t-spanners, for t < 2k+ 1, the conjecture would imply that the above mentioned upper bounds are
best possible. The conjecture also implies that Ω(n1+1/k) bits are needed, in the worst case, by any oracle
giving estimates of stretch smaller than 2k + 1, even if it not required to construct appropriate paths.
This lower-bound is proved by Matoušek [Mat96], but for completeness, we repeat the simple argument in
Section 5.

Interestingly, the previous best distance oracle of Matoušek [Mat96] (see also Chapter 15 of [Mat02]) does
not provide a spanner. Generalizing a technique of Bourgain [Bou85], Matoušek provides a randomized
low-distortion embedding of a metric into Ld∞. Using d = O(kn1/k log n) dimensions, w.h.p., his distances
become shorter by at most a factor 2k − 1 (so multiplying them by 2k − 1, he gets stretch 2k − 1).
When applied to a graph, he only needs O(m) time to compute a given coordinate for all vertices, and his
distance estimate is just the maximal difference over all coordinates. Thus with space O(nd) = Õ(kn1+1/k),
preprocessing time O(md) = Õ(kmn1/k), and query time O(d) = Õ(kn1/k), he gets stretch 2k−1 with high
probability. For comparison, we note that embeddings into Euclidian space or tree metrics (see Bourgain
[Bou85], Linial at al. [LLR95] and Bartal [Bar99], Fakcharoenphol at al. [FRT03]), have stretch at least
Ω(log n).

Some distance oracles were constructed for special classes of graphs. Exact linear-space distance oracles
for graphs of small treewidth were obtained by Chaudhuri and Zaroliagis [CZ00]. For planar graphs, or
graphs with bounded genus, stretch (1 + ε) distance oracles are constructed in near-linear time and space
by Thorup [Tho01] and Klein [Kle02], providing distance estimates in constant time. For Euclidean graphs,
the same bounds were obtained by Gudmundsson et al. [GLNS02].

Finally, we mention that there has been some work on approximating distances, in unweighted undirected
graphs, with additive rather than multiplicative errors (see Aingwoth et al. [ACIM99] and Dor et al.
[DHZ00]), and on approximating distances with multiplicative and additive errors (see Elkin and Peleg
[EP01] and Elkin [Elk01]).

Techniques Our construction technique is most closely related to the techniques employed by Awer-
buch et al. [ABCP99] and Cohen [Coh99]. A common feature of these previously used techniques is the
construction of a family of balls with the property that each vertex is contained in at most of Õ(kn1/k)
balls. The returned distance between two vertices is then the smallest diameter of a ball containing them
both. To find this ball, they inspect each of the Õ(kn1/k) balls containing the first vertex, and check, in
constant time per ball, whether it also contains the second. Though conceptually simple, the use of balls
leads to several technical complications. One of them, for example, is an added logarithmic factor paid for
the construction of balls with exponentially increasing diameters. The main drawback of this approach,
however, is the lack of a quick way of finding the smallest diameter ball containing two given vertices.
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In our construction, we relax the rigid notion of balls with limited diameter, and use instead collections
of induced trees that form a tree cover of the graph. Each vertex is contained in only in a small number
of trees, and for any pair of vertices, there is a tree in the cover containing a small-stretch path between
them. Furthermore, we can identify the appropriate tree in constant time.

3 Approximate distance oracles for metric spaces

We begin by presenting approximate distance oracles for general metric spaces.

Theorem 3.1 Let (V, δ) be a finite metric space represented as an n×n distance matrix. Let k ≥ 1 be an
integer. The metric space (V, δ) can be preprocessed in O(n2) expected time, producing a data structure of
O(kn1+1/k) size, such that subsequent distance queries can be answered, approximately, in O(k) time. The
stretch of the produced estimates is at most 2k − 1.

Our preprocessing and query answering algorithms are given, respectively, in Figure 1 and Figure 2. Both
are extremely simple and easy to implement. The algorithms and their implementation details are discussed
in more detail in the next two subsections. The following two subsections are then devoted to the analysis
of the algorithms, showing that they satisfy the requirements of Theorem 3.1. In Section 3.5 we show
that our approximate distance oracles also produce, as a byproduct, almost optimal distance labels. In
Section 3.6 we show that our randomized preprocessing algorithm may be derandomized with only a small
loss of efficiency. Finally, in the last two subsections of this section we consider more practical issues. In
Section 3.7 we mention some hash functions that may be used by our algorithms. In Section 3.8 we note
that our preprocessing algorithm is an efficient external memory algorithm.

3.1 Preprocessing a finite metric space

A description of the preprocessing algorithm preprok(V, δ) is given in Figure 1. The missing implemen-
tation details are explained below. The algorithm receives an n × n matrix representing a finite metric
δ(u, v) on a set V containing n points referred to as vertices. (In the next section, we consider the case in
which the input to the preprocessing algorithm is not an explicit n × n matrix that describes the metric
on V , but rather a weighted undirected graph G = (V,E) that induces a shortest paths metric on V .)

The preprocessing algorithm starts by constructing a non-increasing sequence of sets A0 ⊇ A1 ⊇ · · · ⊇ Ak−1

by a process of repeated sampling. The sequence begins with A0 = V . Each set Ai, where 1 ≤ i < k, is
then obtained by taking, roughly, an n−1/k fraction of the elements of Ai−1. More precisely, each element
of Ai−1 is placed in Ai, independently, with probability n−1/k. Finally, Ak = ∅. The expected size of Ai,
for 0 ≤ i ≤ k, is clearly n1−i/k. Sometimes we will refer to the vertices of Ai as i-centers.

In the following, for simplicity, we assume that Ak−1 6= ∅. This is the case with extremely high probability,
and if not, we can just rerun the algorithm. Now, for each vertex v and index i = 0, ..., k−1, the algorithm
computes δ(Ai, v), the smallest distance from an i-center to v. It also lets pi(v) ∈ Ai be nearest possible
to v, that is, δ(pi(v), v) = δ(Ai, v). Note that A0 = V , so δ(A0, v) = 0, and p0(v) = v, for every v ∈ V .
Next, the algorithm sets δ(Ak, v)← δ(∅, v) =∞, with pk(v) undefined.

Finally, for each vertex v ∈ V , the algorithm computes a bunch B(v) ⊆ V as follows. A vertex w ∈ Ai−Ai+1

is put in the bunch B(v) if and only if δ(w, v) < δ(Ai+1, v), i.e., if w is strictly closer to v than all the
vertices of Ai+1. Note that as δ(Ak, v) = ∞, we get that Ak−1 ⊆ B(v), for every v ∈ V . We show in
Section 3.3, that the expected size of the bunch B(v), for every v ∈ V , is at most kn1/k.
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algorithm preprok(V, δ)

A0 ← V ; Ak ← ∅

for i← 1 to k − 1

let Ai contain each element of Ai−1,
independently, with probability n−1/k.

for every v ∈ V

for i← 0 to k − 1,
let δ(Ai, v)← min{ δ(w, v) | w ∈ Ai},
and pi(v) ∈ Ai be nearest to v, i.e. δ(pi(v), v) = δ(Ai, v).

δ(Ak, v)←∞

let B(v)← ∪k−1
i=0 {w ∈ Ai −Ai+1 | δ(w, v) < δ(Ai+1, v)}.

Figure 1: Preprocessing a finite metric space

algorithm distk(u, v)

w ← u ; i← 0

while w 6∈ B(v)
i← i+ 1
(u, v)← (v, u)
w ← pi(u)

return δ(w, u) + δ(w, v)

Figure 2: Answering a distance query

A schematic description of the construction of the bunch B(v), for some v ∈ V , is given in Figure 3. It
is assumed there that k = 3. The black vertices are the vertices of A2, the grey ones are the vertices of
A1−A2, while the white ones are those of A0−A1. The bunch B(v) is composed of the the vertices pointed
to by an arrow from v. Also shown in the figure are p1(v), the vertex of A1 closest to v, and p2(v), the
vertex of A2 closest to v.

This almost completes the operation of the preprocessing algorithm. For each bunch B(v), the preprocess-
ing algorithm constructs a hash table (see Carter and Wegman [CW79], or [CLRS01, Chapter 11]) of size
O(|B(v)|) that holds, for every w ∈ B(v), the distance δ(w, v). Using this hash table it can be checked
for every w ∈ V , in expected O(1) time, whether w ∈ B(v) and if so what is δ(w, v). Alternatively, it
constructs a 2-level hash table (see Fredman, Komlos and Szemeredi [FKS84]), again of size O(|B(v)|),
using which it is possible to check whether w ∈ B(v), and return δ(w, v) if so, in O(1) worst case time.

The data structure constructed by the preprocessing algorithm stores for each vertex v ∈ V ,

• for 0 ≤ i ≤ k − 1, the witness pi(v) and the corresponding distance δ(pi(v), v) = δ(Ai, v).

• the (2-level) hash table for the bunch B(v), holding δ(v, w), for every w ∈ B(v).

The total size of the data structure is O(kn +
∑

v∈V |B(v)|). In Section 3.3, we show that the expected
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p2(v)

v

p1(v)

Figure 3: The bunches constructed by the preprocessing algorithm.

size of B(v), for every v ∈ V , is at most kn1/k. The total expected size of the data structure is therefore
O(kn1+1/k). The time complexity of preprok(V, δ) is clearly O(n2).

3.2 Answering a distance query

A description of the very simple query answering algorithm distk(u, v) is given in Figure 2. It uses only four
variables: u and v, the two vertices whose distance is to be estimated, a third vertex w and an index i. The
algorithm repeatedly swaps u and v. This clearly does not affect their distance. Initially, w = u = p0(u)
and i = 0. If w ∈ B(v), a condition checked by accessing the (2-level) hash table of B(v), we are done.
Otherwise, the algorithm increments i, swaps u and v, and lets w ← pi(u) ∈ Ai. It continues in this way
until w ∈ B(v). This condition is guaranteed to hold when i = k − 1, if not before, as then w ∈ Ak−1 and
Ak−1 ⊆ B(v) for every v ∈ V .

When w ∈ B(v), the algorithm returns δ(w, u) + δ(w, v) as an upper bound on δ(u, v). The distance
δ(w, u) = δ(pi(u), u) is read directly from the data structure constructed during the preprocessing stage.
The distance δ(w, v) = δ(v, w) is returned by the (2-level) hash table of B(v) together with the answer to
the query w ∈ B(v).

The complexity of distk(u, v) is clearly O(k). The most time consuming operations are the at most k
accesses to the hash tables to test whether w ∈ B(v), returning δ(w, v) if so. The stretch of the estimate
produced by distk(u, v) is analyzed in Section 3.4.

3.3 Analysis of the preprocessing algorithm

We have shown already, in Section 3.1, that the running time of the preprocessing algorithm is O(n2) and
that the size of the data structure produced by it is O(kn+

∑

v∈V |B(v)|). All that remains, therefore, is
to analyze the expected sizes of the bunches B(v), for v ∈ V .
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Lemma 3.2 For every v ∈ V , the expected size of the bunch B(v) is at most kn1/k.

Proof: Let v ∈ V . We prove the lemma by showing, for every 0 ≤ i ≤ k − 1, that the expected size of
B(v) ∩ Ai is at most n1/k. For i = k − 1, the statement is trivial as E[|Ak−1|] = n1/k. Assume, therefore,
that i < k − 1.

We show that the expected size of B(v)∩Ai, for i < k−1, is stochastically dominated by a geometric random
variable with parameter p = n−1/k. Let w1, w2, . . . , w` be the elements of Ai, arranged in a non-decreasing
order of distance from v. If wj ∈ B(v), then δ(wj , v) < δ(Ai+1, v), and thus w1, w2, . . . , wj−1 6∈ Ai+1. Note
that p = Pr[w ∈ Ai+1 | w ∈ Ai] = n−1/k, for i < k − 1. Thus Pr[wj ∈ B(v)] ≤ (1− p)j−1 and the expected
size of B(v) ∩Ai is at most

∑̀

j=1

Pr[wj ∈ B(v)] ≤
∑̀

j=1

(1− p)j−1 < p−1 = n1/k .

This completes the proof of the lemma. 2

As described, the preprocessing algorithm has, therefore, a worst case running time of O(n2) and the data
structure produced has an expected size of O(kn1+1/k). We can get a data structure of size O(kn1+1/k) by
rerunning the algorithm until the data structure produced is small enough. By Markov’s inequality, the
expected number of repetitions required is constant, so the expected running time of this version of the
algorithm is still O(n2), as stated in Theorem 3.1.

3.4 Analysis of the query answering algorithm

We next obtain an upper bound of 2k− 1 on the stretch of the estimated distance returned by distk(u, v).

Lemma 3.3 distk(u, v) ≤ (2k − 1)δ(u, v).

Proof: Clearly, the swapping of u and v does not change their distance ∆ = δ(u, v). Before the while loop
starts, w = u so δ(w, u) = 0. We want to show that each iteration increases δ(w, u) by at most ∆. Since
Ak−1 ⊆ B(v), there are at most k − 1 iterations, so we will then end up with δ(w, u) ≤ (k − 1)∆. Now,
δ(w, v) ≤ δ(w, u) + δ(u, v) ≤ (k− 1)∆+∆ ≤ k∆, so the estimated distance returned is at most (2k− 1)∆.

All that remains, therefore, is to show that δ(w, u) increases, in each iteration, by at most ∆ = δ(u, v).
Let ui, vi and wi be the values of the variables u, v and w assigned with a given value of i. Then v0 and u0

are the original values of u and v, and then w0 = u0, so δ(w0, u0) = 0.

We want to show that δ(wi, ui) ≤ δ(wi−1, ui−1) + ∆ if the i-th iteration passes the test of the while-
loop. Then wi−1 6∈ B(vi−1), so δ(wi−1, vi−1) ≥ δ(Ai, vi−1) = δ(pi(vi−1), vi−1). However, vi−1 = ui and
wi = pi(ui), so we get

δ(wi, ui) = δ(pi(ui), ui) = δ(pi(vi−1), vi−1) ≤ δ(wi−1, vi−1) ≤ δ(wi−1, ui−1) + ∆ ,

as required. 2

This completes the proof of Theorem 3.1.
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3.5 Distance labels

Let G = (V,E) be a weighted undirected graph on n-vertices with integer edge weights. Let ∆ be the
diameter of G, and let k ≥ 1 be an integer. Peleg [Pel00b] describes a way of assigning each vertex v ∈ V
of the graph G = (V,E) an O(kn1/k log n log∆)-bit label, denoted label(v), such that for any u, v ∈ V ,
a stretch 8k estimate of the distance δ(u, v) may be obtained just by looking at label(u) and label(v).
Computing this estimate, in Peleg’s scheme, may take Ω(n1/k) time.

We obtain the following improvement to Peleg’s result:

Theorem 3.4 Let (V, δ) be a metric space on n points with integral distances with diameter ∆. Let
1 ≤ k ≤ logn be an integer. Then, it is possible to assign to each point v ∈ V an O(n1/k log1−1/k n log(n∆))-
bit label, denoted label(v), such given label(u) and label(v), for any two points u, v ∈ V , it is possible to
compute, in O(k) time, an approximation to the distance δ(u, v) with a stretch of at most 2k − 1.

As would follow from the results of Section 5, this result is essentially optimal. Lower bounds on the size
of labels in various kinds of labeling schemes are also obtained by Gavoille et al. [GPPR01].

In our labeling scheme, label(v), for each v ∈ V , is composed of the the witnesses pi(v) and the distances
δ(Ai, v), for 1 ≤ i < k, as well as the (2-level) hash table that holds, for every w ∈ B(v), the distance δ(w, v).
It is easy check that all the information needed by the query answering algorithm distk(u, v) is contained
in label(u) or in label(v). Thus, a stretch 2k − 1 estimate of the distance δ(u, v) may be obtained in O(k)
time just by examining label(u) and label(v).

It follows from Lemma 3.2 that the expected size of label(v), for any v ∈ V , is O(kn1/k) words, where
each word holds either a name of a vertex or a distance. As there are n vertices in the graph, and as the
diameter of the graph is ∆, each word contains at most log(n∆) bits. We are interested, here, however, in
the maximum size of a label, not its expected size.

It is not difficult to show, using arguments similar to arguments used below, that with high probability,
the size of every bunch B(v), for v ∈ V , is O(n1/k log n). This yields, therefore, a distance labeling scheme
with O(n1/k log n log(n∆))-bit labels. A factor of about log1/k n may be gained by slightly changing the
sampling probability used by the preprocessing algorithm:

Lemma 3.5 If the sampling probability used by preprok(V, δ) is changed from n−1/k to (n/ lnn)−1/k, then
with high probability, the size of every bunch B(v), for v ∈ V , is O(n1/k log1−1/k n).

Proof: Let p = (n/ lnn)−1/k be the sampling probability. As in the proof of Lemma 3.2 that the size of
bunch B(v), for v ∈ V , is stochastically dominated by the sum

∑k−1
i=0 Xi of k random variables, where Xk−1

is binomially distributed with parameters n and pk−1, and Xi, for 0 ≤ i ≤ k − 2, is a geometric random
variable with parameter p. (Here Xi, for 0 ≤ i ≤ k−1, bounds the size of B(v)∩Ai.) Furthermore, these k
random variables are independent.

Chernoff’s bounds (see Motwani and Raghavan [MR95, Chapter 4]) say that if X is a binomial random
variable with E[X] = µ, then

Pr[X > (1 + δ)µ ] <

[

eδ

(1 + δ)1+δ

]µ

,

Pr[X < (1− δ)µ ] < e−µδ
2/2 .
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s← n1/k(lnn+ 1)1−1/k

A0 ← V ; Ak ← ∅

for i← 1 to k − 1

for every v ∈ V ,
let Ni(v) contain the s vertices of Ai−1 closest to v.

let Ai be a subset of Ai−1 of size at most |Ai−1|
s (lnn+ 1)

that hits Ni(v), for every v ∈ V .

Figure 4: Deterministic construction of the samples.

It is easy to see that E[Xk−1] = npk−1 = n1/k ln1−1/k n. Using the first Chernoff inequality, with δ = 3
and µ = n1/k ln1−1/k n, we get that

Pr[Xk−1 > 4n1/k ln1−1/k n ] < (e3/44)n
1/k ln1−1/k n < e−2n1/k ln1−1/k n < e−2 lnn = n−2 .

Next, a moment reflection shows that, as X0, . . . , Xk−2 are independent geometric random variables, for
every integer s we have Pr[

∑k−2
i=0 Xi > s = Pr[B(s, p) < k ], where B(s, p) is a binomial random variable

with parameters s and p. Thus,

Pr[
k−2
∑

i=0

Xi > 16n1/k ln1−1/k n ] = Pr[B(16n1/k ln1−1/k n, (n/ lnn)−1/k) < k ] .

Note that µ = E[B(16n1/k ln1−1/k n, (n/ lnn)−1/k) ] = 16 lnn. As k ≤ log n, we get that k < µ/2, and
using the second Chernoff inequality, with δ = 1/2, we get that

Pr[
k−2
∑

i=0

Xi > 16n1/k ln1−1/k n] < e−µ/8 = n−2 .

The probability that at least one bunch B(v) is of size greater than 20n1/k ln1−1/k n is at most n(n−2 +
n−2) = 2/n¿ 1, for n large enough. 2

This completes the proof of Theorem 3.4. As mentioned, this result is essentially optimal, as would follow
from the results of Section 5. The integrality assumption can be easily removed if we are willing to settle for
stretch 2k−1+ε, for some arbitrarily small ε > 0. Each label is then of size O(n1/k log1−1/k n log(n/ε))-bits.

3.6 Derandomization

The preprocessing algorithm prepro(V, δ) given in Section 3.1 is randomized. In it not difficult, however,
to derandomize it, with only a small loss in efficiency. Randomization is only used by prepro(V, δ) in the
selection of the samples A0 ⊇ A1 ⊇ · · · ⊇ Ak, and in the construction of the (2-level) hash tables.

A deterministic way of constructing a sequence of samples with all the desired properties is given in Figure 4.
The sets A0, A1, . . . are constructed one by one. The set A0 is simply V . Suppose Ai−1, for some 1 ≤ i < k
was already constructed. The algorithm lets Ni(v), for every v ∈ V , be the set of the n1/k ln1−1/k n vertices
of Ai−1 that are closest to v. Ties are broken arbitrarily. Then, the algorithm chooses a set Ai of size at
most n1−i/k(lnn + 1)i/k that hits all the neighborhoods Ni(v), for v ∈ V . To construct the set Ai, the
algorithm relies on the following well known lemma, which is a slight modification of Theorem 2.2 of Alon
and Spencer [AS92, p. 6]:
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Lemma 3.6 Let N1, . . . , Nn ⊆ U be a collection of sets with |U | = u and |Ni| ≥ s, for 1 ≤ i ≤ n. Then,
a set A of size at most u

s (ln
ns
u + 1) ≤ u

s (lnn + 1) such that Ni ∩ A 6= ∅, for 1 ≤ i ≤ n, can be found,
deterministically, in O(u+

∑n
i=1 |Ni|) time.

The set A, whose existence is claimed in Lemma 3.6, is obtained by repeatedly adding to A elements of U
that hit as many unhit sets as possible, until only u

s sets are unhit. The construction of A is then completed
by adding an element from each one of the unhit sets. For more details, see Alon and Spencer [AS92, p. 6].
(Lemma 3.6 is slightly more general than Theorem 2.2 of [AS92] that assumes u = n.)

We now claim:

Theorem 3.7 If the random sampling used by preprok(V, δ) is replaced by the deterministic sampling
procedure described in Figure 4, then the size of each bunch B(v), for v ∈ V , is at most kn1/k(lnn+1)1−1/k.

Proof: Let v ∈ V . Note that B(v) = ∪k−1
i=0Bi(v), where Bi(v) = {w ∈ Ai − Ai+1 | δ(w, v) < δ(Ai+1, v)},

for 1 ≤ i ≤ k. We claim that |Bi(v)| ≤ s = n1/k(lnn+1)1−1/k, for 0 ≤ i < k− 1, otherwise Ni(v) ⊆ Bi(v),
and by the construction of Ai+1, we have Ai+1 ∩Bi(v) 6= ∅, a contradiction. Finally, Bk−1(v) = Ak−1, and
it is easy to show by induction that |Ak−1| ≤ n1/k(lnn+ 1)1−1/k. 2

We have thus lost only a factor of about log1−1/k n with respect to the expected bunch size of the randomized
algorithm, and only a factor of about k with respect to the maximum bunch size of the randomized
algorithm with the slightly modified sampling probability.

The preprocessing algorithm preprok(V,E) also has to construct a 2-level hash table for each bunch B(v),
where v ∈ V . (This step is not explicit in the description of the algorithm given in Figure 1.) The
linear time algorithm given by Fredman et al. [FKS84] for the construction of such tables is randomized.
Their algorithm is derandomized, however, by Alon and Naor [AN96]. To construct a perfect hash table
over q = Õ(n1/k) elements from a universe of size n, without assuming that k is constant, they use
O(q log q logn) = Õ(n1/k) time. Hence constructing the hash table for all B(v) takes Õ(n1+1/k) time, so
this derandomization does not affect the overall running time of O(n2) for the preprocessing algorithm.

3.7 Fast hashing

The query answering algorithm has a worst case running time of O(k), when 2-level hash tables are used.
The hash functions used in the construction of these 2-level hash tables should be chosen from a universal
family of hash functions (see Carter and Wegman [CW79]). The evaluation of many standard universal
hash functions is quite slow. We mention, therefore, a recently suggested universal family of hash functions
whose evaluation is about 10 times faster than the evaluation of hash functions, commonly mentioned in
text books, that are based on arithmetic modulo a prime number.

Suppose that each vertex x is represented by a standard 32-bit integer. Let a > 0 be a random odd 32-bit
integer. Define ha(x) = (a∗x)À (32−`), for some ` ≤ 32. The above should be understood as C-notation,
withÀ denoting right shift and a∗x denoting multiplication modulo 232. The result is then an `-bit integer.
The family {ha(x) | a odd} is then a universal family, in the sense that Pr[ha(x) = ha(y)] ≤ 2−`, for every
x 6= y. The universality of this multiplicative hashing scheme is pointed out by Dietzfelbinger et al.
[DHKP97]. Its efficiency is demonstrated by Dietzfelbinger and Hüne [DH96] and by Thorup [Tho00a].

3.8 External memory

An interesting application of the above technique is the following: Given a huge n×n distance matrix that
resides in external memory, or on tape, we can efficiently produce a compressed approximate version of it
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that could fit in a much smaller, but much faster, internal memory. We assume here that it is possible
to pick a not too large integer k such that the internal memory can accommodate a data structure of size
O(kn1+1/k).

A random access to an entry in the original external memory matrix is typically in the order of 10,000 times
slower than an internal memory access. (See Vitter [Vit01] for more on external memory issues.) Thus,
our simple O(k) time distance query algorithm, working in internal memory, is expected to be significantly
faster than a single access to the external memory.

Assuming that the distance matrix is stored in row (or column) order, our preprocessing can take advantage
of the fact that one sequential read of the whole external memory matrix is comparatively cheap. First,
we generate the sets Ai. As we assume that the internal memory is of size O(kn1+1/k), the sets Ai can
be easily stored in the internal memory. We then read the rows of the matrix, one by one. Given the
row corresponding to a vertex v, we first compute the distances δ(Ai, v) and the witnesses pi(v), for
0 ≤ i ≤ k− 1, and then construct the bunch B(v). The bunches are just accumulated in internal memory,
which we have assumed is large enough to accommodate all of them.

4 Approximate distance oracles for graphs

In the previous section, we assumed that metric δ(u, v) is given to us explicitly. Here, we consider the
more realistic situation in which the metric that we are supposed to process is the shortest paths metric
of a weighted undirected graph. The graph, and not the metric, is given to us this time.

We can, of course, begin by solving the APSP problem for the input graph and then use the algorithms of
the previous section to preprocess the metric obtained. This solution is wasteful, however, both in terms
of running time and in terms of space. It is much more efficient to directly process the graph that induces
the metric.

The new preprocessing algorithm is described next, in Section 4.1. A modification to the query answering
algorithm that allows it to return paths, and not just approximate distances, is then described in Section 4.2.
The analysis of the modified preprocessing algorithm is given in Section 4.3. Finally, in Section 4.4 we
show that our preprocessing algorithm is also a very efficient algorithm for constructing sparse spanners
and compact tree covers.

4.1 Preprocessing a graph

A description of the preprocessing algorithm preprok(V,E) is given in Figure 5. It receives as input
a weighted undirected graph G = (V,E). The preprocessing algorithm is similar to the preprocessing
algorithm given in Figure 1. In particular, the sets Ai and the bunches B(v) would be exactly the same.
The implementation details, this time, are less trivial, as distances δ(u, v) have to be computed, instead
of just being read from an input matrix. This is why we introduce the new sets C(·) before computing
bunches B(·).

The algorithm starts again by constructing the samples A0 ⊇ A1 ⊇ · · · ⊇ Ak−1 ⊇ Ak, where A0 = V and
Ak = ∅. As before, elements of Ai will be referred to as i-centers.

The operation of the algorithm is then composed of k iterations. The i-th iteration starts by computing
the distances δ(Ai, v), for every v ∈ V , where δ(Ai, v) = min{ δ(w, v) | w ∈ Ai}. This is done by adding
to G = (V,E) a new source vertex s, and edges (s, w) of weight 0, for every w ∈ Ai, and by computing
the distances from the new source s to all the other vertices of the graph. The distances are found in
O(m) time by running the single-source shortest paths algorithm of Thorup [Tho00b]. It is easy to check
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algorithm preprok(V,E)

A0 ← V ; Ak ← ∅

for i← 1 to k − 1

let Ai contain each element of Ai−1,
independently, with probability n−1/k.

δ(Ak, v)←∞

for i← k − 1 downto 0

for every v ∈ V ,
compute δ(Ai, v) and find pi(v) ∈ Ai

such that δ(pi(v), v) = δ(Ai, v).
if δ(Ai, v) = δ(Ai+1, v) then pi(v)← pi+1(v) (*)

for every w ∈ Ai −Ai+1,

grow a shortest path tree T (w) from w
spanning C(w) = { v ∈ V | δ(w, v) < δ(Ai+1, v) }.

for every v ∈ V ,

let B(v)← {w ∈ V | v ∈ C(w)}.

Figure 5: Preprocessing a graph

Figure 6: The clusters constructed by the preprocessing algorithm.

that for every v ∈ V , the distance from s to v in the new graph is indeed δ(Ai, v). Furthermore, the
shortest paths tree constructed by the algorithm supplies, for every v ∈ V , a witness pi(v) ∈ Ai such that
δ(pi(v), v) = δ(Ai, v). Indeed, if v is in the branch of the shortest paths tree that starts with the edge
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(s, w), where w ∈ Ai, then δ(Ai, v) = δ(w, v) and we can set pi(v)← w. All the witnesses are easily found,
therefore, in O(m) time.

The minimum distance δ(Ai, v) may be attained by several vertices of Ai. The preprocessing algorithm
of the previous section lets pi(v) be an arbitrary vertex of Ai satisfying δ(pi(v), v) = δ(Ai, v). The new
statement (*) trivially preserves this property. In addition, it also ensures that the following property, that
plays a crucial role in the construction of small-stretch paths, as described in Section 4.2, also holds:

Lemma 4.1 For any v ∈ V and 0 ≤ i ≤ k − 1, we have pi(v) ∈ B(v).

Proof: We prove the claim by induction on i from above. The claim trivially holds when i = k − 1, as
then pk−1(v) ∈ Ak−1 ⊆ B(v), for every v ∈ V . Suppose therefore that i < k − 1, and that pi+1(v) ∈ B(v).
If the test of (*) fails, we get pi(v) = pi+1(v) ∈ B(v). Otherwise, δ(pi(v), v) = δ(Ai, v) < δ(Ai+1, v), and
then pi(v) ∈ B(v) by definition of B(v). 2

Next, the algorithm constructs a cluster C(w) around each i-center w ∈ Ai − Ai+1. The cluster C(w)
is composed of all the vertices that are closer to w than to any (i − 1)-center. In other words, C(w) =
{ v ∈ V | δ(w, v) < δ(Ai+1, v) }. Note that for every w ∈ Ak−1 we have C(w) = V , as δ(Ak, v) = ∞, for
every v ∈ V .

It is easy to see that the bunches of the previous section and the clusters of this section are ‘inverses’ of
each other, in that w ∈ B(v) if and only if v ∈ C(w) for any v, w ∈ V . Thus, the bunches constructed by
the final loop of the preprocessing algorithm are identical to the bunches that would have been constructed
by the preprocessing algorithm of the previous section.

The construction of clusters is reminiscent of the construction of Voronoi diagrams. An important difference
here, however, is that the cluster C(w) of an i-center w ∈ Ai − Ai+1 contains all vertices whose distance
to w is smaller than their distance to all (i+1)-centers, and not to all i-centers, as the definition of Voronoi
diagrams would suggest. In particular, the clusters at a particular iteration are not necessarily disjoint. A
schematic description of the clustering construction process is given in Figure 6. The filled vertices there
are (i + 1)-centers. The two large unfilled vertices are i-centers and the two polygons depict the clusters
associated with them. (In Figure 6, it is implicitly assumed that the distances between the vertices are
Euclidean. This is done for illustration purposes only. Our algorithms work on general weighted graphs.)

Each cluster C(w) is computed by running a slightly modified version of Thorup’s SSSP algorithm from w
[Tho99]. Since this algorithm is rather complicated, we describe instead a modified version of Dijkstra’s
classical SSSP algorithm [Dij59] (see also [CLRS01, Chapter 24]). The changes to Thorup’s algorithm are
very similar.

Modifying Dijkstra’s algorithm Dijkstra’s algorithm with source w maintains for each vertex v an
upper bound d(v) on the distance δ(w, v). If d(v) has not been assigned yet, it is interpreted as infinite.
Initially, we just set d(w) = 0, and we have no visited vertices. At each iteration, we select an unvisited
vertex u with the smallest finite d(u), visit it, and relax all its edges, that is, for each incident edge
(u, v) ∈ E, we set d(v) ← min{ d(v), d(u) + `(u, v)}. We continue in this way until no unvisited vertex v
has a finite d(v).

Our simple modification of Dijkstra’s algorithm is that we relax the edge (u, v) only if d(u) + `(u, v) <
δ(Ai+1, v). Note that δ(Ai+1, v) was computed in the previous iteration so the test takes constant time.

Lemma 4.2 The modified Dijkstra’s algorithm visits exactly the vertices of C(w), assigning each the cor-
rect distance from w.

15



Proof: The proof is similar to correctness proof of Dijkstra’s original algorithm. Suppose w ∈ Ai−Ai+1.
The essential new point is the following easily verified claim: if v ∈ C(w) and v′ lies on a shortest
path from w to v, then δ(w, v′) < δ(Ai+1, v

′), so v′ ∈ C(w). By definition, v ∈ C(w) if and only if
δ(w, v) < δ(Ai+1, v), but then δ(w, v′) = δ(w, v)− δ(v, v′) < δ(Ai+1, v)− δ(v, v

′) ≤ δ(Ai+1, v
′), as desired.

Note that we only relax an edge (u, v) if d(u) + `(u, v) < δ(Ai+1, v). Consequently, a vertex v 6∈ C(w) is
never assigned a finite distance, and hence it is never visited.

We now show that all vertices visited are assigned correct distances from w. The proof is by induction.
Suppose that v ∈ C(w) is about to be visited and that all previously visited vertices were assigned the
correct distance. Let p be a shortest path from w to v. Let u′ be the last visited vertex on this path, and let
v′ be the next vertex on the path. By the above claim, δ(w, v′) < δ(Ai+1, v

′). Moreover, by the induction
hypothesis, when u′ was visited d(u′) = δ(w, u′), and then δ(w, v′) = δ(w, u′) + `(u′, v′) = d(u′) + `(u′, v′).
Hence d(u′)+ `(u′, v′) < δ(Ai+1, v

′), so the edge (u′, v′) was relaxed, setting d(v′)← δ(u, v′). As v is about
to be visited before v′, we must have d(v) ≤ d(v′) = δ(w, v′) ≤ δ(w, v) ≤ d(v), so d(v) = δ(w, v).

Finally, we want to show that all v ∈ C(w) are visited. Suppose for a contradiction that v ∈ C(w) is not
visited. Let (u′, v′) be the last edge on a shortest path to v with u′ visited. From above, we know that u′

got assigned the correct distance, and the same analysis as above implies that (u′, v′) got relaxed when u′

was visited, but then v′ will be visited eventually, contradicting the choice of (u′, v′). 2

Thus, the modified version of Dijkstra’s algorithm that we described does construct C(w). It is easy to
arrange that it would also produce a shortest path tree T (w) spanning the cluster C(w). This would not
affect the running time of the algorithm.

For a simple, yet relatively efficient, implementation of Dijkstra’s algorithm, we can just use William’s
heap [Wil64] (see also [CLRS01, Chapter 6]) to store the finite distances d(v) of the unvisited vertices. We
can then both find the v minimizing d(v) and decrease some d(v) in O(log n) time. The former is done
at most n− 1 times, and the latter is done at most m times, so the total running time of the unmodified
algorithm, from a given source vertex, is O((m + n) log n). It is easy to see that in the modified version
of the algorithm, all the edges relaxed are edges that touch vertices of C(w). Thus, the time spent on the
construction of C(w) is O(|E(C(w))| log n), where E(C(w)) is the set of edges touching vertices of C(w).
The complexity is reduced to O(|E(C(w))| + |C(w)| logn) if the more sophisticated Fibonacci heaps of
Fredman and Tarjan [FT87] (see also [CLRS01, Chapter 20]) are used.

The same conditional relaxation can be applied to Thorup’s SSSP algorithm [Tho99]. We first spend, once
and for all, O(m) time on constructing a so-called component hierachy. Afterwards, each cluster C(w), for
w ∈ V , can be computed in O(|E(C(w))|) time.

When all the clusters C(w), for w ∈ V are constructed, they are used to generate the bunches B(v), for
v ∈ V . Recall that, by definition, w ∈ B(v) if and only if v ∈ C(w). The conversion can clearly be done
in O(

∑

w∈V |C(w)|) = O(
∑

v∈V |B(v)|) time.

Finally, the algorithm constructs (2-level) hash tables for the bunches B(v), for v ∈ V , and outputs the
witnesses pi(v), the distances δ(pi(v), v) = δ(Ai, v), and the hash tables of B(v), for every 1 ≤ i ≤ k and
v ∈ V . In addition to that, the preprocessing algorithm also outputs, for every w ∈ V , the shortest paths
tree T (w) that spans the cluster C(w).

The sum of the sizes of all the trees T (w), for w ∈ W , is the same as the sum of the sizes of all the
clusters, which is also the sum of the sizes of all the bunches. Thus, the size of the data structure produced
is, asymptotically, the same as the size of the data structure that would have been produced, had the
preprocessing algorithm of the previous section been applied to the shortest paths metric of the graph.
Thus, the expected size of the produced data structure is O(kn1+1/k). All that remains, therefore, is to
analyze the running time of preprok(V,E). This is done in Section 4.3.
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As a final remark, we note that instead of constructing a separate hash table for each bunch B(v), for
v ∈ V , we can construct a single (2-level) hash table of size O(

∑

v∈V |B(v)|) that holds δ(w, v), for every
w, v ∈ V such that w ∈ B(v). The access time would still be O(1).

4.2 Answering a path query

As all the data structures returned by the metric preprocessing algorithm of Section 3.1 are also returned
by the graph preprocessing algorithm of Section 4.1, the query answering algorithm from Figure 2, detailed
in Section 3.2, may be used, without any modification, to answer approximate distance queries.

We next describe how to augment the distance query algorithm if it is to return not just an estimated
distance distk(u, v) of stretch at most 2k − 1, but also a path from u to v of length at most distk(u, v).

When the distance query algorithm terminates, w ∈ B(v) so v ∈ C(w). Moreover, by Lemma 4.1,
w = pi(u) ∈ B(u), so we also have u ∈ C(w). Hence, the path between u and v in T (w), the shortest paths
tree of C(w), is of length at most δ(w, u) + δ(w, v). To report the edges on this path in constant time per
edge, we move in parallel from u and v towards the root w, stopping as soon as we reach, from one of u
and v, a vertex w′ that was already reached from the other. (This vertex is the least common ancestor
of u and v in the tree.) We then output the edges on the path from u to w′ and, in reversed order, the
edges on the path from v to w′.

The above solution constructs the small-stretch path from u to v in amortized constant time per edge.
Using techniques from [TZ01] it is possible to construct the path in worst case constant time per edge. We
do not elaborate on this here.

4.3 Analysis of the graph preprocessing algorithm

As mentioned, the complexity of constructing the cluster C(w) is O(|E(C(w))|) (or O((|E(C(w))| +
|C(w)|) log n) if the simple modification of Dijkstra’s algorithm is used). Recall that E(C(w)) is the
set of edges that touch vertices of C(w). Let E(v) be the set of edges that touch the vertex v. The total
cost of constructing all clusters is asymptotically bounded by

∑

w∈V

|E(C(w))| ≤
∑

w∈V,v∈C(w)

|E(v)| =
∑

v∈V,w∈B(v)

|E(v)| =
∑

v∈V

(|B(v)| · |E(v)|)

By Lemma 3.2, the expected size of |B(v)| is at most kn1/k, for any v ∈ V , so by linearity of expectation,
the expected total cost is asymptotically bounded by

∑

v∈V

(n1/k|E(v)|) = 2kmn1/k .

Since all other operations in preprok(V,E) take only O(km) time, its total complexity is O(kmn1/k).

As in the last section we note that it is only the expected size of the data structure constructed which is
O(kn1+1/k). To obtain a data structure of size O(kn1+1/k), we may have to run preprok(V,E) several
times, but the expected number of repetitions is constant, so the total expected preprocessing time is still
O(kmn1/k), as specified in Theorem 1.1.

4.4 Sparse spanners and tree covers

As described in Section 4.2, the query answering algorithm may actually find a stretched path between u
and v in some tree T (w). We get, therefore, the following interesting corollary:
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girth number of edges lower-bound references

4 Θ(n2) complete bipartite graphs

6 Θ(n3/2) [Rei58],[ERS66],[Bro66],[Wen91]

8 Θ(n4/3) [Tit59],[Ben66],[Wen91]

10 Ω(n6/5) , O(n5/4) [Tit59],[Ben66],[LU93]

12 Θ(n6/5) [Tit59],[Ben66],[Wen91],[LU93]

14 Ω(n9/8) , O(n7/6) [LUW95],[LUW96]

16 Ω(n10/9) , O(n8/7) [WU93],[LUW95]

4r , r ≥ 5 Ω(n
1+ 1

3(r−1) ) , O(n1+ 1
2r−1 ) [LUW95],[LUW96]

4r + 2 , r ≥ 4 Ω(n1+ 1
3r−1 ) , O(n1+ 1

2r ) [LUW95],[LUW96]

Table 2: Best known bounds on the maximum number of edges in an n-vertex graph with a given girth.

Corollary 4.3 The collection of shortest paths trees T (w), for w ∈ V , constructed by algorithm preprok(V,
E), forms a (2k − 1)-spanner of the graph G = (V,E). The expected size of this (2k − 1)-spanner is
O(kn1+1/k) and it can be constructed in O(kmn1/k) time.

As mentioned, the fact that every weighted graph on n-vertices has a (2k − 1)-spanner with O(n1+1/k)
edges is not new. The corollary gives, however, a much faster algorithm for constructing such spanners.
The fastest running time known before, for weighted graph, was O(mn1+1/k) [ADD+93]. For unweighted
graphs, there is linear time algorithm for constructing such spanners (see also Exercise 3 on page 188 of
Peleg [Pel00a], attributed to [HZ96]).

Combining Corollary 4.3 with Lemma 3.5 we also get the following corollary:

Corollary 4.4 The collection of shortest paths trees T (w), for w ∈ V , constructed by algorithm preprok(V,
E), with the sampling probability changed from n−1/k to (n/ lnn)−1/k, forms a tree cover of the graph
G = (V,E) with the following properties: (i) With high probability, every vertex is contained in only
O(n1/k log1−1/k n) trees. (ii) For every two vertices u, v ∈ V , there is a tree T (w) in this collection that
contains a path between u and v that is of stretch at most 2k− 1. Furthermore, the corresponding tree can
be identified in O(k) time.

A deterministic algorithm for constructing such tree covers may be obtained using the technique of Sec-
tion 3.6. Our tree cover construction improves a construction implicit in Awerbuch and Peleg [AP92] (see
also Peleg [Pel00a, Chapter 15]). In [TZ01], we use our tree cover construction, together with other ideas,
to obtain routing schemes for weighted undirected networks that exhibit an essentially optimal tradeoff
between the size of the routing tables used and the stretch of the resulting routes.

5 Space lower bound

A simple argument shows that for any integer k, any graph on n vertices with at least n1+1/k edges contains
a cycle of size at most 2k. (For a proof that 1

2n
1+1/k edges are in fact enough, see Alon et al. [AHL02].)
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This result is conjectured by Erdős [Erd64], Bondy and Simonovits [BS74] and Bollobás [Bol78] to be
tight. Namely, it is conjectured that for any k ≥ 1, there are graphs with Ω(n1+1/k) edges and girth
greater than 2k. As any graph contains a bipartite subgraph with at least half the edges, the conjecture
actually implies the existence of graphs with Ω(n1+1/k) edges and girth at least 2k + 2. This conjecture
was proved, however, only for k = 1, 2, 3, 5 (see references below).

Let mg(n) be the maximal number of edges in an n-vertex graph with girth g. The girth conjecture says
that m2k+2(n) = Ω(n1+1/k). Note, as mentioned above, that m2k+2(n) = Θ(m2k+1(n)). The best bounds
on mg(n), for even girth g, are given in Table 2. (Several references are given for each result. This is
either because the result was independently discovered by several authors, or because there are several
variants of the construction. Some of the references, e.g., Wenger [Wen91], were added as they are more
accessible than the older references.) The results for g = 6 follow from constructions of finite projective
geometries. The constructions of Lazebnik et al. [LUW95],[LUW96] slightly improve results obtained by
Margulis [Mar88] and the results obtained using the Ramanujan graphs of Lubotzky et al. [LPS88].

Proposition 5.1 Let k be an integer, and let t < 2k + 1. Then, any stretch t distance oracle for graphs
with n vertices and m edges must use at least min{m,m2k+2(n)} bits of storage on at least one input graph.

Proof: Let O be a stretch t distance oracle for graphs with n vertices andm edges. For any graphH of this
size, let OH be the data structure produced by O by preprocessing H. Let OH(v, w) be the approximate
distance returned by the oracle for the query (v, w). Note that δH(v, w) ≤ OH(v, w) ≤ t δH(v, w).

Let G be a girth 2k + 2 unweighted graph on n vertices with m′ = min{m,m2k+2(n)} edges. (If m <
m2k+2(n) we can simply pick an m-edge subgraph of a girth 2k + 2 graph with m2k+2(n) edges.)

Let H be any subgraph of G. Consider any edge (v, w) of G. If (v, w) is in H, then OH(v, w) ≤ t < 2k+1.
But, if (v, w) is not in H, the shortest path from v to w in H has at least 2k+1 edges, so OH(v, w) ≥ 2k+1.
Consequently, all the 2m

′
subgraphs of G have different tables, and hence at least one requires m′ bits. 2

Proposition 5.1 holds even if the oracle is only required to produce estimated distances, without being
required to produce corresponding paths. We point out, however, that there is still a logarithmic gap
of Θ(k logn) between this lower bound and our upper bound, even if the girth conjecture holds, as our
algorithms use O(kn1+1/k) words while the lower bound is Ω(n1+1/k) bits.

Finally, we point out that no space efficient approximate distance oracles are possible for directed graphs:

Proposition 5.2 For any finite stretch distance oracle for directed graphs must use at least Ω(n2) bits of
storage on at least one n-vertex graph.

Proof: Let V1 = {1, 2, . . . , n/2} and V2 = {n/2 + 1, n/2 + 2, . . . , n}. Consider the family of directed
graphs on V1 ∪ V2 in which all edges are directed from V1 to V2. There are 2(n/2)2 such graphs. As in the
proof on Proposition 5.1, each such graph must be represented by a different table. Hence, at least one of
tables is should contain at least (n/2)2 bits. 2

It is not difficult to see that Proposition 5.2 continues to hold even if the input graphs are required
to be strongly connected. We let V1 = {1, 2, . . . , n/3}, V2 = {n/3 + 1, n/3 + 2, . . . , 2n/3} and V3 =
{2n/3 + 1, 2n/3 + 2, . . . , n}, and consider all graphs whose edge set is composed of a non-empty subset of
V1 × V2 and from all the edges of (V2 × {2n/3 + 1}) ∪ {(i, i+ 1) | 2n/3 + 1 ≤ i ≤ n} ∪ ({n} × V1). There
are 2(n/3)2 − 1 such graphs and each one of them requires a distinct table.
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6 Concluding remarks and open problems

We presented approximate distance oracles with fast preprocessing times, essentially optimal space require-
ments, and constant query time. Our construction is extremely simple. It yields, as byproducts, improved
algorithms for constructing sparse spanners, more compact tree covers, and more concise distance labelings.
Due to their basic nature, we expect our ideas to prove useful in many other contexts.

Some interesting open questions remain. First, our basic preprocessing algorithm is randomized. While
it was easy to derandomize it when the full distance matrix was available, it is not clear how to do it in
o(mn) time in the graph setting. It seems that new ideas would be needed to achieve that.

Our oracles are almost optimal, in all respects, when the parameter k is large. It remains an interesting
open problem, however, to reduce the preprocessing times of small stretch oracles. The situation for
stretch 3 is especially intriguing. We show here that a stretch 3 oracle with a space requirement of O(n3/2)
can be constructed in O(mn1/2) time. Cohen and Zwick [CZ01] have shown that a stretch 3 oracle that uses
O(n2) space can be constructed in O(n2 log n) time. Could these results be combined, i.e., is it possible
to construct a stretch 3 oracle that uses only O(n3/2) space in Õ(n2) time? For unweighted graphs, this
problem was recently solved by Baswana and Sen [BS04].

As mentioned in Section 4.4, the results of this paper, combined with some other ingredients, yield essen-
tially optimal routing schemes for weighted undirected networks. More on this can be found in [TZ01].
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