Approximation Algorithms for Path Problems in Communication Networks

Thomas Erlebach (ETH Zürich)

(1) Maximum Edge-disjoint Paths Problem (MEDP)
(2) $O(\sqrt{m})$-approximation algorithm for MEDP
(3) $O\left(m^{0.5-\varepsilon}\right)$ inapproximability of MEDP
(4) Unsplittable Flow Problem (UFP)
(5) $O(\sqrt{m})$-approximation algorithm for UFP
(6) $O(1)$-approximation for high-capacity UFP
(7) $O(1)$-approximation for MEDP in meshes

8 Further known results and some open problems

Motivation: Bandwidth Reservation in Networks

The Maximum Edge-Disjoint Paths Problem (MEDP)

Instance:
\Rightarrow graph $G=(V, E)$ with $|V|=n$ and $|E|=m$
\Rightarrow multi-set $\mathcal{T}=\left\{\left(s_{i}, t_{i}\right) \mid 1 \leq i \leq k\right\}$ of requests

Solution:

\Leftrightarrow subset \mathcal{T}^{\prime} of \mathcal{T} and assignment of edge-disjoint paths to requests in \mathcal{T}^{\prime}

Goal: maximize $\left|\mathcal{T}^{\prime}\right|$

Example for MEDP

Solution to Example

Variants of MEDP

* undirected paths in undirected graphs

\star directed paths in directed graphs
(this is the hardest variant in general!)

\star directed paths in bidirected graphs

Definition: Approximation Algorithms for MEDP

OPT denotes the cardinality of an optimal solution.

An algorithm for MEDP is a ρ-approximation algorithm if it

- runs in polynomial time
and
- always outputs a solution \mathcal{T}^{\prime} with $\left|\mathcal{T}^{\prime}\right| \geq \frac{O P T}{\rho}$.

Complexity and Inapproximability of MEDP

$>$ polynomial for chains, rings and stars
$>$ polynomial for undirected trees, APX-hard for bidirected trees
$>\mathcal{N} \mathcal{P}$-hard for meshes (Kramer and van Leeuwen, 1984)
$>$ cannot be approximated within $O\left(m^{0.5-\varepsilon}\right)$ for arbitrary directed graphs unless $P=\mathcal{N} \mathcal{P}$ (Guruswami et al., 1999).
$>$ polynomial for constant number of requests in undirected graphs (Robertson and Seymour), but $\mathcal{N} \mathcal{P}$-hard even for only two requests in directed graphs (Fortune, Hopcroft, Wyllie, 1980)

The Shortest-Path-First Greedy Algorithm (SPFG)

$\mathcal{T}^{\prime} \leftarrow \emptyset ;$
while there exists a request in \mathcal{T} that can still be routed do
$\left(s_{i}, t_{i}\right)=$ a request in \mathcal{T} that can be routed using the fewest edges; route (s_{i}, t_{i}) along a shortest path of available edges; $\mathcal{T}^{\prime} \leftarrow \mathcal{T}^{\prime} \cup\left\{\left(s_{i}, t_{i}\right)\right\} ;$
$\mathcal{T} \leftarrow \mathcal{T} \backslash\left\{\left(s_{i}, t_{i}\right)\right\} ;$
od

Claim. SPFG is a \sqrt{m}-approximation algorithm.

Analysis of SPFG (Kolliopoullos and Stein, 1998)

- Compare solution of SPFG to some optimal solution $S^{*},\left|S^{*}\right|=O P T$.
> When SPFG accepts a request along a path p, remove all paths intersecting p from S^{*}.

Let $m_{o} \leq m$ be the number of edges used by paths in S^{*}.
\rightarrow While SPFG accepts paths that are shorter than $\sqrt{m_{0}}$, each accepted path intersects at most $\sqrt{m_{o}}$ paths from S^{*}.
\rightarrow When SPFG starts to consider paths of length at least $\sqrt{m_{o}}$, all remaining paths in S^{*} have length at least $\sqrt{m_{o}}$ and there can be at most $m_{o} / \sqrt{m_{o}}=\sqrt{m_{o}}$ of them.
\Rightarrow Solution of SPFG contains at least $O P T / \sqrt{m_{o}}$ paths.

Analysis of SPFG (Version 2)

Claim. SPFG outputs a solution of size $\Omega\left(\frac{O P T^{2}}{m_{o}}\right)=\Omega\left(\frac{O P T}{\frac{m_{o}}{O P T}}\right)$.
Proof. Assume SPFG accepts t paths $p_{1}, p_{2}, \ldots, p_{t}$.
$k_{i}:=$ number of paths removed from S^{*} because of p_{i} (except p_{i})
p_{i} has length at least k_{i}.
The k_{i} paths removed from S^{*} because of p_{i} have length at least k_{i} and use at least k_{i}^{2} edges in total.

$$
\Rightarrow m_{o} \geq \sum_{i=1}^{t} k_{i}^{2} \geq \frac{\left(\sum_{i=1}^{t} k_{i}\right)^{2}}{t} \approx \frac{O P T^{2}}{t}
$$

Inapproximability of MEDP

Theorem. MEDP in directed graphs is $\mathcal{N} \mathcal{P}$-hard to approximate within $O\left(m^{0.5-\varepsilon}\right)$. (Guruswami, Khanna, Rajaraman, Shepherd, Yannakakis, 1999)

Proof. By reduction from 2DIRPATH.

2DIRPATH:
Given: directed graph $H=(V, A)$
Question: are there 2 edge-disjoint paths from s_{1} to t_{1} and s_{2} to t_{2} ?

2DIRPATH is $\mathcal{N} \mathcal{P}$-complete

(1) Choose $\ell=|A|^{1 / \varepsilon}$ for some constant $\varepsilon>0$.
(2) Apply construction for ℓ requests:

If H is a YES-instance, $O P T=\ell$.
If H is a NO-instance, $O P T=1$.
\Leftrightarrow Resulting graph has $m=\Theta\left(\ell^{2}|A|\right)=\Theta\left(\ell^{2+\varepsilon}\right)$ edges.
\Leftrightarrow approximating MEDP with ratio $\ell=m^{\frac{1}{2+\varepsilon}}=m^{0.5-\varepsilon^{\prime}}$ is $\mathcal{N P}$-hard.

The Unsplittable Flow Problem (UFP)

Instance:
\Rightarrow graph $G=(V, E)$ with edge capacities $u(e) \in \mathbb{R}$
\Rightarrow multi-set $\mathcal{T}=\left\{\left(s_{i}, t_{i}, d_{i}, r_{i}\right) \mid 1 \leq i \leq k\right\}$ of requests
$d_{i}=$ demand of request i
$r_{i}=$ profit of request i

Solution:

\Leftrightarrow subset \mathcal{T}^{\prime} of \mathcal{T} and assignment of paths to requests in \mathcal{T}^{\prime} such that no edge capacity is exceeded

Goal: maximize the total profit $\sum_{i \in \mathcal{T}}, r_{i}$

Example of unsplittable flow

Variants of UFP

$d_{\text {max }}=$ largest demand
$u_{\text {min }}=$ minimum edge capcity

- Classical UFP: $d_{\text {max }} \leq u_{\text {min }}$
\Rightarrow any request can be routed through any edge
- Extended UFP: $d_{\text {max }}$ can be arbitrary
\Rightarrow it may be impossible to route some requests through certain edges
- Bounded UFP: $d_{\text {max }} \leq \frac{1}{K} u_{\text {min }}$
\Rightarrow at least K requests can be routed through any edge

An Approximation Algorithm for Classical UFP

(Azar and Regev, 2001)

(1) Separate the big requests and the small requests.

Partition \mathcal{T} into \mathcal{T}_{1} and \mathcal{T}_{2} :
$\rightarrow \mathcal{T}_{1}$ consists of requests with $d_{i} \leq \frac{1}{2} u_{\text {min }}$
$\rightarrow \mathcal{T}_{2}$ consists of requests with $d_{i}>\frac{1}{2} u_{\text {min }}$
\Rightarrow Compute solutions for \mathcal{T}_{1} and \mathcal{T}_{2} separately.
\Rightarrow Output the better of the two solutions.
\Rightarrow This loses at most a factor of 2 in the approximation ratio.
(2) Consider the gained profit relative to the added load.

For request j and a path P from s_{j} to t_{j} define:

$$
F(j, P)=\frac{r_{j}}{\sum_{e \in P} \frac{d_{j}}{u(e)}}
$$

Idea: Accept request j if $F(j, P)$ is above some threshold α.
We have:

$$
\alpha_{\min }:=\frac{r_{\min }}{n} \leq F(j, P) \leq \frac{r_{\max } u_{\max }}{d_{\min }}=: \alpha_{\max }
$$

\Leftrightarrow Try all powers of 2 between $2^{\left\lfloor\log \alpha_{\min }\right\rfloor}$ and $2^{\left\lceil\log \alpha_{\text {max }}\right\rceil}$ as possible values for the threshold α, and take the best solution.
(3) Algorithm for set S (either $S=\mathcal{T}_{1}$ or $S=\mathcal{T}_{2}$) and threshold α.

```
for j}\inS\mathrm{ in order of non-increasing }\frac{\mp@subsup{r}{j}{}}{\mp@subsup{d}{j}{}}\mathrm{ do
    if \exists}\mathrm{ valid path P from sj to t t with }F(j,P)>\alpha\mathrm{ then
    accept request j and route it on path P;
    else
    reject request j;
    fi
od
```

Path P is valid for request j if it can be routed along P without violating any edge capacity.

Analysis of the algorithm

\Rightarrow Consider optimal solution \mathcal{Q} for \mathcal{T}_{1} (or for \mathcal{T}_{2})
$\Rightarrow Q_{j}:=$ path assigned to request $j \in \mathcal{Q}$
\triangleright Consider distribution of $F\left(j, Q_{j}\right)$ for $j \in \mathcal{Q}$:

Consider α^{\prime} with $r\left(\mathcal{Q}_{\text {low }}\right) \geq \frac{1}{2} r(\mathcal{Q})$ and $r\left(\mathcal{Q}_{\text {high }}\right) \geq \frac{1}{2} r(\mathcal{Q})$.
Claim. For $\alpha=\alpha^{\prime}$ the algorithm yields an $O(\sqrt{m})$-approximation.
$\mathcal{P}:=$ set of requests routed by the algorithm (when called with \mathcal{T}_{i} and α^{\prime})
$E_{\text {heavy }}:=$ edges with load $\geq \frac{1}{4}$ at the end of the algorithm
Case 1: $\left|E_{\text {heavy }}\right| \geq \sqrt{m}$.
Can show: $\quad r\left(\mathcal{Q}_{\text {low }}\right) \leq 2 m \alpha^{\prime}$

$$
r(\mathcal{P}) \geq \frac{1}{4} \sqrt{m} \alpha^{\prime}
$$

Case 2: $\left|E_{\text {heavy }}\right|<\sqrt{m}$.
Can show: $\quad r\left(\mathcal{Q}_{\text {high }} \backslash \mathcal{P}\right) \leq 4 \sqrt{m} \cdot r(\mathcal{P})$

Making the algorithm strongly polynomial

The running-time of the algorithm is polynomial, but depends on the logarithm of numbers in the input: $\log \frac{n \cdot r_{\max } \cdot u_{\max }}{r_{\min } \cdot d_{\text {min }}}$ values of α are tested.

Recall that $k:=$ number of requests.
$>$ if $u(e)>k \cdot d_{\max }$, set $u(e)=k \cdot d_{\max }$
$>$ throw away requests with $r_{j}<\frac{1}{k} r_{\text {max }}$ we get $\frac{r_{\text {max }}}{r_{\text {min }}} \leq k$
$>$ treat "tiny" requests (with $d_{j} \leq \frac{1}{k} u_{\text {min }}$) separately
\Rightarrow Resulting algorithm has ratio $O(\sqrt{m})$ and is strongly polynomial.

Further Results for Unsplittable Flow

(Azar and Regev, 2001)

> Extended UFP:
\triangle approximation ratio $O\left(\sqrt{m} \cdot \log \left(2+\frac{d_{\max }}{u_{\min }}\right)\right)$
$\Longleftrightarrow m^{1-\varepsilon}$-inapproximability for directed graphs
$\Rightarrow m^{0.5-\varepsilon} \sqrt{\left\lfloor\log \frac{d_{\max }}{u_{\min }}\right\rfloor}$-inapproximability for directed graphs
> Bounded UFP $\left(d_{\max } \leq \frac{1}{K} u_{\min }\right)$:
\square approximation ratio $O\left(K \cdot n^{1 / K}\right)$ for $K \geq 2$ (works also on-line!)

The High-Capacity Case of Unsplittable Flow

(Guruswami et al., 1999)
is Formulate UFP as an Integer Linear Program (ILP).
is Solve LP relaxation optimally.
is Use randomized rounding (Raghavan and Thompson, 1987) to get an integer solution.

If $d_{\text {max }} \leq \frac{u_{\min }}{c \log m}$ for some sufficiently large constant c, then there is an $O(1)$-approximation for UFP.

An $O(1)$-Approximation Algorithm for Meshes

(Kleinberg and Tardos, 1995)
(1) Partition the mesh into submeshes of size $\gamma \log n \times \gamma \log n$.
(2) Choose random subset of submeshes with mutual distance $\geq 2 \gamma \log n$.
(3) Consider short requests and long requests separately and take the better of the two solutions.

The mesh：

Partitioning into submeshes：
囲囲 囲 囲 囲 囲 囲田 $\mathbb{\#}$ 囲 囲 囲 囲 \＃
囲 囲 囲 囲 囲 囲 \＃田 $\mathbb{\#}$ 囲 田 囲 田 囲囲 井 井 井 囲 囲

Randomly selected submeshes：

囲 囲 囲 囲 囲 田 囲
囲 囲 囲 囲 囲 囲 囲囲 囲 囲 囲 囲 ${ }^{(1)}$ 囲 囲囲 囲 囲 囲 囲 囲 囲囲 囲 囲 囲 囲 田 囲

Simulated network with edge capacities $\Omega(\log n)$ ：

Handling of long requests (distance $>16 \gamma \log n$):

- Use randomized rounding in simulated network.
- Translate accepted paths back into the mesh.

Handling of short requests (distance $\leq 16 \gamma \log n$):

- Apply algorithm recursively within selected submeshes.
- Long requests of recursive call are handled as above.
© Short requests of recursive call: brute-force.
\Leftrightarrow approximation ratio $O(1)$ for meshes

Further Known Results (1)

InI MEDP in random graph $G_{n, p}$ with average degree $d \geq \ln n$: w.h.p., can route all requests in any request set of cardinality $O\left(\frac{m}{\log _{d} n}\right)$ (Broder, Frieze, Suen and Upfal, 1994)

IIII MEDP in random r-regular graph (r sufficiently large constant): w.h.p., can route all requests in any request set of cardinality $O\left(\frac{r n}{\log _{r} n}\right)$ (Frieze and Zhao, 1999)
"IIt Edge-expansion $\beta(G)=\min _{S \subseteq V:|S| \leq n / 2} \frac{|\delta(S)|}{|S|}$ and max. degree Δ
\Leftrightarrow approximation ratio $O\left(\Delta^{2} \beta^{-2} \log ^{3} n\right)$ for UFP with uniform capacities (Srinivasan, 1997; Kleinberg and Rubinfeld, 1996)
n! ratio O (polylog n) for butterfly and related networks

Further Known Results (2)

IIIL ratio $\left(\frac{5}{3}+\varepsilon\right)$ for MEDP in bidirected trees (E. and Jansen, 1998)
IIIL ratio $O(1)$ for MEDP in complete graphs (E. and Vukadinović, 2001)
nut ratio $O(1)$ for MEDP in trees of rings (E., 2001)
|III Maximum path coloring:
given W colors, can accept W sets of edge-disjoint paths.
Reduction: ratio ρ for MEDP \Rightarrow ratio $\frac{1}{1-e^{-1 / \rho}}<\rho+1$ for MaxPC (Awerbuch et al., 1996)
||II Online algorithms (preemptive/non-preemptive, deterministic/randomized)

Problem Variants and Related Problems

In Single-source unsplittable flow (Kolliopoulos \& Stein, 1997;
Dinitz, Garg \& Goemans, 1999; Skutella, 2000)
|nII Integral splittable flow (Guruswami et al., 1999)
nult Bounded-length edge-disjoint paths (Guruswami et al., 1999)
Nout Routing in rounds, path coloring, call scheduling, congestion minimization

Some Open Problems

丸 (In-)approximability of MEDP in undirected graphs.
(Known: APX-hard, $O(\sqrt{m})$-approximation)
\star (In-)approximability of half-disjoint paths problem or UFP with $d_{\max } \leq \frac{u_{\min }}{2}$. (Known: $\mathcal{N} \mathcal{P}$-hard, $O(\sqrt{n})$-approximation)
\star Find better algorithms for MEDP and UFP in restricted classes of graphs that include realistic topologies.
(For example: partial k-trees)

References

Int Jon Kleinberg. Approximation Algorithms for Disjoint Paths Problems. PhD Thesis, MIT, 1996.
nilt Stavros Kolliopoulos and Clifford Stein. Approximating Disjoint-Path Problems Using Greedy Algorithms and Packing Integer Programs. IPCO VI, 1998.

NIIt Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, Bruce Shepherd, and Mihalis Yannakakis. Near-Optimal Hardness Results and Approximation Algorithms for Edge-Disjoint Paths and Related Problems. STOC, 1999.

Int Yossi Azar and Oded Regev. Strongly Polynomial Algorithms for the Unsplittable Flow Problem. IPCO VIII, 2001.

Int Jon Kleinberg and Eva Tardos. Disjoint paths in densely embedded graphs. Proc. 36th FOCS, 1995.

