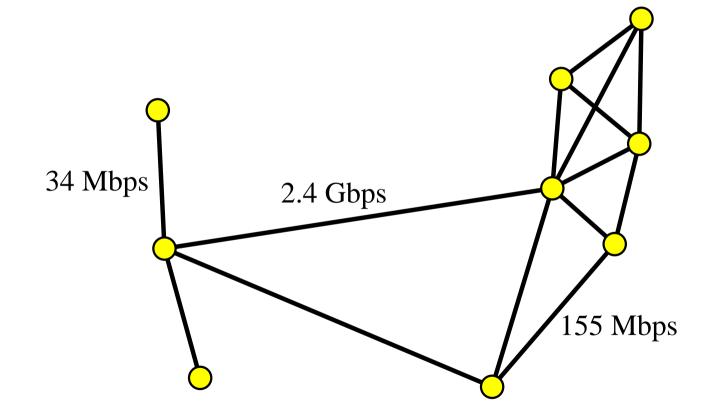
Approximation Algorithms for Path Problems in Communication Networks

Thomas Erlebach (ETH Zürich)

- Maximum Edge-disjoint Paths Problem (MEDP)
- **2** $O(\sqrt{m})$ -approximation algorithm for MEDP
- ${\rm (III)} O(m^{0.5-\varepsilon}) \text{ inapproximability of MEDP}$
- **4** Unsplittable Flow Problem (UFP)
- **\bigcirc** $O(\sqrt{m})$ -approximation algorithm for UFP
- **6** O(1)-approximation for high-capacity UFP
- **O**(1)-approximation for MEDP in meshes
- [®] Further known results and some open problems

Motivation: Bandwidth Reservation in Networks



The Maximum Edge-Disjoint Paths Problem (MEDP)

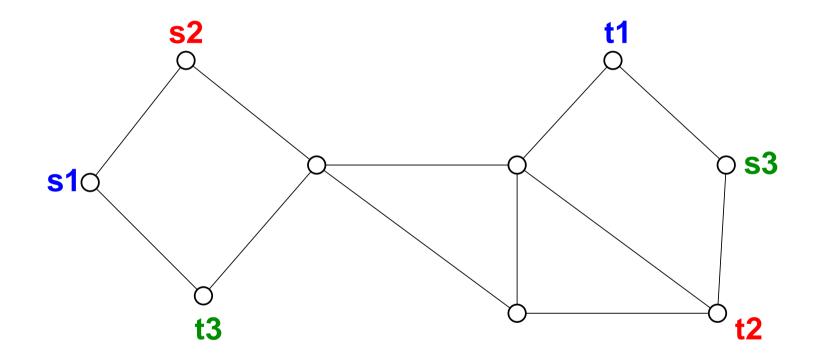
Instance:

- $\Rightarrow \text{ graph } G = (V, E) \text{ with } |V| = n \text{ and } |E| = m$
- \Rightarrow multi-set $\mathcal{T} = \{(s_i, t_i) \mid 1 \leq i \leq k\}$ of requests

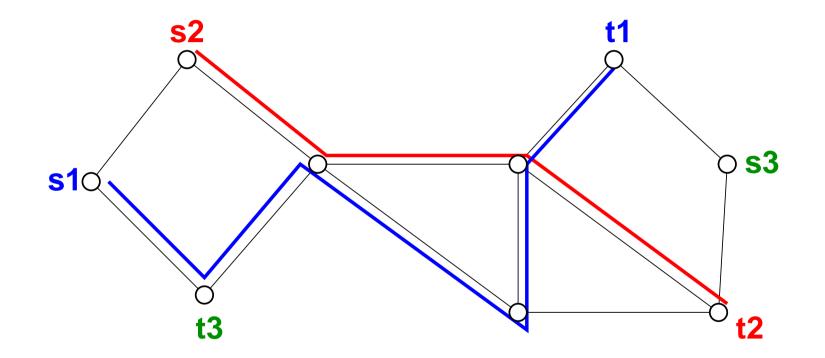
Solution:

 \blacktriangleright subset \mathcal{T}' of \mathcal{T} and assignment of edge-disjoint paths to requests in \mathcal{T}'

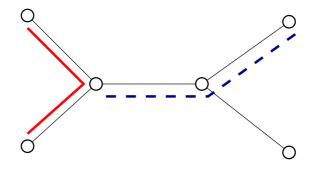
Goal: maximize $|\mathcal{T}'|$



Solution to Example

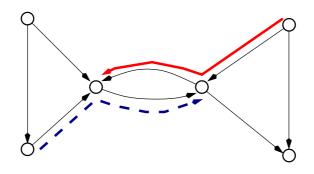


 \star undirected paths in undirected graphs

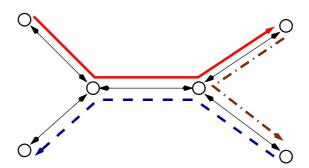


 \star directed paths in directed graphs

(this is the hardest variant in general!)



 \star directed paths in bidirected graphs



Definition: Approximation Algorithms for MEDP

OPT denotes the cardinality of an optimal solution.

```
An algorithm for MEDP is a \rho-approximation algorithm if it

runs in polynomial time

and

always outputs a solution \mathcal{T}' with |\mathcal{T}'| \geq \frac{OPT}{\rho}.
```

Complexity and Inapproximability of MEDP

- \succ polynomial for chains, rings and stars
- \succ polynomial for undirected trees, APX-hard for bidirected trees
- $\succ NP$ -hard for meshes (Kramer and van Leeuwen, 1984)
- > cannot be approximated within $O(m^{0.5-\varepsilon})$ for arbitrary directed graphs unless $P = \mathcal{NP}$ (Guruswami et al., 1999).
- polynomial for constant number of requests in undirected graphs (Robertson and Seymour), but NP-hard even for only two requests in directed graphs (Fortune, Hopcroft, Wyllie, 1980)

The Shortest-Path-First Greedy Algorithm (SPFG)

$$\begin{split} \mathcal{T}' \leftarrow \emptyset; \\ \text{while there exists a request in } \mathcal{T} \text{ that can still be routed } \mathbf{do} \\ & (s_i, t_i) = \text{a request in } \mathcal{T} \text{ that can be routed using the fewest edges}; \\ & \text{route } (s_i, t_i) \text{ along a shortest path of available edges}; \\ & \mathcal{T}' \leftarrow \mathcal{T}' \cup \{(s_i, t_i)\}; \\ & \mathcal{T} \leftarrow \mathcal{T} \setminus \{(s_i, t_i)\}; \end{split}$$

Claim. SPFG is a \sqrt{m} -approximation algorithm.

Analysis of SPFG (Kolliopoulos and Stein, 1998)

- \blacktriangleright Compare solution of SPFG to some optimal solution S^* , $|S^*| = OPT$.
- > When SPFG accepts a request along a path p, remove all paths intersecting p from S^* .

Let $m_o \leq m$ be the number of edges used by paths in S^* .

- → While SPFG accepts paths that are shorter than $\sqrt{m_o}$, each accepted path intersects at most $\sqrt{m_o}$ paths from S^* .
- → When SPFG starts to consider paths of length at least $\sqrt{m_o}$, all remaining paths in S^* have length at least $\sqrt{m_o}$ and there can be at most $m_o/\sqrt{m_o} = \sqrt{m_o}$ of them.
- Solution of SPFG contains at least $OPT/\sqrt{m_o}$ paths.

Analysis of SPFG (Version 2)

Claim. SPFG outputs a solution of size $\Omega\left(\frac{OPT^2}{m_o}\right) = \Omega\left(\frac{OPT}{\frac{m_o}{OPT}}\right)$.

Proof. Assume SPFG accepts t paths p_1, p_2, \ldots, p_t .

 $k_i :=$ number of paths removed from S^* because of p_i (except p_i)

$$\blacksquare p_i$$
 has length at least k_i .

The k_i paths removed from S^* because of p_i have length at least k_i and use at least k_i^2 edges in total.

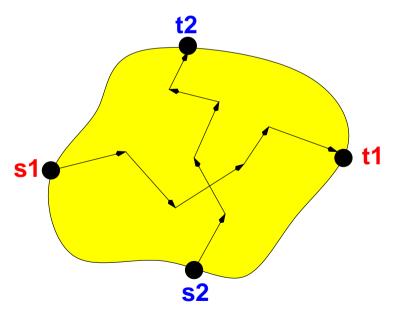
Inapproximability of MEDP

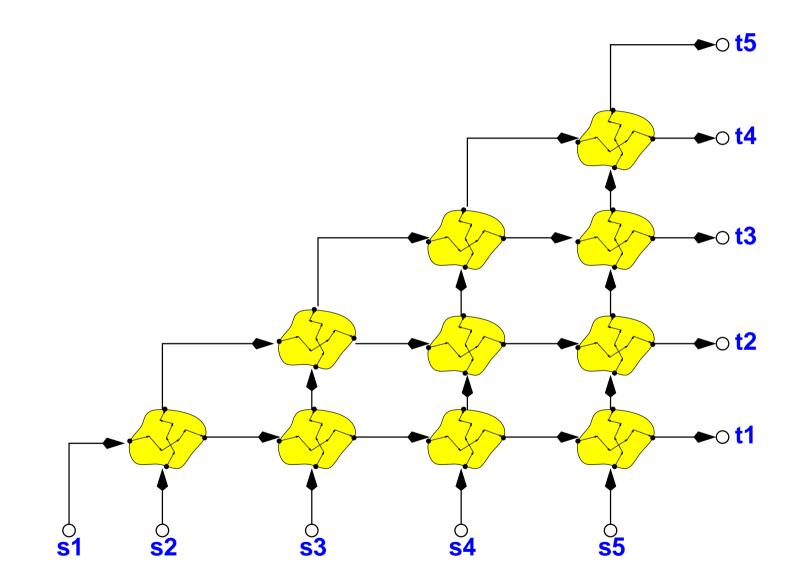
Theorem. MEDP in directed graphs is \mathcal{NP} -hard to approximate within $O(m^{0.5-\varepsilon})$. (Guruswami, Khanna, Rajaraman, Shepherd, Yannakakis, 1999)

Proof. By reduction from 2DIRPATH.

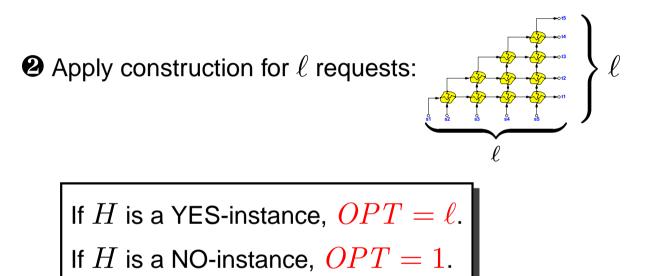
2DIRPATH: **Given**: directed graph H = (V, A) **Question**: are there 2 edge-disjoint paths from s_1 to t_1 and s_2 to t_2 ?

2DIRPATH is \mathcal{NP} -complete





 $\label{eq:loss} {\rm O} \ {\rm Choose} \ \ell = |A|^{1/\varepsilon} \ {\rm for \ some \ constant} \ \varepsilon > 0.$



→ Resulting graph has $m = \Theta(\ell^2 |A|) = \Theta(\ell^{2+\varepsilon})$ edges.

 \blacktriangleright approximating MEDP with ratio $\ell = m^{\frac{1}{2+\varepsilon}} = m^{0.5-\varepsilon'}$ is \mathcal{NP} -hard. \Box

The Unsplittable Flow Problem (UFP)

Instance:

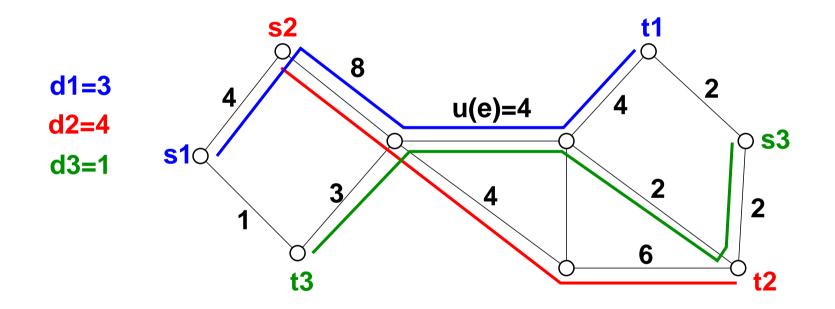
- ⇒ graph G = (V, E) with edge capacities $u(e) \in \mathbb{R}$
- \Rightarrow multi-set $\mathcal{T} = \{(s_i, t_i, \underline{d_i}, r_i) \mid 1 \leq i \leq k\}$ of requests
- $d_i =$ demand of request i
- $r_i =$ profit of request i

Solution:

Subset \mathcal{T}' of \mathcal{T} and assignment of paths to requests in \mathcal{T}' such that no edge capacity is exceeded

Goal: maximize the total profit $\sum_{i \in T'} r_i$

Example of unsplittable flow



 $d_{\max} = \text{largest demand}$

 $u_{\min} = \min m$ edge capcity

Classical UFP: $d_{\max} \le u_{\min}$

Extended UFP: d_{\max} can be arbitrary

☆ it may be impossible to route some requests through certain edges

> Bounded UFP: $d_{\max} \leq \frac{1}{K} u_{\min}$

rightarrow at least K requests can be routed through any edge

An Approximation Algorithm for Classical UFP

(Azar and Regev, 2001)

O Separate the big requests and the small requests.

Partition \mathcal{T} into \mathcal{T}_1 and \mathcal{T}_2 :

- $\rightarrow \mathcal{T}_1$ consists of requests with $d_i \leq \frac{1}{2}u_{\min}$
- $\rightarrow \mathcal{T}_2$ consists of requests with $d_i > \frac{1}{2}u_{\min}$
- $rac{\sim}$ Compute solutions for \mathcal{T}_1 and \mathcal{T}_2 separately.
- r Output the better of the two solutions.
- \blacktriangleright This loses at most a factor of 2 in the approximation ratio.

Output Consider the gained profit relative to the added load.

For request j and a path P from s_j to t_j define:

$$F(j,P) = \frac{r_j}{\sum_{e \in P} \frac{d_j}{u(e)}}$$

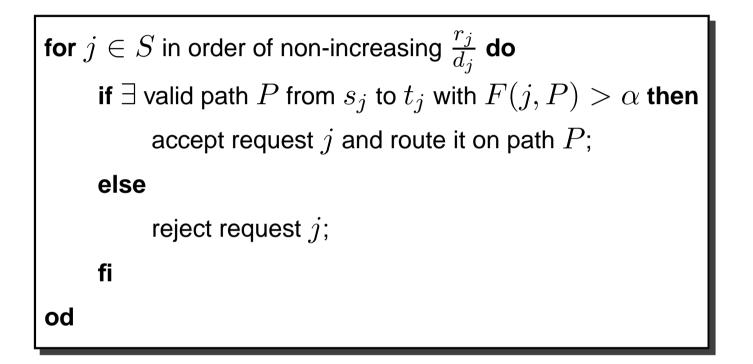
Idea: Accept request j if F(j, P) is above some threshold α .

We have:

$$\alpha_{\min} := \frac{r_{\min}}{n} \le F(j, P) \le \frac{r_{\max}u_{\max}}{d_{\min}} =: \alpha_{\max}$$

Try all powers of 2 between $2^{\lfloor \log \alpha_{\min} \rfloor}$ and $2^{\lceil \log \alpha_{\max} \rceil}$ as possible values for the threshold α , and take the best solution.

③ Algorithm for set S (either $S = T_1$ or $S = T_2$) and threshold α .

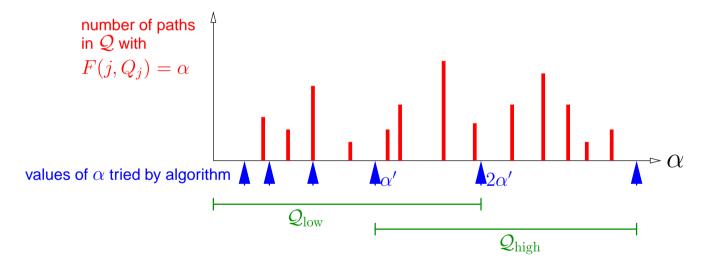


Path P is valid for request j if it can be routed along P without violating any edge capacity.

Analysis of the algorithm

- \heartsuit Consider optimal solution \mathcal{Q} for \mathcal{T}_1 (or for \mathcal{T}_2)
- $riangle Q_j :=$ path assigned to request $j \in \mathcal{Q}$

 \Rightarrow Consider distribution of $F(j, Q_j)$ for $j \in \mathcal{Q}$:



Consider α' with $r(\mathcal{Q}_{\text{low}}) \geq \frac{1}{2}r(\mathcal{Q})$ and $r(\mathcal{Q}_{\text{high}}) \geq \frac{1}{2}r(\mathcal{Q})$.

Claim. For $\alpha = \alpha'$ the algorithm yields an $O(\sqrt{m})$ -approximation.

 $\mathcal{P} :=$ set of requests routed by the algorithm (when called with \mathcal{T}_i and α') $E_{\text{heavy}} :=$ edges with load $\geq \frac{1}{4}$ at the end of the algorithm

Case 1: $|E_{\text{heavy}}| \ge \sqrt{m}$.

Can show:
$$r(\mathcal{Q}_{\text{low}}) \leq 2m\alpha'$$

 $r(\mathcal{P}) \geq \frac{1}{4}\sqrt{m}\alpha'$

Case 2: $|E_{\text{heavy}}| < \sqrt{m}$.

Can show: $r(\mathcal{Q}_{\text{high}} \setminus \mathcal{P}) \leq 4\sqrt{m} \cdot r(\mathcal{P})$

Making the algorithm strongly polynomial

The running-time of the algorithm is polynomial, but depends on the logarithm of numbers in the input: $\log \frac{n \cdot r_{\max} \cdot u_{\max}}{r_{\min} \cdot d_{\min}}$ values of α are tested. Recall that k := number of requests.

- ➤ if $u(e) > k \cdot d_{\max}$, set $u(e) = k \cdot d_{\max}$
- > throw away requests with $r_j < \frac{1}{k}r_{\max}$ we get $\frac{r_{\max}}{r_{\min}} \le k$
- > treat "tiny" requests (with $d_j \leq \frac{1}{k}u_{\min}$) separately
- Resulting algorithm has ratio $O(\sqrt{m})$ and is strongly polynomial.

Further Results for Unsplittable Flow

(Azar and Regev, 2001)

Extended UFP:

- $\Rightarrow \text{ approximation ratio } O\left(\sqrt{m} \cdot \log\left(2 + \frac{d_{\max}}{u_{\min}}\right)\right)$ $\Rightarrow m^{1-\varepsilon}\text{-inapproximability for directed graphs}$ $\Rightarrow m^{0.5-\varepsilon} \sqrt{\lfloor \log \frac{d_{\max}}{u_{\min}} \rfloor}\text{-inapproximability for directed graphs}$
- ► Bounded UFP $(d_{\max} \le \frac{1}{K}u_{\min})$: \Rightarrow approximation ratio $O(K \cdot n^{1/K})$ for $K \ge 2$ (works also on-line!)

The High-Capacity Case of Unsplittable Flow

(Guruswami et al., 1999)

- ☆ Formulate UFP as an Integer Linear Program (ILP).
- \checkmark Solve LP relaxation optimally.
- ☆ Use randomized rounding (Raghavan and Thompson, 1987)

to get an integer solution.

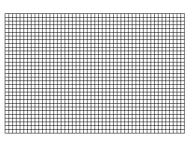
If $d_{\max} \leq \frac{u_{\min}}{c \log m}$ for some sufficiently large constant c, then there is an O(1)-approximation for UFP.

An O(1)-Approximation Algorithm for Meshes

(Kleinberg and Tardos, 1995)

- Partition the mesh into submeshes of size $\gamma \log n \times \gamma \log n$.
- 2 Choose random subset of submeshes with mutual distance $\geq 2\gamma \log n$.
- Onsider short requests and long requests separately and take the better of the two solutions.

The mesh:

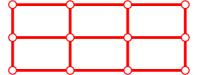


Partitioning into submeshes:

\blacksquare	\blacksquare	\blacksquare	\blacksquare	\blacksquare	\blacksquare	
	⊞		⊞		⊞	
	\blacksquare	$\blacksquare \blacksquare$	\blacksquare		\blacksquare	$\blacksquare \blacksquare$
	⊞		⊞		⊞	
⊞	⊞	⊞	⊞	⊞	⊞	

Randomly selected submeshes:

Simulated network with edge capacities $\Omega(\log n)$:



Handling of long requests (distance $> 16\gamma \log n$):

- Use randomized rounding in simulated network.
- Translate accepted paths back into the mesh.

Handling of short requests (distance $\leq 16\gamma \log n$):

- Apply algorithm recursively within selected submeshes.
- Long requests of recursive call are handled as above.
- Short requests of recursive call: brute-force.

\blacktriangleright approximation ratio O(1) for meshes

Further Known Results (1)

- MEDP in random graph $G_{n,p}$ with average degree $d \ge \ln n$: w.h.p., can route **all** requests in any request set of cardinality $O(\frac{m}{\log_d n})$ (Broder, Frieze, Suen and Upfal, 1994)
- MEDP in random *r*-regular graph (*r* sufficiently large constant):
 w.h.p., can route all requests in any request set of cardinality O(^{rn}/_{log_r n})
 (Frieze and Zhao, 1999)
- Edge-expansion $\beta(G) = \min_{S \subseteq V: |S| \le n/2} \frac{|\delta(S)|}{|S|}$ and max. degree Δ ⇒ approximation ratio $O(\Delta^2 \beta^{-2} \log^3 n)$ for UFP with uniform capacities (Srinivasan, 1997; Kleinberg and Rubinfeld, 1996) ■ ratio O(polylog n) for butterfly and related networks

Further Known Results (2)

- ratio $(\frac{5}{3} + \varepsilon)$ for MEDP in bidirected trees (E. and Jansen, 1998)
- ratio O(1) for MEDP in complete graphs (E. and Vukadinović, 2001)
- **ratio** O(1) for MEDP in trees of rings (E., 2001)

Maximum path coloring:

given W colors, can accept W sets of edge-disjoint paths. **Reduction:** ratio ρ for MEDP \Rightarrow ratio $\frac{1}{1-e^{-1/\rho}} < \rho + 1$ for MaxPC (Awerbuch et al., 1996)

Online algorithms (preemptive/non-preemptive, deterministic/randomized)

Problem Variants and Related Problems

- Single-source unsplittable flow (Kolliopoulos & Stein, 1997;
 Dinitz, Garg & Goemans, 1999; Skutella, 2000)
- Integral splittable flow (Guruswami et al., 1999)
- Bounded-length edge-disjoint paths (Guruswami et al., 1999)
- Routing in rounds, path coloring, call scheduling, congestion minimization

Some Open Problems

- ★ (In-)approximability of MEDP in undirected graphs. (Known: APX-hard, $O(\sqrt{m})$ -approximation)
- ★ (In-)approximability of half-disjoint paths problem or UFP with $d_{\max} \leq \frac{u_{\min}}{2}$. (Known: \mathcal{NP} -hard, $O(\sqrt{n})$ -approximation)
- ★ Find better algorithms for MEDP and UFP in restricted classes of graphs that include realistic topologies.
 (For example: partial *k*-trees)

- Jon Kleinberg. Approximation Algorithms for Disjoint Paths Problems. PhD Thesis, MIT, 1996.
- Stavros Kolliopoulos and Clifford Stein. Approximating Disjoint-Path
 Problems Using Greedy Algorithms and Packing Integer Programs.
 IPCO VI, 1998.
- Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, Bruce Shepherd, and Mihalis Yannakakis. Near-Optimal Hardness Results and Approximation Algorithms for Edge-Disjoint Paths and Related Problems. STOC, 1999.
- Yossi Azar and Oded Regev. Strongly Polynomial Algorithms for the Unsplittable Flow Problem. IPCO VIII, 2001.
- Jon Kleinberg and Eva Tardos. Disjoint paths in densely embedded graphs. Proc. 36th FOCS, 1995.