Complexity results for throughput and latency optimization of replicated and data-parallel workflows

Anne Benoit and Yves Robert

GRAAL team, LIP École Normale Supérieure de Lyon

June 2007

Introduction and motivation

- Mapping workflow applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Introduction and motivation

- Mapping workflow applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Introduction and motivation

- Mapping workflow applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Introduction and motivation

- Mapping workflow applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Introduction and motivation

- Mapping workflow applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Introduction and motivation

- Mapping workflow applications onto parallel platforms
 Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms
 Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Rule of the game

- Consecutive data-sets fed into the workflow
- Period T_{period} = time interval between beginning of execution of two consecutive data sets (throughput=1/ T_{period})
- Latency $T_{\text{latency}}(x) = \text{time elapsed between beginning and}$ end of execution for a given data set x, and $T_{\text{latency}} = \max_{x} T_{\text{latency}}(x)$
- Map each pipeline/fork stage on one or several processors
- Goal: minimize T_{period} or $T_{latency}$ or bi-criteria minimization

Rule of the game

- Consecutive data-sets fed into the workflow
- Period T_{period} = time interval between beginning of execution of two consecutive data sets (throughput=1/ T_{period})
- Latency $T_{\text{latency}}(x) = \text{time elapsed between beginning and}$ end of execution for a given data set x, and $T_{\text{latency}} = \max_{x} T_{\text{latency}}(x)$
- Map each pipeline/fork stage on one or several processors
- Goal: minimize T_{period} or $T_{latency}$ or bi-criteria minimization

Replication and data-parallelism

Replicate stage S_k on P_1, \ldots, P_q

$$\mathcal{S}_k$$
 on P_1 : data sets 1, 4, 7, ...
 ... \mathcal{S}_{k-1} -- \mathcal{S}_k on P_2 : data sets 2, 5, 8, ... -- \mathcal{S}_{k+1} ...
 \mathcal{S}_k on P_3 : data sets 3, 5, 9, ...

Data-parallelize stage S_k on P_1, \ldots, P_q

$$S_k$$
 $(w = 16)$ P_1 $(s_1 = 2)$: •••••

 P_2 $(s_2 = 1)$: •••

 P_3 $(s_3 = 1)$: •••

Replication and data-parallelism

Replicate stage S_k on P_1, \ldots, P_q

$$\mathcal{S}_k$$
 on P_1 : data sets 1, 4, 7, ...
 ... \mathcal{S}_{k-1} -- \mathcal{S}_k on P_2 : data sets 2, 5, 8, ... -- \mathcal{S}_{k+1} ...
 \mathcal{S}_k on P_3 : data sets 3, 5, 9, ...

Data-parallelize stage S_k on P_1, \ldots, P_q

Major contributions

- Complexity results for throughput and latency optimization of replicated and data-parallel workflows
- Theoretical approach to the problem
 - definition of replication and data-parallelism
 - \bullet formal definition of T_{period} and T_{latency} in each case
- Problem complexity: focus on pipeline and fork workflows

Major contributions

- Complexity results for throughput and latency optimization of replicated and data-parallel workflows
- Theoretical approach to the problem
 - definition of replication and data-parallelism
 - ullet formal definition of T_{period} and T_{latency} in each case
- Problem complexity: focus on pipeline and fork workflows

Outline

- Framework
- Working out an example
- 3 The problem
- 4 Complexity results
- Conclusion

Outline

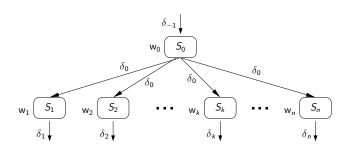
- Tramework
- Working out an example
- The problem
- 4 Complexity results
- Conclusion

Pipeline graphs



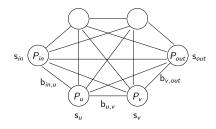
- n stages S_k , $1 \le k \le n$
- \circ \mathcal{S}_k :
 - receives input of size δ_{k-1} from \mathcal{S}_{k-1}
 - performs w_k computations
 - outputs data of size δ_k to \mathcal{S}_{k+1}

Fork graphs



- n+1 stages S_k , $0 \le k \le n$
 - S_0 : root stage
 - S_1 to S_n : independent stages
- A data set goes through stage S_0 , then it can be executed simultaneously for all other stages

The platform



- p processors P_u , $1 \le u \le p$, fully interconnected
- s_u : speed of processor P_u
- bidirectional link link $u,v:P_u\to P_v$, bandwidth $b_{u,v}$
- one-port model: each processor can either send, receive or compute at any time-step

Different platforms

Fully Homogeneous – Identical processors ($s_u = s$) and links ($b_{u,v} = b$): typical parallel machines

Communication Homogeneous – Different-speed processors $(s_u \neq s_v)$, identical links $(b_{u,v} = b)$: networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, $s_u \neq s_v$ and $b_{u,v} \neq b_{u',v'}$: hierarchical platforms, grids

Back to pipeline: mapping strategies

In this work, Interval Mapping

Chains-on-chains

Load-balance contiguous tasks

5 7 3 4 8 1 3 8 2 9 7 3 5 2 3 6

Chains-on-chains

Load-balance contiguous tasks

5 7 3 4 8 1 3 8 2 9 7 3 5 2 3 6

With p = 4 identical processors?

Chains-on-chains

Load-balance **contiguous** tasks

With p = 4 identical processors?

$$T_{\rm period} = 20$$

Chains-on-chains

Load-balance contiguous tasks

With p = 4 identical processors?

5 7 3 4 | 8 1 3 8 | 2 9 7 | 3 5 2 3 6
$$T_{\sf period} = 20$$

NP-hard for different-speed processors, even without communications

Outline

- Framework
- 2 Working out an example
- 3 The problem
- 4 Complexity results
- Conclusion

Workflows complexity results

Interval mapping, 4 processors, $s_1=2$ and $s_2=s_3=s_4=1$

Optimal period?

$$T_{
m period}=7$$
, $\mathcal{S}_1 o P_1$, $\mathcal{S}_2\mathcal{S}_3 o P_2$, $\mathcal{S}_4 o P_3$ ($T_{
m latency}=17$)

Optimal latency?

$$T_{\text{latency}} = 12$$
, $S_1 S_2 S_3 S_4 \rightarrow P_1$ ($T_{\text{period}} = 12$)

Min. latency if
$$T_{\text{period}} \leq 10$$
?
 $T_{\text{latency}} = 14$, $S_1 S_2 S_3 \rightarrow P_1$, $S_4 \rightarrow P_2$

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Optimal period?

$$T_{\text{period}} = 7$$
, $\mathcal{S}_1
ightarrow P_1$, $\mathcal{S}_2 \mathcal{S}_3
ightarrow P_2$, $\mathcal{S}_4
ightarrow P_3$ ($T_{\text{latency}} = 17$)

Optimal latency?

$$T_{\text{latency}} = 12$$
, $S_1 S_2 S_3 S_4 \rightarrow P_1$ ($T_{\text{period}} = 12$)

Min. latency if
$$T_{\text{period}} \leq 10$$
?
 $T_{\text{latency}} = 14$, $S_1 S_2 S_3 \rightarrow P_1$, $S_4 \rightarrow P_2$

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Optimal period?

$$T_{\mathsf{period}} = \mathsf{7}$$
, $\mathcal{S}_1 o P_1$, $\mathcal{S}_2 \mathcal{S}_3 o P_2$, $\mathcal{S}_4 o P_3$ $(T_{\mathsf{latency}} = \mathsf{17})$

Optimal latency?

$$T_{\mathsf{latency}} = 12, \; \mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 \to P_1 \; (T_{\mathsf{period}} = 12)$$

Min. latency if $T_{\text{period}} \leq 10$?

 $T_{\text{latency}} = 14, \ \mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_3 \rightarrow P_1, \ \mathcal{S}_4 \rightarrow P_2$

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Optimal period?

$$T_{\mathsf{period}} = \mathsf{7}, \; \mathcal{S}_1 o P_1, \; \mathcal{S}_2 \mathcal{S}_3 o P_2, \; \mathcal{S}_4 o P_3 \; ig(T_{\mathsf{latency}} = \mathsf{17} ig)$$

Optimal latency?

$$T_{\mathsf{latency}} = 12, \; \mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 o P_1 \; (T_{\mathsf{period}} = 12)$$

Min. latency if
$$T_{\text{period}} \leq 10$$
?

$$T_{\text{latency}} = 14, \ \mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_3 \rightarrow P_1, \ \mathcal{S}_4 \rightarrow P_2$$

Example with replication and data-parallelism

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Replicate interval $[S_u..S_v]$ on $P_1, ..., P_q$

$$\mathcal{S}_u \dots \mathcal{S}_v$$
 on P_1 : data sets 1, 4, 7, ... $\mathcal{S}_v \dots \mathcal{S}_v \dots \mathcal{S}_v$ on P_2 : data sets 2, 5, 8, ... $--\mathcal{S}_v \dots \mathcal{S}_v \dots \mathcal{S}_v \dots \mathcal{S}_v$ on P_3 : data sets 3, 5, 9, ...

$$T_{\text{period}} = \frac{\sum_{k=u}^{v} w_k}{q \times \min(s_i)}$$
 and $T_{\text{latency}} = q \times T_{\text{period}}$

Example with replication and data-parallelism

Interval mapping, 4 processors, $s_1=2$ and $s_2=s_3=s_4=1$

Data Parallelize single stage S_k on P_1, \ldots, P_q

$$T_{
m period} = rac{{\sf w}_k}{\sum_{i=1}^q {\sf s}_i}$$
 and $T_{
m latency} = T_{
m period}$

Example with replication and data-parallelism

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Optimal period?

Example with replication and data-parallelism

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Optimal period?

$$\mathcal{S}_1 \stackrel{\mathrm{DP}}{\rightarrow} P_1 P_2$$
, $\mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 \stackrel{\mathrm{REP}}{\rightarrow} P_3 P_4$

$$T_{\mathsf{period}} = \mathsf{max}(\frac{14}{2+1}, \frac{4+2+4}{2\times 1}) = 5$$
, $T_{\mathsf{latency}} = 14.67$

Example with replication and data-parallelism

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Optimal period?

$$\mathcal{S}_1 \overset{\mathrm{DP}}{\to} P_1 P_2$$
, $\mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 \overset{\mathrm{REP}}{\to} P_3 P_4$
 $T_{\mathsf{period}} = \mathsf{max}(\frac{14}{2+1}, \frac{4+2+4}{2\times 1}) = 5$, $T_{\mathsf{latency}} = 14.67$
 $\mathcal{S}_1 \overset{\mathrm{DP}}{\to} P_2 P_3 P_4$, $\mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 \to P_1$
 $T_{\mathsf{period}} = \mathsf{max}(\frac{14}{1+1+1}, \frac{4+2+4}{2}) = 5$, $T_{\mathsf{latency}} = 9.67$ (optimal)

Outline

- Framework
- Working out an example
- 3 The problem
- 4 Complexity results
- Conclusion

Interval Mapping for pipeline graphs

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Partition of [1..n] into m intervals $l_j = [d_j, e_j]$ (with $d_j \leq e_j$ for $1 \leq j \leq m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \leq j \leq m-1$ and $e_m = n$)
- Interval I_j mapped onto processor $P_{alloc(j)}$

$$T_{\mathsf{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}_{\mathsf{alloc}(j - 1), \mathsf{alloc}(j)}} + \frac{\sum_{i = d_j}^{e_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} + \frac{\delta_{e_j}}{\mathsf{b}_{\mathsf{alloc}(j), \mathsf{alloc}(j + 1)}} \right\}$$

$$T_{\mathsf{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}_{\mathsf{alloc}(j - 1), \mathsf{alloc}(j)}} + \frac{\sum_{i = d_j}^{e_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} + \frac{\delta_{e_j}}{\mathsf{b}_{\mathsf{alloc}(j), \mathsf{alloc}(j + 1)}} \right\}$$

INTERVAL MAPPING for pipeline graphs

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Partition of [1..n] into m intervals $l_j = [d_j, e_j]$ (with $d_j \leq e_j$ for $1 \leq j \leq m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \leq j \leq m-1$ and $e_m = n$)
- Interval I_j mapped onto processor $P_{\mathsf{alloc}(j)}$

$$T_{\mathsf{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}_{\mathsf{alloc}(j - 1), \mathsf{alloc}(j)}} + \frac{\sum_{i = d_j}^{e_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} + \frac{\delta_{e_j}}{\mathsf{b}_{\mathsf{alloc}(j), \mathsf{alloc}(j + 1)}} \right\}$$

$$T_{\mathsf{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{dj-1}}{\mathsf{b}_{\mathsf{alloc}(j-1),\mathsf{alloc}(j)}} + \frac{\sum_{i=d_j}^{\mathsf{e}_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} + \frac{\delta_{\mathsf{e}_j}}{\mathsf{b}_{\mathsf{alloc}(j),\mathsf{alloc}(j+1)}} \right\}$$

INTERVAL MAPPING for pipeline graphs

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Partition of [1..n] into m intervals $I_j = [d_j, e_j]$ (with $d_j \le e_j$ for $1 \le j \le m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \le j \le m 1$ and $e_m = n$)
- Interval I_j mapped onto processor $P_{\mathsf{alloc}(j)}$

$$T_{\mathsf{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}_{\mathsf{alloc}(j - 1), \mathsf{alloc}(j)}} + \frac{\sum_{i = d_j}^{\mathsf{e}_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} + \frac{\delta_{\mathsf{e}_j}}{\mathsf{b}_{\mathsf{alloc}(j), \mathsf{alloc}(j + 1)}} \right\}$$

$$T_{\mathsf{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{dj-1}}{\mathsf{b}_{\mathsf{alloc}(j-1),\mathsf{alloc}(j)}} + \frac{\sum_{i=d_j}^{e_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} + \frac{\delta_{e_j}}{\mathsf{b}_{\mathsf{alloc}(j),\mathsf{alloc}(j+1)}} \right\}$$

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q (*)

INTERVAL MAPPING for pipeline graphs

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Partition of [1..n] into m intervals $I_j = [d_j, e_j]$ (with $d_j \le e_j$ for $1 \le j \le m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \le j \le m 1$ and $e_m = n$)
- ullet Interval I_j mapped onto processor $P_{\mathsf{alloc}(j)}$

$$T_{\mathsf{period}} = \max_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}_{\mathsf{alloc}(j - 1), \mathsf{alloc}(j)}} + \frac{\sum_{i = d_j}^{\mathsf{e}_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} + \frac{\delta_{\mathsf{e}_j}}{\mathsf{b}_{\mathsf{alloc}(j), \mathsf{alloc}(j + 1)}} \right\}$$

$$T_{\mathsf{latency}} = \sum_{1 \leq j \leq m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}_{\mathsf{alloc}(j - 1), \mathsf{alloc}(j)}} + \frac{\sum_{i = d_j}^{e_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} + \frac{\delta_{e_j}}{\mathsf{b}_{\mathsf{alloc}(j), \mathsf{alloc}(j + 1)}} \right\}$$

Fork graphs

- map any partition of the graph onto the processors
- q intervals, $q \leq p$
- ullet first interval: \mathcal{S}_0 and possibly \mathcal{S}_1 to \mathcal{S}_k
- next intervals of independent stages
- •
- -

Fork graphs

- map any partition of the graph onto the processors
- q intervals, $q \leq p$
- ullet first interval: \mathcal{S}_0 and possibly \mathcal{S}_1 to \mathcal{S}_k
- next intervals of independent stages
- $T_{\text{period}} = ?$
- 9

Fork graphs

- map any partition of the graph onto the processors
- q intervals, $q \leq p$
- ullet first interval: \mathcal{S}_0 and possibly \mathcal{S}_1 to \mathcal{S}_k
- next intervals of independent stages
- $T_{\text{period}} = ?$
- depends on the com model: is it possible to start com as soon as S_0 is done? Which order for com?

•

Fork graphs

- map any partition of the graph onto the processors
- q intervals, $q \leq p$
- ullet first interval: \mathcal{S}_0 and possibly \mathcal{S}_1 to \mathcal{S}_k
- next intervals of independent stages
- Informally: $T_{period} = max$ time needed by processor to receive data, compute, output result
- •
- •

Fork graphs

- map any partition of the graph onto the processors
- q intervals, $q \leq p$
- ullet first interval: \mathcal{S}_0 and possibly \mathcal{S}_1 to \mathcal{S}_k
- next intervals of independent stages
- Informally: $T_{period} = max$ time needed by processor to receive data, compute, output result
- $T_{\text{latency}} = \text{time elapsed between data set input to } \mathcal{S}_0$ until last computation for this data set is completed

•

Fork graphs

- map any partition of the graph onto the processors
- q intervals, $q \leq p$
- ullet first interval: \mathcal{S}_0 and possibly \mathcal{S}_1 to \mathcal{S}_k
- next intervals of independent stages
- Informally: $T_{period} = max$ time needed by processor to receive data, compute, output result
- $T_{\text{latency}} = \text{time elapsed between data set input to } \mathcal{S}_0$ until last computation for this data set is completed
- Simpler model for formal analysis

Back to a simpler problem

- No communication costs nor overheads
- •
- •
- •
- •

Workflows complexity results

Back to a simpler problem

- No communication costs nor overheads
- Cost to execute S_i on P_u alone:

$$\frac{W_i}{S_{ij}}$$

- •
- •
- 0

Back to a simpler problem

- No communication costs nor overheads
- Cost to execute S_i on P_u alone: $\frac{w_i}{s_u}$
- Cost to data-parallelize $[S_i, S_j]$ $(i = j \text{ for pipeline; } 0 < i \le j \text{ or } i = j = 0 \text{ for fork) on } k \text{ processors } P_{q_1}, \dots, P_{q_k}$:

$$\frac{\sum_{\ell=i}^{j} \mathsf{w}_{\ell}}{\sum_{u=1}^{k} \mathsf{s}_{q_{u}}}.$$

Cost = T_{period} of assigned processors Cost = delay to traverse the interval

- •
- •

Back to a simpler problem

- No communication costs nor overheads
- Cost to execute S_i on P_u alone: $\frac{w_i}{s_u}$
- Cost to data-parallelize
- Cost to replicate $[S_i, S_j]$ on k processors P_{q_1}, \ldots, P_{q_k} :

$$\frac{\sum_{\ell=i}^{j} \mathsf{w}_{\ell}}{k \times \mathsf{min}_{1 \leq u \leq k} \, \mathsf{s}_{q_{u}}}.$$

Cost = T_{period} of assigned processors Delay to traverse the interval = time needed by slowest processor:

$$t_{\mathsf{max}} = \frac{\sum_{\ell=i}^{j} \mathsf{W}_{\ell}}{\min_{1 \leq u \leq k} \mathsf{S}_{au}}$$

Back to a simpler problem

- No communication costs nor overheads
- Cost to execute S_i on P_u alone: $\frac{w_i}{s_u}$
- Cost to data-parallelize
- Cost to replicate
- With these formulas: easy to compute T_{period} for both graphs, and T_{latency} for pipeline graphs

- partition of stages into q sets \mathcal{I}_r $(1 \le r \le q \le p)$
- ullet $\mathcal{S}_0 \in \mathcal{I}_1$, to k processors P_{q_1}, \dots, P_{q_k}
- $t_{\max}(r) = \text{delay of } r\text{-th set } (1 \leq r \leq q)$, computed as before
- flexible com model: computations of \mathcal{I}_r , $r \geq 2$, start as soon as computation of \mathcal{S}_0 is completed.
- \bullet $s_0=$ speed at which \mathcal{S}_0 is processed:
 - $s_0 = \sum_{u=1}^k s_{q_u}$ if \mathcal{I}_1 is data-parallelized
 - $\mathsf{s}_0 = \min_{1 \leq u \leq k} \mathsf{s}_{q_u}$ if \mathcal{I}_1 is replicated

$$T_{\text{latency}} = \max \left(t_{\text{max}}(1), \frac{\mathsf{w}_0}{\mathsf{s}_0} + \max_{2 \le r \le q} t_{\text{max}}(r) \right)$$

- partition of stages into q sets \mathcal{I}_r $(1 \le r \le q \le p)$
- ullet $\mathcal{S}_0 \in \mathcal{I}_1$, to k processors P_{q_1}, \dots, P_{q_k}
- ullet $t_{\sf max}(r)=$ delay of r-th set $(1\leq r\leq q)$, computed as before
- flexible com model: computations of \mathcal{I}_r , $r \geq 2$, start as soon as computation of \mathcal{S}_0 is completed.
- $s_0 = \text{speed at which } S_0 \text{ is processed:}$
 - $s_0 = \sum_{u=1}^k s_{q_u}$ if \mathcal{I}_1 is data-parallelized
 - $s_0 = \min_{1 \leq u \leq k} s_{q_u}$ if \mathcal{I}_1 is replicated

$$T_{\text{latency}} = \max \left(t_{\text{max}}(1), \frac{\mathsf{w}_0}{\mathsf{s}_0} + \max_{2 \le r \le q} t_{\text{max}}(r) \right)$$

- partition of stages into q sets \mathcal{I}_r $(1 \le r \le q \le p)$
- ullet $\mathcal{S}_0 \in \mathcal{I}_1$, to k processors P_{q_1}, \dots, P_{q_k}
- $t_{\sf max}(r) = {\sf delay} \ {\sf of} \ r\text{-th set} \ (1 \leq r \leq q)$, computed as before
- flexible com model: computations of \mathcal{I}_r , $r \geq 2$, start as soon as computation of \mathcal{S}_0 is completed.
- ullet $s_0 =$ speed at which \mathcal{S}_0 is processed:
 - ullet ${\sf s}_0 = \sum_{u=1}^k {\sf s}_{q_u}$ if ${\cal I}_1$ is data-parallelized
 - ullet $s_0 = \min_{1 \leq u \leq k} s_{q_u}$ if \mathcal{I}_1 is replicated

$$T_{\text{latency}} = \max\left(t_{\text{max}}(1), \frac{\mathsf{w}_0}{\mathsf{s}_0} + \max_{2 \le r \le q} t_{\text{max}}(r)\right)$$

- partition of stages into q sets \mathcal{I}_r $(1 \le r \le q \le p)$
- ullet $\mathcal{S}_0 \in \mathcal{I}_1$, to k processors P_{q_1}, \ldots, P_{q_k}
- ullet $t_{\sf max}(r) = {\sf delay} \ {\sf of} \ r\text{-th set} \ (1 \leq r \leq q), \ {\sf computed} \ {\sf as} \ {\sf before}$
- flexible com model: computations of \mathcal{I}_r , $r \geq 2$, start as soon as computation of \mathcal{S}_0 is completed.
- ullet $s_0 =$ speed at which \mathcal{S}_0 is processed:
 - ullet ${\sf s}_0 = \sum_{u=1}^k {\sf s}_{q_u}$ if ${\cal I}_1$ is data-parallelized
 - ullet $\mathsf{s}_0 = \mathsf{min}_{1 \leq u \leq k} \, \mathsf{s}_{q_u}$ if \mathcal{I}_1 is replicated

•

$$T_{\mathsf{latency}} = \mathsf{max}\left(t_{\mathsf{max}}(1), \frac{\mathsf{w}_0}{\mathsf{s}_0} + \max_{2 \le r \le q} t_{\mathsf{max}}(r)\right)$$

Optimization problem

Given

- an application graph (n-stage pipeline or (n + 1)-stage fork),
- a target platform (Homogeneous with p identical processors or Heterogeneous with p different-speed processors),
- a mapping strategy with replication, and either with data-parallelization or without,
- an objective (period T_{period} or latency $T_{latency}$),

determine an interval-based mapping that minimizes the objective 16 optimization problems

Optimization problem

Given

- ullet an application graph (n-stage pipeline or (n+1)-stage fork),
- a target platform (Homogeneous with p identical processors or Heterogeneous with p different-speed processors),
- a mapping strategy with replication, and either with data-parallelization or without,
- an objective (period T_{period} or latency $T_{latency}$),

determine an interval-based mapping that minimizes the objective 16 optimization problems

Optimization problem

Given

- an application graph (n-stage pipeline or (n + 1)-stage fork),
- a target platform (Homogeneous with p identical processors or Heterogeneous with p different-speed processors),
- a mapping strategy with replication, and either with data-parallelization or without,
- an objective (period T_{period} or latency $T_{latency}$),

determine an interval-based mapping that minimizes the objective 16 optimization problems

Bi-criteria optimization problem

- given threshold period $\mathcal{P}_{\text{threshold}}$, determine mapping whose period does not exceed $\mathcal{P}_{\text{threshold}}$ and that minimizes $\mathcal{T}_{\text{latency}}$
- given threshold latency $\mathcal{L}_{\text{threshold}}$, determine mapping whose latency does not exceed $\mathcal{L}_{\text{threshold}}$ and that minimizes T_{period}

Outline

- 1 Framework
- Working out an example
- 3 The problem
- 4 Complexity results
- Conclusion

Complexity results

Without data-parallelism, Homogeneous platforms

Objective	period	latency	bi-criteria
Hom. pipeline		-	
Het. pipeline	Poly (str)		
Hom. fork	-	Poly (DP)	
Het. fork	Poly (str)	NP-hard	

Complexity results

With data-parallelism, Homogeneous platforms

Objective	period	latency	bi-criteria
Hom. pipeline		-	
Het. pipeline	Poly (DP)		
Hom. fork	-	Poly (DP)	
Het. fork	Poly (str)	NP-hard	

Complexity results

Without data-parallelism, Heterogeneous platforms

Objective	period	latency	bi-criteria
Hom. pipeline	Poly (*)	-	Poly (*)
Het. pipeline	NP-hard (**)	Poly (str)	NP-hard
Hom. fork		Poly (*)	
Het. fork	NP-hard	-	-

Complexity results

With data-parallelism, Heterogeneous platforms

Objective	period	latency	bi-criteria
Hom. pipeline		NP-har	d
Het. pipeline		-	
Hom. fork		NP-har	d
Het. fork		-	

Complexity results

Most interesting case: Without data-parallelism, *Heterogeneous* platforms

Objective	period	latency	bi-criteria
Hom. pipeline	Poly (*)	-	Poly (*)
Het. pipeline	NP-hard (**)	Poly (str)	NP-hard
Hom. fork		Poly (*)	
Het. fork	NP-hard	-	-

No data-parallelism, Heterogeneous platforms

- For pipeline, minimizing the latency is straightforward: map all stages on fastest proc
- Minimizing the period is NP-hard (involved reduction similar to the heterogeneous chain-to-chain one) for general pipeline
- Homogeneous pipeline: all stages have same workload w: in this case, polynomial complexity.
- Polynomial bi-criteria algorithm for homogeneous pipeline

No data-parallelism, Heterogeneous platforms

- For pipeline, minimizing the latency is straightforward: map all stages on fastest proc
- Minimizing the period is NP-hard (involved reduction similar to the heterogeneous chain-to-chain one) for general pipeline
- Homogeneous pipeline: all stages have same workload w: in this case, polynomial complexity.
- Polynomial bi-criteria algorithm for homogeneous pipeline

Lemma: form of the solution

Pipeline, no data-parallelism, Heterogeneous platform

Lemma

If an optimal solution which minimizes pipeline period uses q processors, consider q fastest processors $P_1, ..., P_q$, ordered by non-decreasing speeds: $s_1 \leq ... \leq s_q$.

There exists an optimal solution which replicates intervals of stages onto k intervals of processors $I_r = [P_{d_r}, P_{e_r}]$, with $1 \le r \le k \le q$, $d_1 = 1$, $e_k = q$, and $e_r + 1 = d_{r+1}$ for $1 \le r < k$.

Proof: exchange argument, which does not increase latency

Lemma: form of the solution

Pipeline, no data-parallelism, Heterogeneous platform

Lemma

If an optimal solution which minimizes pipeline period uses q processors, consider q fastest processors $P_1, ..., P_q$, ordered by non-decreasing speeds: $s_1 \leq ... \leq s_q$.

There exists an optimal solution which replicates intervals of stages onto k intervals of processors $I_r = [P_{d_r}, P_{e_r}]$, with $1 \le r \le k \le q$, $d_1 = 1$, $e_k = q$, and $e_r + 1 = d_{r+1}$ for $1 \le r < k$.

Proof: exchange argument, which does not increase latency

Binary-search/Dynamic programming algorithm

- Given latency L, given period K
- Loop on number of processors q
- Dynamic programming algorithm to minimize latency
- Success if L is obtained
- Binary search on L to minimize latency for fixed period
- Binary search on K to minimize period for fixed latency

Binary-search/Dynamic programming algorithm

- Given latency L, given period K
- Loop on number of processors q
- Dynamic programming algorithm to minimize latency
- Success if L is obtained
- Binary search on L to minimize latency for fixed period
- Binary search on K to minimize period for fixed latency

Dynamic programming algorithm

• Compute L(n, 1, q), where L(m, i, j) = minimum latency to map m pipeline stages on processors P_i to P_j , while fitting in period K.

$$L(m,i,j) = \min_{\substack{1 \leq m' < m \\ i \leq k < j}} \begin{cases} \frac{m.w}{s_i} & \text{if } \frac{m.w}{(j-i).s_i} \leq K \quad (1) \\ L(m',i,k) + L(m-m',k+1,j) \end{cases}$$
(2)

- Case (1): replicating m stages onto processors $P_i, ..., P_j$
- Case (2): splitting the interval

Dynamic programming algorithm

• Compute L(n, 1, q), where L(m, i, j) = minimum latency to map m pipeline stages on processors P_i to P_j , while fitting in period K.

$$L(m, i, j) = \min_{\substack{1 \le m' < m \\ i \le k < j}} \begin{cases} \frac{m \cdot w}{s_i} & \text{if } \frac{m \cdot w}{(j - i) \cdot s_i} \le K \\ L(m', i, k) + L(m - m', k + 1, j) \end{cases} (2)$$

Initialization:

$$L(1, i, j) = \begin{cases} \frac{w}{s_i} & \text{if } \frac{w}{(j-i).s_i} \le K \\ +\infty & \text{otherwise} \end{cases}$$

$$L(m, i, i) = \begin{cases} \frac{m.w}{s_i} & \text{if } \frac{m.w}{s_i} \le K \\ +\infty & \text{otherwise} \end{cases}$$

Dynamic programming algorithm

• Compute L(n, 1, q), where L(m, i, j) = minimum latency to map m pipeline stages on processors P_i to P_j , while fitting in period K.

$$L(m,i,j) = \min_{\substack{1 \leq m' < m \\ i \leq k < j}} \begin{cases} \frac{m.w}{\mathsf{s}_i} & \text{if } \frac{m.w}{(j-i).\mathsf{s}_i} \leq K \quad (1) \\ L(m',i,k) + L(m-m',k+1,j) \end{cases} (2)$$

- Complexity of the dynamic programming: $O(n^2.p^4)$
- Number of iterations of the binary search formally bounded, very small number of iterations in practice.

Outline

- Framework
- Working out an example
- The problem
- 4 Complexity results
- Conclusion

Related work

Subhlok and Vondran— Extension of their work (pipeline on hom platforms)

Chains-to-chains- In our work possibility to replicate or data-parallelize

Mapping pipelined computations onto clusters and grids— DAG [Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations [Melhem et al.], three-criteria optimization

Mapping pipelined computations onto special-purpose architectures— FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids— Use of stochastic process algebra [Benoit et al.]

Conclusion

- Mapping structured workflow applications onto computational platforms, with replication and data-parallelism
- Complexity of the most tractable instances → insight of the combinatorial nature of the problem
- Pipeline and fork graphs, extension to fork-join
- Homogeneous and Heterogeneous platforms with no communications
- Minimizing period or latency, and bi-criteria optimization problems
- Solid theoretical foundation for study of single/bi-criteria mappings, with possibility to replicate and data-parallelize application stages

Conclusion

- Mapping structured workflow applications onto computational platforms, with replication and data-parallelism
- Complexity of the most tractable instances → insight of the combinatorial nature of the problem
- Pipeline and fork graphs, extension to fork-join
- Homogeneous and Heterogeneous platforms with no communications
- Minimizing period or latency, and bi-criteria optimization problems
- Solid theoretical foundation for study of single/bi-criteria mappings, with possibility to replicate and data-parallelize application stages

Future work

Short term

- Select polynomial instances of the problem and assess complexity when adding communication
- Design heuristics to solve combinatorial instances of the problem

Longer term

- Heuristics based on our polynomial algorithms for general application graphs structured as combinations of pipeline and fork kernels
- Real experiments on heterogeneous clusters
- Comparison of effective performance against theoretical performance

