Introduction	Framework	Mono-criterion	Bi-criteria	LP	Experiments	Conclusion

Scheduling pipeline workflows to optimize throughput, latency and reliability

Anne Benoit, Veronika Rehn-Sonigo, Yves Robert

GRAAL team, LIP École Normale Supérieure de Lyon France

> Alpage Meeting January 31, 2008

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto heterogeneous platforms

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto heterogeneous platforms

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Structured programming approach
 - Easier to program (deadlocks, process starvation)
 - Range of well-known paradigms (pipeline, farm)
 - Algorithmic skeleton: help for mapping

Mapping pipeline skeletons onto heterogeneous platforms

 Introduction
 Framework
 Mono-criterion
 Bi-criteria
 LP
 Experiments
 Conclusion

 Multi-criteria scheduling of workflows

 Workflow

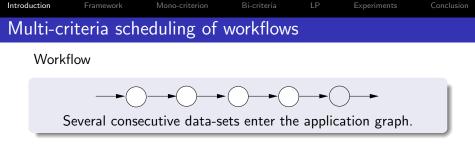
 Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency: maximal time elapsed between beginning and end of execution of a data set

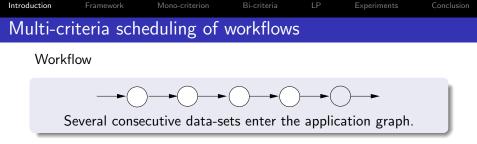
Reliability: probability of failure of the application (i.e. some data-sets will not be processed)



Period: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency: maximal time elapsed between beginning and end of execution of a data set

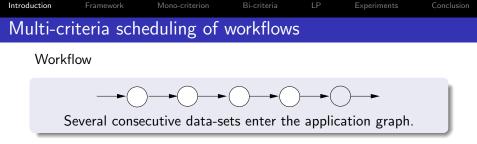
Reliability: probability of failure of the application (i.e. some data-sets will not be processed)



Period: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency: maximal time elapsed between beginning and end of execution of a data set

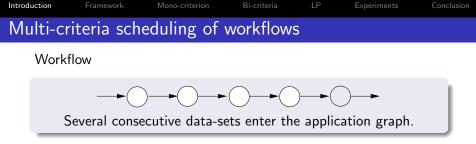
Reliability: probability of failure of the application (i.e. some data-sets will not be processed)



Period: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency: maximal time elapsed between beginning and end of execution of a data set

Reliability: probability of failure of the application (i.e. some data-sets will not be processed)



Period: time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency: maximal time elapsed between beginning and end of execution of a data set

Reliability: probability of failure of the application (i.e. some data-sets will not be processed)

Pipeline: linear application graph

Chains-on-chains partitioning problem

- no communications
- identical processors

 Load-balance contiguous tasks

 5
 7
 3
 4
 8
 1
 3
 8
 2
 9
 7
 3
 5
 2
 3
 6

 With p = 4 identical processors?

 5
 7
 3
 4
 8
 1
 3
 8
 2
 9
 7
 3
 5
 2
 3
 6

 T_{period} = 20

Pipeline: linear application graph

Chains-on-chains partitioning problem

- no communications
- identical processors

 Load-balance contiguous tasks

 5
 7
 3
 4
 8
 1
 3
 8
 2
 9
 7
 3
 5
 2
 3
 6

 With p = 4 identical processors?

 5
 7
 3
 4
 8
 1
 3
 8
 2
 9
 7
 3
 5
 2
 3
 6

 $T_{period} = 20$

Pipeline: linear application graph

Chains-on-chains partitioning problem

- no communications
- identical processors

 Load-balance contiguous tasks

 5
 7
 3
 4
 8
 1
 3
 8
 2
 9
 7
 3
 5
 2
 3
 6

 With p = 4 identical processors?

 5
 7
 3
 4
 8
 1
 3
 8
 2
 9
 7
 3
 5
 2
 3
 6

 $\mathcal{T}_{period} = 20$

Pipeline: linear application graph

Chains-on-chains partitioning problem

- no communications
- identical processors

 Load-balance contiguous tasks

 5
 7
 3
 4
 8
 1
 3
 8
 2
 9
 7
 3
 5
 2
 3
 6

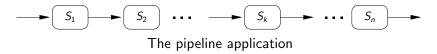
 With p = 4 identical processors?

 5
 7
 3
 4
 8
 1
 3
 8
 2
 9
 7
 3
 5
 2
 3
 6

 T_{period} = 20

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies



- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

- Map each pipeline stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- Several mapping strategies

 Replication (one interval onto several processors) in order to increase reliability only: each data-set is processed by several processors

Theory Definition of multi-criteria mappings Problem complexity Linear programming formulation

Practice Heuristics for INTERVAL MAPPING on clusters Experiments to compare heuristics and evaluate their performance Simulation of a real world application (JPEG encoder)

Theory Definition of multi-criteria mappings Problem complexity Linear programming formulation

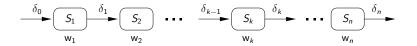
Practice Heuristics for INTERVAL MAPPING on clusters Experiments to compare heuristics and evaluate their performance Simulation of a real world application (JPEG encoder)

Introduction	Framework	Mono-criterion	Bi-criteria	LP	Experiments	Conclusion
Outline						

1 Framework

- 2 Mono-criterion complexity results
- Bi-criteria complexity results
- 4 Linear programming formulation
- 5 Heuristics and Experiments, Period/Latency

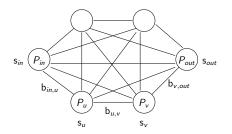
6 Conclusion



• n stages
$$\mathcal{S}_k$$
, $1 \leq k \leq$ n

• \mathcal{S}_k :

- receives input of size δ_{k-1} from \mathcal{S}_{k-1}
- performs w_k computations
- outputs data of size δ_k to \mathcal{S}_{k+1}
- S_0 and S_{n+1} : virtual stages representing the outside world



- p processors P_u , $1 \le u \le p$, fully interconnected
- s_u : speed of processor P_u
- bidirectional link link_{$u,v} : <math>P_u \rightarrow P_v$, bandwidth b_{u,v}</sub></sub>
- fp_u: failure probability of processor P_u (independent of the duration of the application, meant to run for a long time)
- one-port model: each processor can either send, receive or compute at any time-step

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Different platforms

Fully Homogeneous– Identical processors ($s_u = s$) and links
($b_{u,v} = b$): typical parallel machinesCommunication Homogeneous– Different-speed processors
($s_u \neq s_v$), identical links ($b_{u,v} = b$): networks of
workstations, clusters

$$\label{eq:fully Heterogeneous} \begin{split} & \textit{Fully Heterogeneous} - \textit{Fully heterogeneous architectures, } s_u \neq s_v \\ & \text{and } b_{u,v} \neq b_{u',v'} \text{: hierarchical platforms, grids} \end{split}$$

Failure Homogeneous – Identically reliable processors ($fp_u = fp_v$) Failure Heterogeneous – Different failure probabilities ($fp_u \neq fp_v$)

通 ト イヨ ト イヨト

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Different platforms

Fully Homogeneous – Identical processors $(s_u = s)$ and links $(b_{u,v} = b)$: typical parallel machinesCommunication Homogeneous – Different-speed processors $(s_u \neq s_v)$, identical links $(b_{u,v} = b)$: networks ofworkstations, clusters

$$\label{eq:fully Heterogeneous} \begin{split} & \textit{Fully Heterogeneous} - \textit{Fully heterogeneous architectures, } s_u \neq s_v \\ & \text{and } b_{u,v} \neq b_{u',v'} \text{: hierarchical platforms, grids} \end{split}$$

Failure Homogeneous – Identically reliable processors $(fp_u = fp_v)$ Failure Heterogeneous – Different failure probabilities $(fp_u \neq fp_v)$

通 ト イヨ ト イヨト

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Mapping problem: INTERVAL MAPPING

- Several consecutive stages onto the same processor
- Increase computational load, reduce communications
- Partition of [1..n] into m intervals $I_j = [d_j, e_j]$ (with $d_j \le e_j$ for $1 \le j \le m$, $d_1 = 1$, $d_{j+1} = e_j + 1$ for $1 \le j \le m - 1$ and $e_m = n$)
- Interval I_j mapped onto set of processors $P_{\text{alloc}(j)}$
- $k_j = |\operatorname{alloc}(j)|$ processors executing I_j , $k_j \ge 1$.

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion
Objective function?

Mono-criterion

- Minimize T_{period}
- Minimize T_{latency}
- Minimize T_{failure}

-

2

- Minimize T_{period}
- Minimize T_{latency}
- Minimize T_{failure}

Multi-criteria

- How to define it?
 - Minimize α . $T_{\text{period}} + \beta$. $T_{\text{latency}} + \gamma$. T_{failure} ?
- Values which are not comparable

3

- Minimize T_{period}
- Minimize T_{latency}
- Minimize T_{failure}

Multi-criteria

• How to define it?

Minimize α . $T_{\text{period}} + \beta$. $T_{\text{latency}} + \gamma$. T_{failure} ?

- Values which are not comparable
- Minimize T_{period} for a fixed latency and failure
- Minimize T_{latency} for a fixed period and failure
- Minimize $T_{failure}$ for a fixed period and latency

- Minimize T_{period}
- Minimize T_{latency}
- Minimize T_{failure}

Bi-criteria

- Period and Latency:
- Minimize T_{period} for a fixed latency
- Minimize T_{latency} for a fixed period

- Minimize T_{period}
- Minimize T_{latency}
- Minimize T_{failure}

Bi-criteria

- Failure and Latency:
- Minimize $T_{failure}$ for a fixed latency
- Minimize T_{latency} for a fixed failure

- Period/Latency: no replication
- alloc(j) reduced to a single processor
- Communication Homogeneous platforms (easy to extend)

$$T_{\text{period}} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\}$$

$$T_{\mathsf{latency}} = \sum_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}} + \frac{\sum_{i = d_j}^{\mathsf{e}_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} \right\} + \frac{\delta_r}{\mathsf{b}}$$

- Period/Latency: no replication
- alloc(j) reduced to a single processor
- Communication Homogeneous platforms (easy to extend)

$$T_{\text{period}} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\}$$

$$T_{\mathsf{latency}} = \sum_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{\mathsf{b}} + \frac{\sum_{i = d_j}^{\mathsf{e}_j} \mathsf{w}_i}{\mathsf{s}_{\mathsf{alloc}(j)}} \right\} + \frac{\delta_i}{\mathsf{b}}$$

- Period/Latency: no replication
- alloc(j) reduced to a single processor
- Communication Homogeneous platforms (easy to extend)

$$T_{\text{period}} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\}$$

$$T_{\text{latency}} = \sum_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b}$$

- Latency/Reliability
- alloc(j) is a set of k_j processors
- Communication Homogeneous platforms
- output by only one processor (consensus between working processors)

$$T_{\mathsf{latency}} = \sum_{1 \le j \le p} \left\{ k_j \times \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{\min_{u \in \mathsf{alloc}(j)}(\mathsf{s}_u)} \right\} + \frac{\delta_n}{b}$$
$$T_{\mathsf{failure}} = 1 - \prod_{1 \le j \le p} (1 - \prod_{u \in \mathsf{alloc}(j)} \mathsf{fp}_u)$$

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Interval Mapping problem - Latency/Reliability

- Latency/Reliability
- alloc(j) is a set of k_j processors
- Communication Homogeneous platforms
- output by only one processor (consensus between working processors)

$$T_{\text{latency}} = \sum_{1 \le j \le p} \left\{ k_j \times \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{\min_{u \in \text{alloc}(j)}(s_u)} \right\} + \frac{\delta_n}{b}$$
$$T_{\text{failure}} = 1 - \prod_{1 \le j \le p} (1 - \prod_{u \in \text{alloc}(j)} \text{fp}_u)$$

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Interval Mapping problem - Latency/Reliability

- Latency/Reliability
- alloc(j) is a set of k_j processors
- Communication Homogeneous platforms
- output by only one processor (consensus between working processors)

$$T_{\text{latency}} = \sum_{1 \le j \le p} \left\{ k_j \times \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{\min_{u \in \text{alloc}(j)}(s_u)} \right\} + \frac{\delta_n}{b}$$
$$T_{\text{failure}} = 1 - \prod_{1 \le j \le p} (1 - \prod_{u \in \text{alloc}(j)} \text{fp}_u)$$

		troduction	Framework	Mono-criterion	Bi-criteria	LP	Experiments	Conclusion
Outline	C	Dutline						

Framework

2 Mono-criterion complexity results

3 Bi-criteria complexity results

- Linear programming formulation
- 5 Heuristics and Experiments, Period/Latency

6 Conclusion

 Introduction
 Framework
 Mono-criterion
 Bi-criteria
 LP
 Experiments
 Conclusion

 Complexity results:
 Latency - Com Hom
 Complexity
 Conclusion
 C

Lemma

On *Fully Homogeneous* and *Communication Homogeneous* platforms, the optimal interval mapping which minimizes latency can be determined in polynomial time.

- Assign whole pipeline to fastest processor!
- No intra communications to pay in this case.
- Only input and output communications, identical for each mapping.

Image: A Image: A

 Introduction
 Framework
 Mono-criterion
 Bi-criteria
 LP
 Experiments
 Conclusion

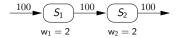
 Complexity results:
 Latency - Com Hom
 Complexity
 Conclusion
 C

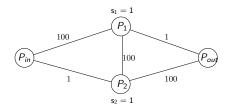
Lemma

On *Fully Homogeneous* and *Communication Homogeneous* platforms, the optimal interval mapping which minimizes latency can be determined in polynomial time.

- Assign whole pipeline to fastest processor!
- No intra communications to pay in this case.
- Only input and output communications, identical for each mapping.

- Fully Heterogeneous platforms
- The interval of stages may need to be split





 Introduction
 Framework
 Mono-criterion
 Bi-criteria
 LP
 Experiments
 Conclusion

 Complexity results:
 Latency - Het
 Experiments
 Conclusion

Lemma

On *Fully Heterogeneous* platforms, the optimal general mapping which minimizes latency can be determined in polynomial time.

Dynamic programming algorithm

Lemma

On *Fully Heterogeneous* platforms, finding an optimal one-to-one mapping which minimizes latency is NP-hard.

Reduction from the Traveling Salesman Problem TSP

Still an open problem for interval mappings (but we conjecture it is NP-hard)
 Introduction
 Framework
 Mono-criterion
 Bi-criteria
 LP
 Experiments
 Conclusion

 Complexity results:
 Latency - Het
 Experiments
 Conclusion
 Experiments
 Conclusion

Lemma

On *Fully Heterogeneous* platforms, the optimal general mapping which minimizes latency can be determined in polynomial time.

Dynamic programming algorithm

Lemma

On *Fully Heterogeneous* platforms, finding an optimal one-to-one mapping which minimizes latency is NP-hard.

Reduction from the Traveling Salesman Problem TSP

Still an open problem for interval mappings (but we conjecture it is NP-hard)

Lemma

On *Fully Heterogeneous* platforms, the optimal general mapping which minimizes latency can be determined in polynomial time.

Dynamic programming algorithm

Lemma

On *Fully Heterogeneous* platforms, finding an optimal one-to-one mapping which minimizes latency is NP-hard.

Reduction from the Traveling Salesman Problem TSP

Still an open problem for interval mappings (but we conjecture it is NP-hard)

Minimize the period?

Chains-on-chains problem for *Fully Hom.* platforms: polynomial *Com. Hom.*: Chains-on-chains with different speed processors!

Definition (HETERO-1D-PARTITION-DEC)

$$\max_{\leq k \leq p} \frac{\sum_{i \in \mathcal{I}_k} a_i}{\mathbf{s}_{\sigma(k)}} \leq K \quad ?$$

Minimize the period? Chains-on-chains problem for *Fully Hom*. platforms: polynomial *Com*. *Hom*.: Chains-on-chains with different speed processors!

Definition (HETERO-1D-PARTITION-DEC)

$$\max_{1 \le k \le p} \frac{\sum_{i \in \mathcal{I}_k} a_i}{\mathbf{s}_{\sigma(k)}} \le K \quad ?$$

Minimize the period?

Chains-on-chains problem for *Fully Hom.* platforms: polynomial *Com. Hom.*: Chains-on-chains with different speed processors!

Definition (HETERO-1D-PARTITION-DEC)

$$\max_{\leq k \leq p} \frac{\sum_{i \in \mathcal{I}_k} a_i}{\mathbf{s}_{\sigma(k)}} \leq K \quad ?$$

Minimize the period?

Chains-on-chains problem for *Fully Hom.* platforms: polynomial *Com. Hom.*: Chains-on-chains with different speed processors!

Definition (HETERO-1D-PARTITION-DEC)

$$\max_{1 \le k \le p} \frac{\sum_{i \in \mathcal{I}_k} a_i}{\mathbf{s}_{\sigma(k)}} \le K \quad ?$$

Theorem 1

The HETERO-1D-PARTITION-DEC problem is NP-complete.

Involved reduction

Theorem 2

The period minimization problem for interval mapping of pipeline graphs on *Communication Homogeneous* platforms is NP-complete.

Direct consequence from Theorem 1

→ ∃ →

Theorem 1

The HETERO-1D-PARTITION-DEC problem is NP-complete.

Involved reduction

Theorem 2

The period minimization problem for interval mapping of pipeline graphs on *Communication Homogeneous* platforms is NP-complete.

Direct consequence from Theorem 1

.

Theorem 1

The HETERO-1D-PARTITION-DEC problem is NP-complete.

Involved reduction

Theorem 2

The period minimization problem for interval mapping of pipeline graphs on *Communication Homogeneous* platforms is NP-complete.

Direct consequence from Theorem 1

Theorem 1

The HETERO-1D-PARTITION-DEC problem is NP-complete.

Involved reduction

Theorem 2

The period minimization problem for interval mapping of pipeline graphs on *Communication Homogeneous* platforms is NP-complete.

Direct consequence from Theorem 1

Lemma

Minimizing the failure probability can be done in polynomial time.

- Formula computing global failure probability
- Minimum reached by replicating whole pipeline as a single interval on all processors
- True for all platform types

Lemma

Minimizing the failure probability can be done in polynomial time.

- Formula computing global failure probability
- Minimum reached by replicating whole pipeline as a single interval on all processors
- True for all platform types

Introduction	Framework	Mono-criterion	Bi-criteria	LP	Experiments	Conclusion
Outline						

Mono-criterion complexity results

Bi-criteria complexity results

- 4 Linear programming formulation
 - 5 Heuristics and Experiments, Period/Latency

6 Conclusion

- Interval mapping, Fully Homogeneous platforms
- Polynomial: dynamic programming algorithm
- Interval mapping, Communication Homogeneous platforms
- Period minimization: NP-hard
- Bi-criteria problems: NP-hard

- Interval mapping, Fully Homogeneous platforms
- Polynomial: dynamic programming algorithm
- Interval mapping, Communication Homogeneous platforms
- Period minimization: NP-hard
- Bi-criteria problems: NP-hard

Lemma NoSplit

On Fully Homogeneous and Communication Homogeneous-Failure Homogeneous platforms, there is a mapping of the pipeline as a single interval which minimizes the failure probability (resp. latency) under a fixed latency (resp. failure probability) threshold.

From an existing optimal solution consisting of more than one interval: easy to build a new optimal solution with a single interval

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Complexity results - Latency/Failure LP Experiments Conclusion

- Communication Homogeneous-Failure Homogeneous: Minimizing *FP* for a fixed *L*
- Order processors in non-increasing order of s_j
- Find k maximum, such that

$$k \times \frac{\delta_0}{b} + \frac{\sum_{1 \le j \le n} \mathsf{w}_j}{\mathsf{s}_k} + \frac{\delta_n}{b} \le \mathcal{L}$$

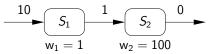
- Replicate the whole pipeline as a single interval onto the fastest *k* processors
- Note that at any time s_k is the speed of the slowest processor used in the replication scheme

- Communication Homogeneous platforms-Failure Homogeneous: Minimizing \mathcal{L} for a fixed \mathcal{FP}
- Find k minimum, such that

$$1-(1-\mathsf{fp}^k) \leq \mathcal{FP}$$

• Replicate the whole pipeline as a single interval onto the fastest *k* processors

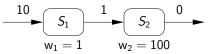
- Communication Homogeneous-Failure Heterogeneous
- Lemma NoSplit not true: example
- \bullet One slow and reliable processor, $s=1,\ fp=0.1$
- Ten fast and unreliable processors, s = 100, fp = 0.8
- $T_{\text{latency}} \leq 22$, minimize T_{failure}



- One interval: $T_{\text{failure}} = (1 (1 0.8^2)) = 0.64$
- Two intervals: $T_{\text{failure}} = 1 (1 0.1).(1 0.8^{10}) < 0.2$
- Open complexity (probably NP-hard)

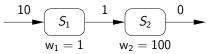
27/47

- Communication Homogeneous-Failure Heterogeneous
- Lemma NoSplit not true: example
- \bullet One slow and reliable processor, $s=1,\ fp=0.1$
- Ten fast and unreliable processors, s = 100, fp = 0.8
- $T_{\text{latency}} \leq 22$, minimize T_{failure}



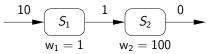
- One interval: $T_{\text{failure}} = (1 (1 0.8^2)) = 0.64$
- Two intervals: $T_{\text{failure}} = 1 (1 0.1) \cdot (1 0.8^{10}) < 0.2$
- Open complexity (probably NP-hard)

- Communication Homogeneous-Failure Heterogeneous
- Lemma NoSplit not true: example
- \bullet One slow and reliable processor, $s=1,\ fp=0.1$
- Ten fast and unreliable processors, s = 100, fp = 0.8
- $T_{\text{latency}} \leq 22$, minimize T_{failure}



- One interval: $T_{\text{failure}} = (1 (1 0.8^2)) = 0.64$
- Two intervals: $T_{failure} = 1 (1 0.1).(1 0.8^{10}) < 0.2$
- Open complexity (probably NP-hard)

- Communication Homogeneous-Failure Heterogeneous
- Lemma NoSplit not true: example
- \bullet One slow and reliable processor, $s=1,\ fp=0.1$
- Ten fast and unreliable processors, s = 100, fp = 0.8
- $T_{\text{latency}} \leq 22$, minimize T_{failure}



- One interval: $T_{\text{failure}} = (1 (1 0.8^2)) = 0.64$
- Two intervals: $T_{failure} = 1 (1 0.1) \cdot (1 0.8^{10}) < 0.2$
- Open complexity (probably NP-hard)

• Fully Heterogeneous platforms

Theorem

On *Fully Heterogeneous* platforms, the bi-criteria (decision problems associated to the) optimization problems are NP-hard.

• Reduction from 2-PARTITION: one single stage, processors of identical speed and $fp_j = e^{-a_j}$, $b_{in,j} = 1/a_j$ and $b_{j,out} = 1$

• Fully Heterogeneous platforms

Theorem

On *Fully Heterogeneous* platforms, the bi-criteria (decision problems associated to the) optimization problems are NP-hard.

• Reduction from 2-PARTITION: one single stage, processors of identical speed and $fp_j = e^{-a_j}$, $b_{in,j} = 1/a_j$ and $b_{j,out} = 1$

Introduction	Framework	Mono-criterion	Bi-criteria	LP	Experiments	Conclusion
Outline						

- Mono-criterion complexity results
- 3 Bi-criteria complexity results
- 4 Linear programming formulation
 - 5 Heuristics and Experiments, Period/Latency

6 Conclusion

- Integer LP to solve INTERVAL MAPPING on *Communication Homogeneous* platforms
- Many integer variables: no efficient algorithm to solve
- Approach limited to small problem instances
- Absolute performance of the heuristics for such instances

• *T*_{opt}: period or latency of the pipeline, depending on the objective function

Boolean variables:

- $x_{k,u}$: 1 if S_k on P_u
- $y_{k,u}$: 1 if S_k and S_{k+1} both on P_u
- $z_{k,u,v}$: 1 if S_k on P_u and S_{k+1} on P_v

Integer variables:

• first_u and last_u: integer denoting first and last stage assigned to P_u (to enforce interval constraints)

• *T*_{opt}: period or latency of the pipeline, depending on the objective function

Boolean variables:

- $x_{k,u}$: 1 if S_k on P_u
- $y_{k,u}$: 1 if S_k and S_{k+1} both on P_u
- $z_{k,u,v}$: 1 if S_k on P_u and S_{k+1} on P_v

Integer variables:

• first_u and last_u: integer denoting first and last stage assigned to P_u (to enforce interval constraints)

 Introduction
 Framework
 Mono-criterion
 Bi-criteria
 LP
 Experiments
 Conclusion

 Linear program: constraints
 Image: constants
 Im

Constraints on procs and links:

•
$$\forall k \in [0..n+1], \qquad \sum_{u} x_{k,u} = 1$$

•
$$\forall k \in [0..n], \qquad \sum_{u \neq v} z_{k,u,v} + \sum_{u} y_{k,u} = 1$$

- $\forall k \in [0..n], \forall u, v \in [1..p] \cup \{in, out\}, u \neq v, x_{k,u} + x_{k+1,v} \le 1 + z_{k,u,v}$
- $\forall k \in [0..n], \forall u \in [1..p] \cup \{in, out\}, \quad x_{k,u} + x_{k+1,u} \le 1 + y_{k,u}$

Constraints on intervals:

- $\forall k \in [1..n], \forall u \in [1..p], \quad \text{first}_u \leq k.x_{k,u} + n.(1 x_{k,u})$
- $\forall k \in [1..n], \forall u \in [1..p],$ last_u $\geq k.x_{k,u}$
- $\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v,$ last_u $\leq k.z_{k,u,v} + n.(1 - z_{k,u,v})$
- $\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v, \text{ first}_{v} \geq (k+1).z_{k,u,v}$

 Introduction
 Framework
 Mono-criterion
 Bi-criteria
 LP
 Experiments
 Conclusion

 Linear program: constraints
 Image: constants
 Im

Constraints on procs and links:

•
$$\forall k \in [0..n+1], \qquad \sum_{u} x_{k,u} = 1$$

•
$$\forall k \in [0..n], \qquad \sum_{u \neq v} z_{k,u,v} + \sum_{u} y_{k,u} = 1$$

- $\forall k \in [0..n], \forall u, v \in [1..p] \cup \{in, out\}, u \neq v, x_{k,u} + x_{k+1,v} \le 1 + z_{k,u,v}$
- $\forall k \in [0..n], \forall u \in [1..p] \cup \{in, out\}, \quad x_{k,u} + x_{k+1,u} \le 1 + y_{k,u}$

Constraints on intervals:

- $\forall k \in [1..n], \forall u \in [1..p], \quad \text{first}_u \leq k.x_{k,u} + n.(1 x_{k,u})$
- $\forall k \in [1..n], \forall u \in [1..p],$ last_u $\geq k.x_{k,u}$

•
$$\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v,$$

last_u $\leq k.z_{k,u,v} + n.(1 - z_{k,u,v})$

• $\forall k \in [1..n-1], \forall u, v \in [1..p], u \neq v, \text{ first}_{v} \geq (k+1).z_{k,u,v}$

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Linear program: constraints

$$\forall u \in [1..p], \sum_{k=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} + \left(\sum_{v \neq u} \frac{\delta_k}{b} z_{k,u,v} \right) \right\} \leq T_{\text{period}}$$

$$\sum_{u=1}^{p} \sum_{k=1}^{n} \left[\left(\sum_{t \neq u, t \in [1..p] \cup \{in,out\}} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} \right] + \left(\sum_{u \in [1..p] \cup \{in\}} \frac{\delta_n}{b} z_{n,u,out} \right) \leq T_{\text{latency}}$$

Min period with fixed latency

 $T_{\rm opt} = T_{\rm period}$

 T_{latency} is fixed

Min latency with fixed period

 $T_{\rm opt} = T_{\rm latency}$

T_{period} is fixed

通 ト イヨ ト イヨト

Bi-criteria LP Linear program: constraints

$$\forall u \in [1..p], \sum_{k=1}^{n} \left\{ \left(\sum_{t \neq u} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} + \left(\sum_{v \neq u} \frac{\delta_k}{b} z_{k,u,v} \right) \right\} \le T_{\text{period}}$$

$$\sum_{u=1}^{p} \sum_{k=1}^{n} \left[\left(\sum_{t \neq u, t \in [1..p] \cup \{in,out\}} \frac{\delta_{k-1}}{b} z_{k-1,t,u} \right) + \frac{w_k}{s_u} x_{k,u} \right] + \left(\sum_{u \in [1..p] \cup \{in\}} \frac{\delta_n}{b} z_{n,u,out} \right) \le T_{\text{latency}}$$

Min period with fixed latency	Min latency with fixed period
$T_{\sf opt} = T_{\sf period}$	$T_{\sf opt} = T_{\sf latency}$
T_{latency} is fixed	$T_{ m period}$ is fixed

Anne.Benoit@ens-lyon.fr

Introduction	Framework	Mono-criterion	Bi-criteria	LP	Experiments	Conclusion
Outline						

- Mono-criterion complexity results
- 3 Bi-criteria complexity results
- 4 Linear programming formulation
- 5 Heuristics and Experiments, Period/Latency

6 Conclusion

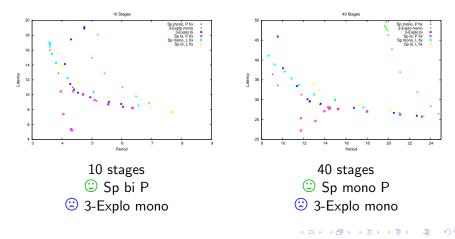
- Back to the problem Period/Latency
- Target clusters: *Communication Homogeneous* platforms and INTERVAL MAPPING

Two sets of heuristics

- Minimizing latency for a fixed period
- Minimizing period for a fixed latency
- Key idea: map the pipeline as a single interval then split the interval until stop criterion is reached
- Split: decreases period but increases latency

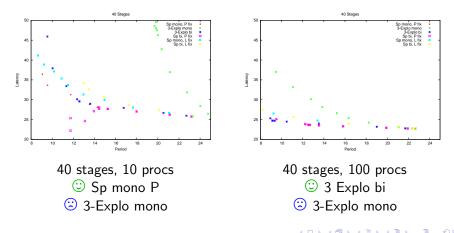
Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Heuristics comparison

- communication time $\delta_i = 10$, computation time $1 \le w_i \le 20$
- 10 processors



Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion Heuristics comparison

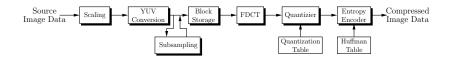
- communication time $\delta_i = 10$, computation time $1 \le w_i \le 20$
- 10 vs. 100 processors



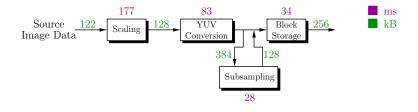
Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion
Real World Application

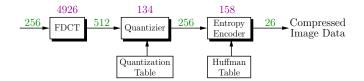
The JPEG encoder

- Image processing application
- JPEG: standardized interchange format
- Data compression
- 7 stages



• Joint work with Harald Kosch, University of Passau, Germany





4

(日) (同) (三) (三)

Introduction Framework Mono-criterion Bi-criteria LP Experiments Conclusion
Simulation environment

- MPI application
- Message passing + sleep()
- Homogeneous processors (Salle Europe)
- Simulation of heterogeneity
- Mapping 7 stages on 10 processors

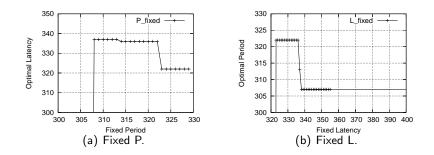
Mono-criterion **Bi-criteria** Experiments Conclusion Influence of the fixed parameter on the solution I P solutions: minimize latency minimize period $P_{fix} = 310$ $L_{opt} = 337, 575$ $L_{fix} = 370$ Popt = 307, 319 -6)-(7 (2) P_6 P_5 Pз P_7 Pз $P_{fix} = 320$ $L_{opt} = 336,729$ $L_{fix} = 340$ $P_{opt} = 307, 319$ P_6 P_3 P_4 P_3 $P_{fir} = 330$ $L_{opt} = 322,700$ $L_{fix} = 330$ $P_{opt} = 322,700$ P_3 P_3

- A TE N - A TE N

3

40/47

Bi-criteria Experiments Bucket behavior of LP solutions



41/47

2

3

-

Behavior of heuristics (compared to LP)

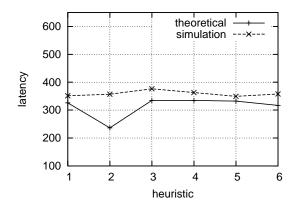


(日) (同) (三) (三)

Experiments

42/47

Experiments Comparison theory/experience



Introduction	Framework	Mono-criterion	Bi-criteria	LP	Experiments	Conclusion
Outline						

1 Framework

2 Mono-criterion complexity results

3 Bi-criteria complexity results

- 4 Linear programming formulation
- 5 Heuristics and Experiments, Period/Latency

6 Conclusion

Subhlok and Vondran- Extension of their work (pipeline on hom platforms)

Mapping pipelined computations onto clusters and grids- DAG [Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations [Melhem et al.], three-criteria optimization

Mapping pipelined computations onto special-purpose architectures– FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids– Use of stochastic process algebra [Benoit et al.]

• • = • • = •

Theoretical side

- Pipeline structured applications
- Multi-criteria mapping problem
- Complexity study
- Linear programming formulation

Practical side

- Design of several polynomial heuristics
- Extensive simulations to compare their performance
- Simulation of a real world application
- Evaluation

Theory

- Extension to stage replication
- Extension to fork, fork-join and tree workflows

Practice

- Real experiments on heterogeneous clusters with bigger pipeline applications, using MPI
- Comparison of effective performance against theoretical performance