Combining Checkpointing and Replication for Reliable Execution of Linear Workflows

Anne Benoit^{1,2}, Aurélien Cavelan³, Florina M. Ciorba³, Valentin Le Fèvre¹, Yves Robert^{1,4}

LIP, Ecole Normale Supérieure de Lyon, France
 Georgia Institute of Technology, Atlanta, GA, USA
 University of Basel, Switzerland
 University of Tennessee, Knoxville, TN, USA

http://graal.ens-lyon.fr/~abenoit/

APDCM workshop @ IPDPS'18, Vancouver, May 21, 2018

Introduction	Model	DP Algo	Experiments	Conclusion

Linear workflows

- High-performance computing (HPC) application: chain of tasks $T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_n$
- Parallel tasks executed on the whole platform
- For instance: tightly-coupled computational kernels, image processing applications, ...
- Goal: efficient execution, i.e., minimize total execution time

Introduction	Model	DP Algo	Experiments	Conclusion

Linear workflows

- High-performance computing (HPC) application: chain of tasks $T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_n$
- Parallel tasks executed on the whole platform
- For instance: tightly-coupled computational kernels, image processing applications, ...
- Goal: efficient execution, i.e., minimize total execution time

Introduction	Model	DP Algo	Experiments	Conclusion
Reliable ex	ecution			

• Hierarchical

- $\bullet~10^5~{\rm or}~10^6~{\rm nodes}$
- Each node equipped with 10^4 or 10^3 cores

• Failure-prone

MTBF – one node	1 year	10 years	120 years
MTBF – platform of 10 ⁶ nodes	30sec	5mn	1h

More nodes \Rightarrow Shorter MTBF (Mean Time Between Failures)

Need to ensure that the execution will be reliable, i.e., without failures

Model

DP Algo

Experiment

Conclusion

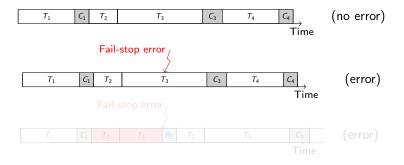
Coping with fail-stop errors with checkpoints

Checkpoint, rollback, and recovery:

• Coordinated checkpointing (the platform is a giant macro-processor)

- Assume instantaneous interruption and detection
- Rollback to last checkpoint and re-execute

Model


DP Algo

Experiment

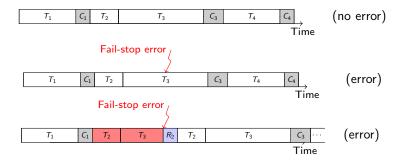
Conclusion

Coping with fail-stop errors with checkpoints

Checkpoint, rollback, and recovery:

- Coordinated checkpointing (the platform is a giant macro-processor)
- Assume instantaneous interruption and detection
- Rollback to last checkpoint and re-execute

Model

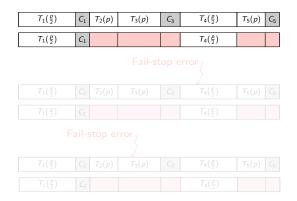

DP Algo

Experiment

Conclusion

Coping with fail-stop errors with checkpoints

Checkpoint, rollback, and recovery:

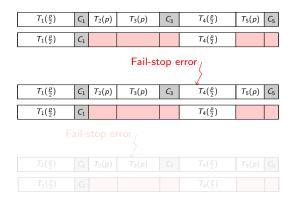

- Coordinated checkpointing (the platform is a giant macro-processor)
- Assume instantaneous interruption and detection
- Rollback to last checkpoint and re-execute

DP Algo

Experiments

Conclusion

Coping with fail-stop errors with replication


- The whole platform is used at all time, some tasks are replicated
- If failure hits a replicated task, no need to rollback
- Otherwise, rollback to last checkpoint and re-execute

DP Algo

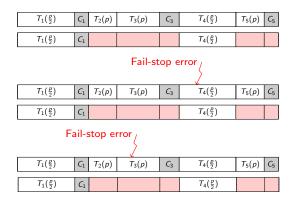
Experiments

Conclusion

Coping with fail-stop errors with replication

- The whole platform is used at all time, some tasks are replicated
- If failure hits a replicated task, no need to rollback
- Otherwise, rollback to last checkpoint and re-execute

- 4 同 6 4 日 6 4 日 6


э

DP Algo

Experiments

Conclusion

Coping with fail-stop errors with replication

- The whole platform is used at all time, some tasks are replicated
- If failure hits a replicated task, no need to rollback
- Otherwise, rollback to last checkpoint and re-execute

< 67 ▶

A B M A B M

э

Introduction	Model	DP Algo	Experiments	Conclusion
Contributions				

- Both checkpointing and replication have been extensively studied
- Combination of both techniques not yet investigated
- Detailed model
- Optimal dynamic programming algorithm
- Experiments to evaluate impact of using both replication and checkpointing during execution
- Guidelines about when to checkpoint only, replicate only, or combine both techniques

Introduction	Model	DP Algo	Experiments	Conclusion
Contributions				

- Both checkpointing and replication have been extensively studied
- Combination of both techniques not yet investigated
- Detailed model
- Optimal dynamic programming algorithm
- Experiments to evaluate impact of using both replication and checkpointing during execution
- Guidelines about when to checkpoint only, replicate only, or combine both techniques

Introduction	Model	DP Algo	Experiments	Conclusion
Outline				

Optimal dynamic programming algorithm

3 Experiments

DP Algo

Application and platform model

• Application:

• Platform:

- Homogeneous platform with p processors P_i , $1 \le i \le p$
- Fail-stop errors, Exponential distribution, error rate λ_{ind}
- $\mathbb{P}(X \leq T) = 1 e^{-q\lambda_{ind}T}$ on q processors

Introduction	Model	DP Algo	Experiments	Conclusion
Checkpointing	5			

- Checkpointing time: $C_i(q_i) = a_i + \frac{b_i}{q_i} + c_i q_i$
 - $a_i + \frac{b_i}{a_i}$: communication time with latency a_i
 - c_iq_i: message passing overhead
- Downtime D
- Recovery cost R_{j+1} (where T_j is the last checkpointed task)
- $R_{i+1}(q_i) = C_i(q_i)$ for $1 \le i \le n-1$: recovering for $T_{i+1} \approx$ reading C_i
- T_0 with $w_0 = 0$ checkpointed (input time $R_1(q_1)$)
- T_n always checkpointed (output time $C_n(q_n)$)

 Introduction
 Model
 DP Algo
 Experiments
 Conclusion

- T_i not replicated: costs C_i^{norep} and R_i^{norep}
- Failure-free execution time: $T_i^{norep} = w_i \left(\alpha_i + \frac{1 \alpha_i}{p} \right)$
- Expected execution time $\mathbb{E}^{norep}(i)$:

$$\mathbb{E}^{norep}(i) = \mathbb{P}(X_p \leq T_i^{norep}) \left(T_{lost}^{norep}(T_i^{norep}) + D + R_i^{norep} + \mathbb{E}^{norep}(i) \right) \\ + \left(1 - \mathbb{P}(X_p \leq T_i^{norep}) \right) T_i^{norep}$$

- P(X_p ≤ t) = 1 − e^{−λ_{ind}pt}: probability of failure on one of the p
 processors before time t
- $T_{lost}^{norep}(T_i^{norep}) = \frac{1}{\lambda_{ind}p} \frac{t}{e^{\lambda_{ind}pT_i^{norep}} 1}$

•
$$\mathbb{E}^{norep}(i) = (e^{\lambda_{ind}pT_i^{norep}} - 1)(\frac{1}{\lambda_{ind}p} + D + R_i^{norep})$$

• If T_i is checkpointed, add C_i^{norep}

Introduction	Model	DP Algo	Experiments	Conclusion
No replication				

- T_i not replicated: costs C_i^{norep} and R_i^{norep}
- Failure-free execution time: $T_i^{norep} = w_i \left(\alpha_i + \frac{1 \alpha_i}{p} \right)$
- Expected execution time $\mathbb{E}^{norep}(i)$:

$$\mathbb{E}^{norep}(i) = \mathbb{P}(X_p \leq T_i^{norep}) \left(T_{lost}^{norep}(T_i^{norep}) + D + R_i^{norep} + \mathbb{E}^{norep}(i) \right) \\ + \left(1 - \mathbb{P}(X_p \leq T_i^{norep}) \right) T_i^{norep}$$

- P(X_p ≤ t) = 1 − e^{−λ_{ind}pt}: probability of failure on one of the p
 processors before time t
- $T_{lost}^{norep}(T_i^{norep}) = \frac{1}{\lambda_{ind}p} \frac{t}{e^{\lambda_{ind}pT_i^{norep}} 1}$

•
$$\mathbb{E}^{norep}(i) = (e^{\lambda_{ind}pT_i^{norep}} - 1)(\frac{1}{\lambda_{ind}p} + D + R_i^{norep})$$

• If T_i is checkpointed, add C_i^{norep}

Replication	Introduction N	Nodel DP	Algo I	Experiments	Conclusion
Replication	Replication				

- T_i replicated: if a copy fails, downtime + recovery
- Each copy uses p/2 processors; costs C_i^{rep} and R_i^{rep}
- Failure-free execution time: $T_i^{rep} = w_i \left(\alpha_i + \frac{1 \alpha_i}{\frac{p}{2}} \right)$
- Expected execution time $\mathbb{E}^{rep}(i)$ if T_{i-1} is checkpointed:

$$\mathbb{E}^{rep}(i) = \mathbb{P}(Y_p \leq T_i^{rep}) \left(T_{lost}^{rep}(T_i^{rep}) + D + R_i^{rep} + \mathbb{E}^{rep}(i) \right) \\ + \left(1 - \mathbb{P}(Y_p \leq T_i^{rep}) \right) T_i^{rep}$$

- $\mathbb{P}(Y_{\rho} \leq t) = (1 e^{-\frac{\lambda_{ind}\rho}{2}t})^2$: probability of failure on both replicas of $\frac{\rho}{2}$ processors before time t
- $T_{lost}^{rep}(T_i^{rep})$ computed as before
- . . .

• Formula for $\mathbb{E}^{rep}(i)$

Introduction	Model	DP Algo	Experiments	Conclusion
Replication				

- T_i replicated: if a copy fails, downtime + recovery
- Each copy uses p/2 processors; costs C_i^{rep} and R_i^{rep}
- Failure-free execution time: $T_i^{rep} = w_i \left(\alpha_i + \frac{1 \alpha_i}{\frac{p}{2}} \right)$
- Expected execution time $\mathbb{E}^{rep}(i)$ if T_{i-1} is checkpointed:

$$\mathbb{E}^{rep}(i) = \mathbb{P}(Y_p \leq T_i^{rep}) \Big(T_{lost}^{rep}(T_i^{rep}) + D + R_i^{rep} + \mathbb{E}^{rep}(i) \Big) \\ + (1 - \mathbb{P}(Y_p \leq T_i^{rep})) T_i^{rep}$$

- $\mathbb{P}(Y_{\rho} \leq t) = (1 e^{-\frac{\lambda_{ind}\rho}{2}t})^2$: probability of failure on both replicas of $\frac{\rho}{2}$ processors before time t
- $T_{lost}^{rep}(T_i^{rep})$ computed as before
- . . .
- Formula for $\mathbb{E}^{rep}(i)$

Introduction	Model	DP Algo	Experiments	Conclusion
Ontimization	nrahlam			

Optimization problem

- $\bullet\ {\rm CHAINSREPCKPT}$ optimization problem
- Minimize the expected makespan of the workflow
- Four possibilities for each task: checkpoint or not, and replicate or not

$T_1(\frac{p}{2})$	C_1	$T_2(p)$	$T_3(p)$	<i>C</i> ₃	$T_4(\frac{p}{2})$	$T_5(p)$	<i>C</i> ₅
$T_1(\frac{p}{2})$	<i>C</i> ₁				$T_4(\frac{p}{2})$		

Introduction	Model	DP Algo	Experiments	Conclusion
Outline				

1 Model and objective

Optimal dynamic programming algorithm

3 Experiments

э

► < Ξ ►</p>

Optimization problem

Theorem

The optimal solution to the CHAINSREPCKPT problem can be obtained using a dynamic programming algorithm in $O(n^2)$ time, where n is the number of tasks in the chain.

- Recursively computes expectation of optimal time required to execute tasks T_1 to T_i and then checkpoint T_i
- Distinguish whether T_i is replicated or not
- $T_{opt}^{rep}(i)$: knowing that T_i is replicated
- $T_{opt}^{norep}(i)$: knowing that T_i is not replicated
- Solution: min $\{T_{opt}^{rep}(n) + C_n^{rep}, T_{opt}^{norep}(n) + C_n^{norep}\}$

Model

DP Algo

Experiments

Conclusion

Computing $T_{opt}^{rep}(j)$: *j* is replicated

$$T_{opt}^{rep}(j) = \min_{1 \le i < j} \begin{cases} T_{opt}^{rep}(i) + C_i^{rep} + T_{NC}^{rep,rep}(i+1,j), \\ T_{opt}^{rep}(i) + C_i^{rep} + T_{NC}^{norep,rep}(i+1,j), \\ T_{opt}^{horep}(i) + C_i^{norep} + T_{NC}^{rep,rep}(i+1,j), \\ T_{opt}^{norep}(i) + C_i^{norep} + T_{NC}^{norep,rep}(i+1,j), \\ R_1^{rep} + T_{NC}^{rep,rep}(1,j), \\ R_1^{norep} + T_{NC}^{norep,rep}(1,j) \end{cases}$$

- T_i : last checkpointed task before T_j
- T_i can be replicated or not
- T_{i+1} can be replicated or not
- $T_{NC}^{A,B}$: no intermediate checkpoint, first/last task replicated or not, previous task checkpointed
- Similar equation for $T_{opt}^{norep}(j)$

Model

DP Algo

Experiments

Conclusion

Computing $T_{opt}^{rep}(j)$: j is replicated

$$T_{opt}^{rep}(j) = \min_{1 \le i < j} \begin{cases} T_{opt}^{rep}(i) + C_i^{rep} + T_{NC}^{rep,rep}(i+1,j), \\ T_{opt}^{rep}(i) + C_i^{rep} + T_{NC}^{norep,rep}(i+1,j), \\ T_{opt}^{horep}(i) + C_i^{norep} + T_{NC}^{rep,rep}(i+1,j), \\ T_{opt}^{norep}(i) + C_i^{norep} + T_{NC}^{norep,rep}(i+1,j), \\ R_1^{rep} + T_{NC}^{rep,rep}(1,j), \\ R_1^{norep} + T_{NC}^{norep,rep}(1,j) \end{cases}$$

- T_i : last checkpointed task before T_j
- T_i can be replicated or not
- T_{i+1} can be replicated or not
- $T_{NC}^{A,B}$: no intermediate checkpoint, first/last task replicated or not, previous task checkpointed
- Similar equation for $T_{opt}^{norep}(j)$

$$T_{NC}^{A,B}(i,j) = \min\left\{T_{NC}^{A,rep}(i,j-1), T_{NC}^{A,norep}(i,j-1)\right\} + T^{A,B}(j \mid i)$$

\$\mathcal{T}^{A,B}(j | i)\$: time needed to execute task \$\mathcal{T}_j\$, knowing that a failure during \$\mathcal{T}_i\$ implies to recover from \$\mathcal{T}_i\$:

$$\begin{aligned} T^{A,norep}(j \mid i) &= \left(1 - e^{-\lambda T_j^{norep}}\right) \left(T_{lost}^{norep}(T_j^{norep}) + D + R_i^A \\ + \min\left\{T_{NC}^{A,rep}(i,j-1), T_{NC}^{A,norep}(i,j-1)\right\} + T^{A,norep}(j \mid i)\right) \\ &+ e^{-\lambda T_j^{norep}}\left(T_j^{norep}\right) \end{aligned}$$

$$T^{A,rep}(j \mid i) = \left(1 - e^{-\frac{\lambda \tau_j^{rep}}{2}}\right)^2 \left(T_{lost}^{rep}(T_j^{rep}) + D + R_i^A\right)$$
$$+ \min\left\{T_{NC}^{A,rep}(i, j-1), T_{NC}^{A,norep}(i, j-1)\right\} + T^{A,rep}(j \mid i)$$
$$+ \left(1 - \left(1 - e^{-\frac{\lambda \tau_j^{rep}}{2}}\right)^2\right) \left(T_j^{rep}\right)$$

э

(B)

Introduction	Model	DP Algo	Experiments	Conclusion
Complexity				

- Compute $O(n^2)$ intermediate values $T^{A,B}(j \mid i)$ and $T^{A,B}_{NC}(i,j)$ for $1 \le i, j \le n$ and $A, B \in \{rep, norep\}$
- Each of these take constant time
- O(n) values $T^{A}_{opt}(i)$, for $1 \le i \le n$ and $A \in \{rep, norep\}$
- Minimum over at most 6n elements: O(n)
- Overall complexity: $O(n^2)$

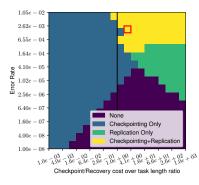
Introduction	Model	DP Algo	Experiments	Conclusion
Outline				

- Model and objective
- 2 Optimal dynamic programming algorithm

э

(B)

Introduction	Model	DP Algo	Experiments	Conclusion
Experimental	setup			


- Total work: W = 10,000 seconds
- Fully parallel tasks: $\alpha_i = 0$ (worst case for replication)
- Five work distributions:
 - UNIFORM: Identical tasks, $\frac{W}{n}$
 - INCREASING: length increases: $i \frac{2W}{n(n+1)}$
 - DECREASING: length decreases: $(n i + 1)\frac{2W}{n(n+1)}$
 - HIGHLOW: [ⁿ/₁₀] big tasks (60% of work) followed by small tasks
 - RANDOM: random lengths between $\frac{W}{2n}$ and $\frac{3W}{2n}$, reduced if it exceeds W

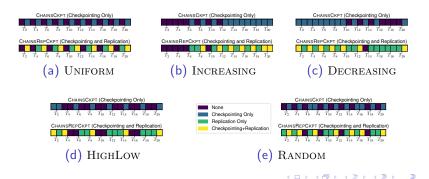
•
$$C_i^{rep} = \alpha C_i^{norep}$$
 and $R_i^{rep} = \alpha R_i^{norep}$, where $1 \le \alpha \le 2$

 Introduction
 Model
 DP Algo
 Experiments
 Conclusion

 Comparison to checkpoint only

- UNIFORM distribution
- Reports occ. of checkpoints and replicas in optimal solution
- Checkpointing cost \leq task length $\ \Rightarrow\$ no replication

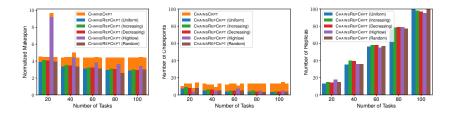
Model


DP Algo

Experiments

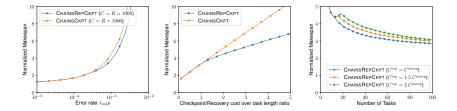
Conclusion

Optimal solutions with both strategies


- Scenario of the red square on the previous slide
- Less checkpoints when replication is used
- Optimal solution combines both techniques
- Rule of thumb: replication preferred for small tasks

 Introduction
 Model
 DP Algo
 Experiments
 Conclusion

 Comparison, different numbers of tasks


- \bullet Performance of ${\rm CHAINSREPCKPT}$ compared to ${\rm CHAINSCKPT}$
- Expensive checkpoints (limited to ≈ 17) \Rightarrow makespan of CHAINSCKPT remains constant
- $\bullet\ {\rm CHAINSREPCKPT}$ can replicate increasing number of small tasks

(日) (同) (三) (三)

- Larger error rate \Rightarrow using replication helps
- Replication not needed for small checkpointing costs
- Replication more efficient when no increase in checkpoint cost

(日) (同) (三) (三)

- With increasing number of processors and variable checkpointing costs: improvement up to 80.5% with p = 10,000 processors
- Impact of number of checkpoints and replicas: the optimal solution always matches minimum value obtained in simulations
- When both checkpointing cost and error rate are high, small deviation from optimal solution leads to large overhead

Introduction	Model	DP Algo	Experiments	Conclusion
Outline				

- Model and objective
- 2 Optimal dynamic programming algorithm
- 3 Experiments

э

Introduction	Model	DP Algo	Experiments	Conclusion
Conclusion				

- Combination of checkpointing and replication
- Goal: Minimize execution time of linear workflows
- Decide which task to checkpoint and/or replicate
- Sophisticated dynamic programming algorithm: optimal solution
- Experiments: Gain over checkpoint-only approach quite significant, when checkpoint is costly and error rate is high
- Extend to more complicated workflows
- Experiments on real application workflows
- Cope with silent errors as well as fail-stop errors

Introduction	Model	DP Algo	Experiments	Conclusion
Conclusion				

- Combination of checkpointing and replication
- Goal: Minimize execution time of linear workflows
- Decide which task to checkpoint and/or replicate
- Sophisticated dynamic programming algorithm: optimal solution
- Experiments: Gain over checkpoint-only approach quite significant, when checkpoint is costly and error rate is high
- Extend to more complicated workflows
- Experiments on real application workflows
- Cope with silent errors as well as fail-stop errors