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Introduction Models Complexity results Conclusion

Introduction and motivation

Schedule an application onto a computational platform, with
some criteria to optimize

Target application
Streaming application (workflow, pipeline): several data sets
are processed by a set of tasks (or pipeline stages)
Linear chain application: linear dependencies between tasks
Extensions: filtering services, general DAGs, more complex
applications, ...

Target platform
ranking from fully homogeneous to fully heterogeneous
completely interconnected, subject to failures
emphasis on different communication models (overlap or not,
one- vs multi-port)

Optimization criteria
period (inverse of throughput) and latency (execution time)
reliability, and also energy, stretch, ...
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Introduction Models Complexity results Conclusion

Linear chain pipelined applications

Several consecutive data sets enter the application graph.

Multi-criteria to optimize?

Period P: time interval between the beginning of execution of two
consecutive data sets (inverse of throughput)

Latency L: maximal time elapsed between beginning and end of
execution of a data set

Reliability: inverse of F , probability of failure of the application
(i.e. some data sets will not be processed)
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Outline

1 Models
Application model
Platform and communication models
Multi-criteria mapping problems

2 Complexity results
Mono-criterion problems
Bi-criteria problems

3 Conclusion
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Application model

Set of n application stages

Computation cost of stage Si : wi

Pipelined: each data set must be processed by all stages

Linear dependencies between stages

wi

... ...S2 SnS1

w1 w2 wn

δ0 δ1 δnδi−1 δi
Si
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Application model: communication costs

Two dependent stages Si → Si+1:
data must be transferred from Si to Si+1

Fixed data size δi , communication cost to pay only if Si and
Si+1 are mapped onto different processors
(i.e., no cost on blue arrow in the example)

0
S2S1

w1 w2

δ0 δ1

P3

P1

P2

S3

w3

δ3

w4

δ4
S4
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Platform model

Pin Pout

Pu Pv

Pp

P1

su svbu,v

bin,u bv,out

p + 2 processors Pu, 0 ≤ u ≤ p + 1

P0 = Pin: input data – Pp+1 = Pout : output data

P1 to Pp: fully interconnected (clique)

su: speed of processor Pu, 1 ≤ u ≤ p, liner cost model

bidirectional link linku,v : Pu → Pv , bandwidth bu,v

Bi
u / Bo

u: input/output network card capacity
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Introduction Models Complexity results Conclusion

Platform model: classification

Fully Homogeneous – Identical processors (su = s) and
homogeneous communication devices
(bu,v = b,Bi

u = Bi ,Bo
u = Bo):

typical parallel machines

Communication Homogeneous – Homogeneous communication
devices but different-speed processors (su 6= sv ):
networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures:
hierarchical platforms, grids
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Platform model: unreliable processors

fu: failure probability of processor Pu

independent of the duration of the application: global indicator
of processor reliability
steady-state execution: loan/rent resources, cycle-stealing
fail-silent/fail-stop, no link failures (use different paths)

Failure Homogeneous– Identically reliable processors
(fu = fv ), natural with Fully Homogeneous

Failure Heterogeneous – Different failure probabilities
(fu 6= fv ), natural with Communication Homogeneous and
Fully Heterogeneous
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Platform model: communications, a bit of history

Classical communication model in scheduling works:
macro-dataflow model

cost(T ,T ′) =

{
0 if alloc(T ) = alloc(T ′)
comm(T ,T ′) otherwise

Task T communicates data to successor task T ′

alloc(T ): processor that executes T ; comm(T ,T ′): defined
by the application specification

Two main assumptions:

(i) communication can occur as soon as data are available
(ii) no contention for network links

(i) is reasonable, (ii) assumes infinite network resources!
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Platform model: one-port without overlap

no overlap: at each time step, either computation or
communication

one-port: each processor can either send or receive to/from a
single other processor any time step it is communicating
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time

P1

P2

S1 S2

P1 P2

in(1) c(1) out(1)

in(1) c(1) out(1)

in(2) c(2) out(2)

in(2) c(2) out(2)
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Platform model: bounded multi-port with overlap

overlap: a processor can simultaneously compute and
communicate

bounded multi-port: simultaneous send and receive, but
bound on the total outgoing/incoming communication
(limitation of network card)
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Platform model: communication models

Multi-port: if several non-consecutive stages mapped onto a
same processor, several concurrent communications

Matches multi-threaded systems

Fits well together with overlap

One-port: radical option, where everything is serialized

Natural to consider it without overlap

Other communication models: more complicated such as
bandwidth sharing protocols.

Too complicated for algorithm design.

Two considered models: good trade-off realism/tractability
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Multi-criteria mapping problems

Goal: assign application stages to platform processors in order
to optimize some criteria

Define stage types and replication mechanisms

Establish rule of the game

Define optimization criteria

Define and classify optimization problems
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Introduction Models Complexity results Conclusion

Mapping: stage types and replication

Monolithic stages: must be mapped on one single processor
since computation for a data set may depend on result of
previous computation

Dealable stages: can be replicated on several processors, but
not parallel, i.e. a data set must be entirely processed on a
single processor (distribute work)

Data-parallel stages: inherently parallel stages, one data set
can be computed in parallel by several processors (partition
work)

Replicating for failures: one data set is processed several times
on different processors (redundant work)
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Mapping strategies: rule of the game

Map each application stage onto one or more processors

First simple scenario with no replication

Allocation function a : [1..n]→ [1..p]

a(0) = 0 (= in) and a(n + 1) = p + 1 (= out)

Several mapping strategies

... ...S2 Sk SnS1

The pipeline application
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First simple scenario with no replication

Allocation function a : [1..n]→ [1..p]

a(0) = 0 (= in) and a(n + 1) = p + 1 (= out)

Several mapping strategies

... ...S2 Sk SnS1

One-to-one Mapping: a is a one-to-one function, n ≤ p
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Mapping strategies: rule of the game

Map each application stage onto one or more processors

First simple scenario with no replication

Allocation function a : [1..n]→ [1..p]

a(0) = 0 (= in) and a(n + 1) = p + 1 (= out)

Several mapping strategies

... ...S2 Sk SnS1

Interval Mapping: partition into m ≤ p intervals Ij = [dj , ej ]
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Mapping strategies: rule of the game

Map each application stage onto one or more processors

First simple scenario with no replication

Allocation function a : [1..n]→ [1..p]

a(0) = 0 (= in) and a(n + 1) = p + 1 (= out)

Several mapping strategies

... ...S2 Sk SnS1

General Mapping: Pu is assigned any subset of stages

Anne.Benoit@ens-lyon.fr ASTEC, June 2, 2009 Scheduling pipelined applications 17/ 45



Introduction Models Complexity results Conclusion

Mapping strategies: adding replication

Allocation function: a(i) is a set of processor indices

Set partitioned into ti teams, each processor within a team is
allocated the same piece of work

Teams for stage Si : Ti ,1, . . . ,Ti ,ti (1 ≤ i ≤ n)

Monolithic stage: single team ti = 1 and |Ti ,1| = |a(i)|;
replication only for reliability if |a(i)| > 1

Dealable stage: each team = one round of the deal;
typei = deal

Data-parallel stage: each team = computation of a fraction of
each data set; typei = dp

Extend mapping rules with replication, same teams for an
interval or a subset of stages; no fully general mappings
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Mapping: objective function

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F
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Mapping: objective function

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F

Multi-criteria

How to define it?
Minimize α.P + β.L+ γ.F?
Values which are not comparable
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Mapping: objective function

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F

Multi-criteria

How to define it?
Minimize α.P + β.L+ γ.F?
Values which are not comparable

Minimize P for a fixed latency and failure
Minimize L for a fixed period and failure
Minimize F for a fixed period and latency
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Mapping: objective function

Mono-criterion

Minimize period P (inverse of throughput)
Minimize latency L (time to process a data set)
Minimize application failure probability F

Bi-criteria

Period and Latency:
Minimize P for a fixed latency
Minimize L for a fixed period

And so on...
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Formal definition of period and latency

Allocation function: characterizes a mapping

Not enough information to compute the actual schedule of the
application = the moment at which each operation takes place

Time steps at which comm and comp begin and end

Cyclic schedules which repeat for each data set (period λ)

No deal replication: Si , u ∈ a(i), v ∈ a(i + 1), data set k
BeginCompk

i,u/EndCompk
i,u = time step at which comp of Si

on Pu for data set k begins/ends
BeginCommk

i,u,v/EndCommk
i,u,v = time step at which comm

between Pu and Pv for output of Si for k begins/ends
BeginCompk

i,u = BeginComp0
i,u + λ× k

EndCompk
i,u = EndComp0

i,u + λ× k

BeginCommk
i,u,v = BeginComm0

i,u,v + λ× k

EndCommk
i,u,v = EndComm0

i,u,v + λ× k
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Formal definition of period and latency: operation list

Given communication model: set of rules to have a
valid operation list

Non-preemptive models, synchronous communications

Period P = λ

Latency L = max{EndComm0
n,u,out | u ∈ a(n), }

With deal replication: extension of the definition, periodic
schedule rather than cyclic one

Most cases: formula to express period and latency, no need
for OL

Now, ready to describe optimization problems
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schedule rather than cyclic one

Most cases: formula to express period and latency, no need
for OL

Now, ready to describe optimization problems
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Introduction Models Complexity results Conclusion

One-to-one and interval mappings, no replication

Latency: max time required by a data set to traverse all stages

L(interval) =
X

1≤j≤m

(
δdj−1

ba(dj−1),a(dj )
+

Pej

i=dj
wi

sa(dj )

)
+

δn
ba(dm),out

Period: definition depends on comm model (different rules in
the OL), but always longest cycle-time of a processor:
P(interval) = max1≤j≤m cycletime(Pa(dj ))

One-port model without overlap:

P = max
1≤j≤m

{
δdj−1

ba(dj−1),a(dj )
+

∑ej

i=dj
wi

sa(dj )
+

δej

ba(dj ),a(ej +1)

}

Bounded multi-port model with overlap:
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„
δdj−1
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“
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Introduction Models Complexity results Conclusion

Adding replication for reliability

Each processor: failure probability 0 ≤ fu ≤ 1

m intervals, set of processors a(dj) for interval j

F (int−fp) = 1−
Y

1≤j≤m

`
1−

Y
u∈a(dj )

fu
´

Consensus protocol: one surviving processor performs all
outgoing communications

Worst case scenario: new formulas for latency and period

L(int−fp) =
X

u∈a(1)

δ0

bin,u
+
X

1≤j≤m

max
u∈a(dj )

8<:
Pej

i=dj
wi

su
+

X
v∈a(ej +1)

δej

bu,v

9=;
P(int−fp) = max

1≤j≤m
max
u∈a(dj )

8<: δdj−1

min
v∈a(dj−1)

bv,u
+

Pej

i=dj
wi

su
+

X
v∈a(ej +1)

δej

bu,v

9=;
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Introduction Models Complexity results Conclusion

Adding replication for period and latency

Dealable stages: replication of stage or interval of stages.

No latency decrease; period may decrease (less data sets per
processor)
No communication: period travi/k if Si onto k processors;
travi = wi

min1≤u≤k squ

With communications: cases with no critical resources
Latency: longest path, no conflicts between data sets

Data-parallel stages: replication of single stage

Both latency and period may decrease
travi = oi + wiPk

u=1 squ

Becomes very difficult with communications

⇒ Model with no communication!

Replication for performance + replication for reliability:
possible to mix both approaches, difficulties of both models
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Introduction Models Complexity results Conclusion

Moving to general mappings

Failure probability: definition in the general case easy to
derive (all kind of replication)

F (gen) = 1−
Y

1≤j≤m

Y
1≤k≤tdj

`
1−

Y
u∈Tdj ,k

fu
´

Latency: can be defined for Communication Homogeneous
platforms with no data-parallelism.

L(gen) =
X

1≤i≤n

„
max

1≤k≤ti


∆i |Ti,k |

δi−1

b
+

wi

minu∈Ti,k su

ff«
+
δn+1

b

∆i = 1 iff Si−1 and Si are in the same subset
Fully Heterogeneous: longest path computation (polynomial
time)
With data-parallel stages: can be computed only with no
communication and no start-up overhead

Anne.Benoit@ens-lyon.fr ASTEC, June 2, 2009 Scheduling pipelined applications 25/ 45



Introduction Models Complexity results Conclusion

Moving to general mappings

Failure probability: definition in the general case easy to
derive (all kind of replication)

F (gen) = 1−
Y

1≤j≤m

Y
1≤k≤tdj

`
1−

Y
u∈Tdj ,k

fu
´

Latency: can be defined for Communication Homogeneous
platforms with no data-parallelism.

L(gen) =
X

1≤i≤n

„
max

1≤k≤ti


∆i |Ti,k |

δi−1

b
+

wi

minu∈Ti,k su

ff«
+
δn+1

b

∆i = 1 iff Si−1 and Si are in the same subset
Fully Heterogeneous: longest path computation (polynomial
time)
With data-parallel stages: can be computed only with no
communication and no start-up overhead

Anne.Benoit@ens-lyon.fr ASTEC, June 2, 2009 Scheduling pipelined applications 25/ 45



Introduction Models Complexity results Conclusion

Moving to general mappings

Period: case with no replication for period and latency

Bounded multi-port model with overlap

Period = maximum cycle-time of processors
Communications in parallel: No conflicts
input coms on data sets k1 + 1, . . . , k` + 1; computes on
k1, . . . , k`, outputs k1 − 1, . . . , k` − 1

P(gen−mp) = max1≤j≤m max u∈a(dj )

(

max

 
max

i∈stagesj
max

v∈a(i−1)
∆i

δi−1

bv,u
,

P
i∈stagesj

∆i
δi−1

Bi
u

,

P
i∈stagesj

wi

su
,

max
i∈stagesj

max
v∈a(i+1)

∆i+1
δi

bu,v
,

P
i∈stagesj

∆i+1
δi
Bo

u

!)

Without overlap: conflicts similar to case with replication;
NP-hard to decide how to order coms
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Introduction Models Complexity results Conclusion

Outline

1 Models
Application model
Platform and communication models
Multi-criteria mapping problems

2 Complexity results
Mono-criterion problems
Bi-criteria problems

3 Conclusion

Anne.Benoit@ens-lyon.fr ASTEC, June 2, 2009 Scheduling pipelined applications 27/ 45



Introduction Models Complexity results Conclusion

Failure probability

Turns out simple for interval and general mappings: minimum
reached by replicating the whole pipeline as a single interval
consisting in a single team on all processors: F =

∏p
u=1 fu

One-to-one mappings: polynomial for Failure Homogeneous
platforms (balance number of processors to stages), NP-hard
for Failure Heterogeneous platforms (3-PARTITION with n
stages and 3n processors)

F Failure-Hom. Failure-Het.

One-to-one polynomial NP-hard

Interval polynomial

General polynomial
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Introduction Models Complexity results Conclusion

Latency

Replication of dealable stages, replication for reliability: no
impact on latency

No data-parallelism: reduce communication costs

Fully Homogeneous and Communication Homogeneous
platforms: map all stages onto fastest processor (1 interval);
one-to-one mappings: most computationally expensive stages
onto fastest processors (greedy algorithm)

Fully Heterogeneous platforms: problem of input/output
communications: may need to split interval
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Introduction Models Complexity results Conclusion

Latency

Fully Heterogeneous platforms: NP-hard for one-to-one and
interval mappings (involved reductions), polynomial for
general mappings (shortest paths)

With data-parallelism: model with no communication;
polynomial with same speed processors (dynamic
programming algorithm), NP-hard otherwise (2-PARTITION)

L Fully Hom. Comm. Hom. Hetero.

no DP, One-to-one polynomial NP-hard

no DP, Interval polynomial NP-hard

no DP, General polynomial

with DP, no coms polynomial NP-hard
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Introduction Models Complexity results Conclusion

Period - Example with no comm, no replication

S1 → S2 → S3 → S4

2 1 3 4

2 processors (P1 and P2) of speed 1

Optimal period?
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2 1 3 4

P1 of speed 2, and P2 of speed 3

Optimal period?
P = 5, S1S3 → P1, S2S4 → P2

Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?
P = 6, S1S2S3 → P1, S4 → P2 – Polynomial algorithm?
Classical chains-on-chains problem, dynamic programming works

Heterogeneous platform?
P = 2, S1S2S3 → P2, S4 → P1

Heterogeneous chains-on-chains, NP-hard
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Introduction Models Complexity results Conclusion

Period - Complexity

P Fully Hom. Comm. Hom. Hetero.

One-to-one polynomial polynomial, NP-hard (rep) NP-hard

Interval polynomial NP-hard NP-hard

General NP-hard, poly (rep) NP-hard

With replication?

No change in complexity except one-to-one/com-hom (the
problem becomes NP-hard, reduction from 2-PARTITION,
enforcing use of data-parallelism) and general/full-hom (the
problem becomes polynomial)
Other NP-completeness proofs remain valid
Fully homogeneous platforms: one interval replicated onto all
processors (works also for general mappings); greedy
assignment for one-to-one mappings
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Introduction Models Complexity results Conclusion

Impact of communication models
1→ S1

4→ S2
4→ S3

1→ S4
1→

2 1 3 4

2 processors of speed 1

Without overlap: optimal period and latency?

General mappings: too difficult to handle in this case (no formula
for latency and period) → restrict to interval mappings

P = 8: S1S2S3 → P1, S4 → P2

L = 12: S1S2S3S4 → P1
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Impact of communication models
1→ S1

4→ S2
4→ S3

1→ S4
1→

2 1 3 4

2 processors of speed 1
With overlap: optimal period?
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Impact of communication models
1→ S1

4→ S2
4→ S3

1→ S4
1→

2 1 3 4

2 processors of speed 1
With overlap: optimal period?

P = 5, S1S3 → P1, S2S4 → P2

Perfect load-balancing both for computation and comm
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Impact of communication models
1→ S1

4→ S2
4→ S3

1→ S4
1→

2 1 3 4

2 processors of speed 1
With overlap: optimal period?

P = 5, S1S3 → P1, S2S4 → P2

Optimal latency?

With only one processor, L = 12

No internal communication to pay
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Impact of communication models
1→ S1

4→ S2
4→ S3

1→ S4
1→

2 1 3 4

2 processors of speed 1
With overlap: optimal period?
P = 5, S1S3 → P1, S2S4 → P2

Optimal latency?
Same mapping as above: L = 21 with no period constraint
P = 21, no conflicts

Pin → P1 0 0 0
P1 1 2 1 2/12 13 14
P1 → P2 3 4 5 6 15
P2 → P1 8 9 10 11
P2 7 16 17 18 19
P2 → Pout 20
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Impact of communication models
1→ S1

4→ S2
4→ S3

1→ S4
1→

2 1 3 4

2 processors of speed 1
With overlap: optimal period?
P = 5, S1S3 → P1, S2S4 → P2

Optimal latency?with P = 5?
Progress step-by-step in the pipeline → no conflicts

K = 4 processor changes, L = (2K + 1).P = 9P = 45
. . . period k period k + 1 period k + 2 . . .

in→ P1 . . . ds(k) ds(k+1) ds(k+2) . . .

P1 . . . ds(k−1), ds(k−5) ds(k), ds(k−4) ds(k+1), ds(k−3) . . .

P1 → P2 . . . ds(k−2), ds(k−6) ds(k−1), ds(k−5) ds(k), ds(k−4) . . .

P2 → P1 . . . ds(k−4) ds(k−3) ds(k−2) . . .

P2 . . . ds(k−3), ds(k−7) ds(k−2), ds(k−6) ds(k−1), ds(k−5) . . .

P2 → out . . . ds(k−8) ds(k−7) ds(k−6) . . .
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Introduction Models Complexity results Conclusion

Bi-criteria period/latency

Most problems NP-hard because of period

Dynamic programming algorithm for fully homogeneous
platforms

Integer linear program for interval mappings, fully
heterogeneous platforms, bi-criteria, without overlap

Variables:

Obj : period or latency of the pipeline, depending on the
objective function
xi,u: 1 if Si on Pu (0 otherwise)
zi,u,v : 1 if Si on Pu and Si+1 on Pv (0 otherwise)
firstu and lastu: integer denoting first and last stage assigned
to Pu (to enforce interval constraints)
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Introduction Models Complexity results Conclusion

Linear program: constraints

Constraints on processors and links:

∀i ∈ [0..n + 1],
∑

u xi,u = 1

∀i ∈ [0..n],
∑

u,v zi,u,v = 1

∀i ∈ [0..n],∀u, v ∈ [0..p + 1], xi,u + xi+1,v ≤ 1 + zi,u,v

Constraints on intervals:

∀i ∈ [1..n], ∀u ∈ [1..p], firstu ≤ i .xi ,u + n.(1− xi ,u)

∀i ∈ [1..n], ∀u ∈ [1..p], lastu ≥ i .xi ,u

∀i ∈ [1..n− 1], ∀u, v ∈ [1..p], u 6= v ,
lastu ≤ i .zi ,u,v + n.(1− zi ,u,v )

∀i ∈ [1..n− 1], ∀u, v ∈ [1..p], u 6= v , firstv ≥ (i + 1).zi ,u,v
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Linear program: constraints

∀u ∈ [1..p],
nX

i=1

8<:
0@X

t 6=u

δi−1

b
zi−1,t,u

1A+
wi

su
xi,u +

0@X
v 6=u

δi
b

zi,u,v

1A9=; ≤ P
pX

u=1

nX
i=1

240@ X
t 6=u,t∈[0..p+1]

δi−1

b
zi−1,t,u

1A+
wi

su
xi,u

35+

0@ X
u∈[0..p]

δn
b

zn,u,out

1A ≤ L

Min period with fixed latency

Obj = P

L is fixed

Min latency with fixed period

Obj = L

P is fixed
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Introduction Models Complexity results Conclusion

Other multi-criteria problems

Latency/reliability: two “easy” instances, polynomial
bi-criteria algorithms, single interval often optimal

Reliability/period: mixes difficulties, period often NP-hard and
reliability strongly non-linear

Tri-criteria: even more difficult

Experimental approach, design of polynomial heuristics for
such difficult problem instances
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Introduction Models Complexity results Conclusion

Outline

1 Models
Application model
Platform and communication models
Multi-criteria mapping problems

2 Complexity results
Mono-criterion problems
Bi-criteria problems

3 Conclusion
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Related work

Subhlok and Vondran– Pipeline on hom platforms: extended

Chains-to-chains– Heterogeneous, replicate/data-parallelize

Qishi Wu et al– Directed platform graphs (WAN); unbounded
multi-port with overlap; mono-criterion problems

Mapping pipelined computations onto clusters and grids– DAG
[Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations– [Melhem et
al.], three-criteria optimization

Scheduling task graphs on heterogeneous platforms– Acyclic task
graphs scheduled on different speed processors
[Topcuoglu et al.]. Communication contention:
one-port model [Beaumont et al.]

Mapping pipelined computations onto special-purpose architectures–
FPGA arrays [Fabiani et al.]. Fault-tolerance for
embedded systems [Zhu et al.]
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Introduction Models Complexity results Conclusion

Conclusion

Definition of the ingredients of scheduling: applications,
platforms, multi-criteria mappings

Surprisingly difficult problems: given a mapping, how to order
communications to obtain the optimal period?

Replication for performance and general mappings add one
level of difficulty

Cases in which application throughput not dictated by a
critical resource

Full mono-criterion complexity study, hints of multi-criteria
complexity results, linear program formulation
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Introduction Models Complexity results Conclusion

Extension to dynamic platforms

How to handle uncertainties?

Markovian-based model to compute the throughput of a given
mapping with PEPA, performance evaluation process algebra
(Murray Cole, Jane Hillston, Stephen Gilmore)

More accurate capture of the behavior with non-markovian
model based on timed Petri nets: identification of non-critical
resource cases (Matthieu Gallet, Bruno Gaujal, YR)

Failure probability related to time: problems become
incredibly difficult (Arny Rosenberg, Frederic Vivien, YR)
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Extension to more complex applications

Web service applications with filtering property on stages:
same challenges as for standard pipelined applications (Fanny
Dufossé, YR)

Results extended for fork or fork-join graphs, additional
complexity for general DAGs (YR, Mourad Hakem)

More complex problems of replica placement optimization,
and in-network stream processing application (Veronika
Rehn-Sonigo, YR)
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Introduction Models Complexity results Conclusion

Future work

Experiments on linear chain applications: design of
multi-criteria heuristics and experiments on real applications
such as a pipelined-version of MPEG-4 encoder (Veronika,
YR)

Other research directions on linear chains:

Complexity of period and latency minimization once a mapping
is given (Loic Magnan, Kunal Agrawal, YR)
Multi-application setting and energy minimization (Paul
Renaud-Goud, YR)
Trade-offs between replication for reliability and deal
replication (Loris Marchal, Oliver Sinnen)

New applications: Filtering applications (Fanny Dufossé, YR),
micro-factories with task failures (Alexandru Dobrila et al)
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Introduction Models Complexity results Conclusion

Future work

Dynamic platforms and variability

Many challenges and open problems

StochaGrid and ALEAE projects

Adding non-determinism to the timed Petri net model

Extend work with more sophisticated failure model to
heterogeneous platforms

Come up with a good and realistic model for platform failure
and variability
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