
Co-scheduling HPC workloads
on cache-partitioned CMP platforms

Anne Benoit
ENS Lyon, France & Georgia Tech, USA

Anne.Benoit@ens-lyon.fr

Joint work with Guillaume Aupy, Yves Robert,
Brice Goglin and Loic Pottier

CCDSC 2018 - La Maison des Contes, France
September 4-7, 2018

My 10th year anniversary as well, thanks Jack & Bernard ,

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 1 / 20

Anne.Benoit@ens-lyon.fr
Anne.Benoit@ens-lyon.fr


Why co-scheduling?

Chip multiprocessors (CMP): increasing number of cores
Most of parallel applications are not perfectly parallel
(communication overhead, etc)
Large-scale simulations: in-situ and in-transit processing
problematics, i.e., simulations and data analysis are running
concurrently

Solution: increase platform efficiency by concurrently scheduling
parallel applications! ,

Co-Scheduling [Ousterhout, 1982]: Execute multiple
tasks at the same time on the same platform, in
order to maximize platform throughput

time0

p

T2

T3

T1

But the remedy comes with complications: co-run degradation /

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 2 / 20

Anne.Benoit@ens-lyon.fr


Why co-scheduling?

Chip multiprocessors (CMP): increasing number of cores
Most of parallel applications are not perfectly parallel
(communication overhead, etc)
Large-scale simulations: in-situ and in-transit processing
problematics, i.e., simulations and data analysis are running
concurrently

Solution: increase platform efficiency by concurrently scheduling
parallel applications! ,

Co-Scheduling [Ousterhout, 1982]: Execute multiple
tasks at the same time on the same platform, in
order to maximize platform throughput

time0

p

T2

T3

T1

But the remedy comes with complications: co-run degradation /

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 2 / 20

Anne.Benoit@ens-lyon.fr


Why co-scheduling?

Chip multiprocessors (CMP): increasing number of cores
Most of parallel applications are not perfectly parallel
(communication overhead, etc)
Large-scale simulations: in-situ and in-transit processing
problematics, i.e., simulations and data analysis are running
concurrently

Solution: increase platform efficiency by concurrently scheduling
parallel applications! ,

Co-Scheduling [Ousterhout, 1982]: Execute multiple
tasks at the same time on the same platform, in
order to maximize platform throughput

time0

p

T2

T3

T1

But the remedy comes with complications: co-run degradation /

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 2 / 20

Anne.Benoit@ens-lyon.fr


Why partitioning the cache?

In CMP caches, prefetching units are shared between cores
Multiple applications (i.e., co-schedule) running on a CMP
may create interferences on shared resources
This work only focuses on interferences at the last-level cache

Core1 Core2 Core3

Last Level Cache (LLC)

Main Memory (DRAM)

Core1 Core2 Core3

Last Level Cache (LLC)

The proposed solution is to use a cache-partitioning approach

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 3 / 20

Anne.Benoit@ens-lyon.fr


Why partitioning the cache?

In CMP caches, prefetching units are shared between cores
Multiple applications (i.e., co-schedule) running on a CMP
may create interferences on shared resources
This work only focuses on interferences at the last-level cache

Core1 Core2 Core3

Last Level Cache (LLC)

Main Memory (DRAM)

Core1 Core2 Core3

Last Level Cache (LLC)Last Level Cache (LLC)

The proposed solution is to use a cache-partitioning approach

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 3 / 20

Anne.Benoit@ens-lyon.fr


Why partitioning the cache?

In CMP caches, prefetching units are shared between cores
Multiple applications (i.e., co-schedule) running on a CMP
may create interferences on shared resources
This work only focuses on interferences at the last-level cache

Core1 Core2 Core3

Last Level Cache (LLC)

Main Memory (DRAM)

Core1 Core2 Core3

Last Level Cache (LLC)Last Level Cache (LLC)

The proposed solution is to use a cache-partitioning approach

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 3 / 20

Anne.Benoit@ens-lyon.fr


Optimization problem

Execute m iterative applications A1, . . . ,Am on P identical cores

These P cores are sharing a cache of size C

This cache of size C can be divided into X slices (cache fractions)

How many cores and how many cache fractions should we give to
each application for an efficient execution and use of the platform?

What we can play on:
pi : number of cores on which application Ai is executed
xi : number of cache fractions assigned to Ai

Constraints:∑m
i=1 pi = P∑m
i=1 xi = X

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 4 / 20

Anne.Benoit@ens-lyon.fr


Optimization problem

Execute m iterative applications A1, . . . ,Am on P identical cores

These P cores are sharing a cache of size C

This cache of size C can be divided into X slices (cache fractions)

How many cores and how many cache fractions should we give to
each application for an efficient execution and use of the platform?

What we can play on:
pi : number of cores on which application Ai is executed
xi : number of cache fractions assigned to Ai

Constraints:∑m
i=1 pi = P∑m
i=1 xi = X

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 4 / 20

Anne.Benoit@ens-lyon.fr


Optimization problem

Execute m iterative applications A1, . . . ,Am on P identical cores

These P cores are sharing a cache of size C

This cache of size C can be divided into X slices (cache fractions)

How many cores and how many cache fractions should we give to
each application for an efficient execution and use of the platform?

What we can play on:
pi : number of cores on which application Ai is executed
xi : number of cache fractions assigned to Ai

Constraints:∑m
i=1 pi = P∑m
i=1 xi = X

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 4 / 20

Anne.Benoit@ens-lyon.fr


Execution time

Amdahl’s law [1967]: ti (pi ) = siT seq
i + (1− si )

T seq
i
pi

, where
si is the sequential fraction of Ai (0 = perfectly parallel)
T seq

i is the sequential computation time of Ai
pi is the number of cores used by Ai

Time further impacted by cache misses: slowdown based on
Power Law of cache misses [Harstein’08]; cache miss ratio r of
a cache of size Cact expressed as r = r0

(
C0

Cact

)α
, where

r0 is the cache miss ratio for a baseline cache of size C0
α is a parameter ranging from 0.3 to 0.7 (α = 0.5)

Overall, Ti (pi , xi ) =
(

siT seq
i + (1− si )

T seq
i
pi

)
︸ ︷︷ ︸

Computations

×
(

ci + bi√xi

)
︸ ︷︷ ︸

Slowdown
xi is the fraction of cache given to Ai
bi and ci are some constants pertaining to Ai

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 5 / 20

Anne.Benoit@ens-lyon.fr


Execution time

Amdahl’s law [1967]: ti (pi ) = siT seq
i + (1− si )

T seq
i
pi

, where
si is the sequential fraction of Ai (0 = perfectly parallel)
T seq

i is the sequential computation time of Ai
pi is the number of cores used by Ai

Time further impacted by cache misses: slowdown based on
Power Law of cache misses [Harstein’08]; cache miss ratio r of
a cache of size Cact expressed as r = r0

(
C0

Cact

)α
, where

r0 is the cache miss ratio for a baseline cache of size C0
α is a parameter ranging from 0.3 to 0.7 (α = 0.5)

Overall, Ti (pi , xi ) =
(

siT seq
i + (1− si )

T seq
i
pi

)
︸ ︷︷ ︸

Computations

×
(

ci + bi√xi

)
︸ ︷︷ ︸

Slowdown
xi is the fraction of cache given to Ai
bi and ci are some constants pertaining to Ai

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 5 / 20

Anne.Benoit@ens-lyon.fr


Execution time

Amdahl’s law [1967]: ti (pi ) = siT seq
i + (1− si )

T seq
i
pi

, where
si is the sequential fraction of Ai (0 = perfectly parallel)
T seq

i is the sequential computation time of Ai
pi is the number of cores used by Ai

Time further impacted by cache misses: slowdown based on
Power Law of cache misses [Harstein’08]; cache miss ratio r of
a cache of size Cact expressed as r = r0

(
C0

Cact

)α
, where

r0 is the cache miss ratio for a baseline cache of size C0
α is a parameter ranging from 0.3 to 0.7 (α = 0.5)

Overall, Ti (pi , xi ) =
(

siT seq
i + (1− si )

T seq
i
pi

)
︸ ︷︷ ︸

Computations

×
(

ci + bi√xi

)
︸ ︷︷ ︸

Slowdown
xi is the fraction of cache given to Ai
bi and ci are some constants pertaining to Ai

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 5 / 20

Anne.Benoit@ens-lyon.fr


Optimization problem

Time to compute one iteration of Ai , given pi and xi

CoSched-CachePart: maximize the weighted throughput
in-situ and in-transit mentioned in introduction: we do not
want data analysis phase slowing down the simulation

βi denotes the weight of application Ai , i.e., the number of
times that we should execute Ai at each iteration step
For instance, A1 and A2 with β1 = 1

4 and β2 = 1:
we execute A1 only once every four steps
we execute A2 at each step, hence four executions of A2 for
one execution of A1

Note that (β1 = 1
4 , β2 = 1) is equivalent to (β1 = 1, β2 = 4)

Maximize min
1≤i≤m

{ 1
βiTi (pi , xi )

}
subject to

{ ∑m
i=1 pi = P∑m
i=1 xi = X

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 6 / 20

Anne.Benoit@ens-lyon.fr


Optimization problem

Time to compute one iteration of Ai , given pi and xi

CoSched-CachePart: maximize the weighted throughput
in-situ and in-transit mentioned in introduction: we do not
want data analysis phase slowing down the simulation

βi denotes the weight of application Ai , i.e., the number of
times that we should execute Ai at each iteration step
For instance, A1 and A2 with β1 = 1

4 and β2 = 1:
we execute A1 only once every four steps
we execute A2 at each step, hence four executions of A2 for
one execution of A1

Note that (β1 = 1
4 , β2 = 1) is equivalent to (β1 = 1, β2 = 4)

Maximize min
1≤i≤m

{ 1
βiTi (pi , xi )

}
subject to

{ ∑m
i=1 pi = P∑m
i=1 xi = X

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 6 / 20

Anne.Benoit@ens-lyon.fr


Optimization problem

Time to compute one iteration of Ai , given pi and xi

CoSched-CachePart: maximize the weighted throughput
in-situ and in-transit mentioned in introduction: we do not
want data analysis phase slowing down the simulation

βi denotes the weight of application Ai , i.e., the number of
times that we should execute Ai at each iteration step
For instance, A1 and A2 with β1 = 1

4 and β2 = 1:
we execute A1 only once every four steps
we execute A2 at each step, hence four executions of A2 for
one execution of A1

Note that (β1 = 1
4 , β2 = 1) is equivalent to (β1 = 1, β2 = 4)

Maximize min
1≤i≤m

{ 1
βiTi (pi , xi )

}
subject to

{ ∑m
i=1 pi = P∑m
i=1 xi = X

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 6 / 20

Anne.Benoit@ens-lyon.fr


Scheduling strategies: DP-CP
We can solve the CoSched-CachePart problem optimally,
with a dynamic programming algorithm ,
Theorem 1
CoSched-CachePart can be solved in time O(mPX ), where m
is the number of applications, P is the number of processors, and
X is the number of different possible cache fractions.

T (i , q, c) is the maximum weighted throughput with A1, . . . ,Ai ,
using q cores and c fractions of cache:

T (i , q, c) =



max
1≤q1≤q
1≤c1≤c

1
β1T1(q1,c1) if i = 1,

max
1≤qi<q
1≤ci<c

{
min

{
T (i − 1, q − qi , c − ci ),

1
βi Ti (qi ,ci )

}}
otherwise.

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 7 / 20

Anne.Benoit@ens-lyon.fr


Scheduling strategies

DP-CP: optimal dynamic programming algorithm
Eq-CP: same number of cores and the same number of
cache fractions to each application:

First give pi =
⌊ P

m
⌋

and xi =
⌊X

m
⌋

to each Ai
Next give P mod m extra cores one by one to the first P
mod m applications; X mod m extra cache fractions one by
one to the last X mod m applications

DP-Equal: same number of cores as DP-CP, but shares
cache equally across applications as Eq-CP

Two variants where cache partitioning is disabled
(all applications access 100% of the LLC):

DP-NoCP uses the same number of cores as DP-CP
Eq-NoCP uses an equal-resource assignment as in Eq-CP

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 8 / 20

Anne.Benoit@ens-lyon.fr


Scheduling strategies

DP-CP: optimal dynamic programming algorithm
Eq-CP: same number of cores and the same number of
cache fractions to each application:

First give pi =
⌊ P

m
⌋

and xi =
⌊X

m
⌋

to each Ai
Next give P mod m extra cores one by one to the first P
mod m applications; X mod m extra cache fractions one by
one to the last X mod m applications

DP-Equal: same number of cores as DP-CP, but shares
cache equally across applications as Eq-CP

Two variants where cache partitioning is disabled
(all applications access 100% of the LLC):

DP-NoCP uses the same number of cores as DP-CP
Eq-NoCP uses an equal-resource assignment as in Eq-CP

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 8 / 20

Anne.Benoit@ens-lyon.fr


Experimental setup

Two Intel Xeon E5-2650L v4 Broadwell, 14 cores each,
Hyper-Threading disabled
35MB last-level cache divided into 20 slices
Vanilla 4.11.0 Linux kernel with cache partitioning enabled

Cache Allocation Technology (CAT): Provided by Intel to
partition the last-level cache (LLC)
Part of the Resource Director Technology (RDT)
Class of services (COS), with 4-bit capacity mask (CBM)

Example where first COS has 2 cores and 75% of LLC:

LLC
CBM1 = 1110 CBM2 = 0001

p1 p2

COS1

p3

COS2

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 9 / 20

Anne.Benoit@ens-lyon.fr


Model accuracy

Instantiate the model and check its accuracy
Three applications from NAS Parallel benchmarks with shared
memory (class=A): CG (conjugate gradients), MG (multi-grid
solve), FT (discrete 3D fast Fourier Transform)
ai , bi , and si are obtained by interpolation from the data
produced by measurements

Appi ai (= ci − 1) bi si

CG −0.0379 0.0474 0
MG 0.0460 0.0073 0.065
FT 0.0092 0.0129 0.016

Relative error defined as

Ei (pi , xi ) =

∣∣∣Ti (pi , xi )− T real
i (pi , xi )

∣∣∣
T real

i (pi , xi )
,

where T real
i (pi , xi ) is the measured execution time for Ai

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 10 / 20

Anne.Benoit@ens-lyon.fr


How to instantiate the model?

We need to find the three constants per application: si , ai and bi

We monitor each application with PAPI to record cache miss
ratio, execution time, etc
Each application Ai executes alone on a dedicated processor
to avoid perturbations

For si : we give 100% of the cache to the application Ai and
vary the number of cores from 1 to 14
For ai and bi : we record cache misses for 15% ≤ xi ≤ 85%
and 1 ≤ pi ≤ 14 (280 values used)

From these data, we use interpolation method to obtain the best
si , ai and bi for each Ai

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 11 / 20

Anne.Benoit@ens-lyon.fr


Model accuracy (cache fraction = 15% for the 1st figure)

CG FT MG

1 5 10 14 1 5 10 14 1 5 10 14

0.4

0.8

1.2

1

2

3

4

5

0.5

1.0

1.5

Number of cores

E
x
ec
u
ti
on

ti
m
e
(s
)

Measured Data Model

CG FT MG

0 5 10 15 0 5 10 15 0 5 10 15

25

50

75

25

50

75

25

50

75

Number of cores

F
ra
ct
io
n
of

ca
ch
e
(%

)

0.1

0.2

0.3

0.4

Error

The model is accurate, in particular with enough cache
fractions and not too many processors
Simplifying assumptions not completely true in practice
(cache misses independent of number of cores)

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 12 / 20

Anne.Benoit@ens-lyon.fr


Experimental results

We modified the main loop of NAS applications such that
each of them computes for a duration T
We ensure that each application reaches the steady state with
enough iterations (T = 3 minutes)
We use 12 cores instead of 14 to avoid rounding effects
The platform has two processors: one is used to run the
experiments, the other manages the experiments (cache
experiments are highly sensitive)

In this talk, we focus on CG and MG, since it is the most
interesting combination in terms of cache partitioning

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 13 / 20

Anne.Benoit@ens-lyon.fr


Results: Metrics

We measure the time for one iteration of Ai :

Ti = T
#iteri

where #iteri is the number of iterations of application Ai
during T .

Weighted throughput
We want to maximize:

min
i

1
βiTi

Distance to the optimal fairness (goal: all βiTi ’s equal)

∆fairness =
∑
i 6=j

∣∣∣∣∣βiTi
βjTj

− 1
∣∣∣∣∣

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 14 / 20

Anne.Benoit@ens-lyon.fr


Results: Impact of cache partitioning

800

900

1000

1100

1200

5% 25% 35% 50% 75% 95%
Fraction of cache

T
ot
al

n
u
m
b
er

o
f
it
er
a
ti
o
n
s

Cache partitioning Without cache partitioning

Figure: CG and MG (six cores each). Cache fraction of CG varying from 5% to 95%.

Cache partitioning can help! In particular when compute-intensive
and communication-intensive applications are co-scheduled

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 15 / 20

Anne.Benoit@ens-lyon.fr


Results with two applications

2

4

6

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

1

2

3

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure: Minimum throughput and ∆fairness for CG and MG.

DP-CP outperforms DP-NoCP, cache partitioning provides
a good performance improvement
DP-* have a ∆fairness close to zero, while EQ-* are further
from optimal fairness
Model accurate enough (analytical throughput from Ti (pi , xi ))

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 16 / 20

Anne.Benoit@ens-lyon.fr


Results with two applications (each with 6 cores)

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

1

2

3

4

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure: Minimum throughput and ∆fairness for CG and MG, where both applications
have six cores.

We can clearly see the impact of cache on performance here
(DP-CP is the best).
Up to 25% improvement when βmg < 1

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 17 / 20

Anne.Benoit@ens-lyon.fr


Results with three applications

1

2

3

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βMG

m
in
i

1
β
i
T
i

DP-CP
DP-Equal

DP-NoCP
Eq-CP

Eq-NoCP
Model Prediction

0

1

2

3

4

5

0.
25

0.
50

0.
75

1.
00

2.
00

3.
00

4.
00

βmg

∆
f
a
ir
n
e
s
s

DP-CP
DP-Equal

DP-NoCP
Eq-CP

EQ-NoCP
Model Prediction

Figure: Minimum throughput and ∆fairness for 2CG+MG.

DP-CP exhibits a gain around 15% on average over
DP-NoCP and DP-Equal!
Model even more accurate than with two applications

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 18 / 20

Anne.Benoit@ens-lyon.fr


Conclusion

Model for the execution time of each application
Instantiate the model on applications coming from the NAS
benchmarks
The model is accurate: comparison between predicted
execution time and measured execution time

Several scheduling strategies have been designed
Real experiments using CAT
In practice, optimal strategy often leads to better results than
equal sharing of resources or no cache partitioning

Which combinations of applications benefit most from cache
partitioning? Co-schedule of compute-intensive applications
(CG) with memory-intensive one (MG)

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 19 / 20

Anne.Benoit@ens-lyon.fr


Future work

Confirm the usefulness of cache partitioning on a larger
platform
Design a better interpolation strategy, capable of retro-fitting
a subset of the experimental data
Generalize the experiments to multiprocessors (moving
applications from one processor to another)

Anne.Benoit@ens-lyon.fr CCDSC’18 Co-scheduling on cache-partitioned platforms 20 / 20

Anne.Benoit@ens-lyon.fr

	Scheduling strategies
	Experimental setup
	Platform

	Model accuracy
	Results

