
Rigid jobs Moldable jobs Simulation results Conclusion

Resilient scheduling of parallel jobs

Anne Benoit

LIP, Ecole Normale Supérieure de Lyon, France

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/~abenoit/

CCDSC, September 6-9, 2022

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 1/ 25

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/


Rigid jobs Moldable jobs Simulation results Conclusion

Motivation

On large-scale HPC platforms:

Scheduling parallel jobs is important to improve application
performance and system utilization

Handling job failures is critical as failure/error rates increase
dramatically with size of system

We combine job scheduling and failure handling for moldable parallel jobs
running on large HPC platforms that are prone to failures

Cmax

t

Tasks

Machines

P1

P2

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 2/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Parallel job models

In the scheduling literature:

Rigid jobs: Processor allocation is fixed by the user and cannot be
changed by the system (i.e., fixed, static allocation)

Moldable jobs: Processor allocation is decided by the system but
cannot be changed once jobs start execution (i.e., fixed, dynamic
allocation)

Malleable jobs: Processor allocation can be dynamically changed
by the system during runtime (i.e., variable, dynamic allocation)

We focus on moldable jobs, because:

They can easily adapt to the amount of available resources
(contrarily to rigid jobs)

They are easy to design/implement (contrarily to malleable jobs)

Many computational kernels in scientific libraries are provided as
moldable jobs

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 3/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Scheduling model

n moldable jobs to be scheduled on P identical processors

Job j (1 ≤ j ≤ n): Choose processor allocation pj (1 ≤ pj ≤ P)

Execution time tj(pj) of each job j is a function of pj

Area is aj(pj) = pj × tj(pj)

Jobs are subject to arbitrary failure scenarios, which are unknown
ahead of time (i.e., semi-online)

Minimize the makespan (successful completion time of all jobs)

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 4/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Speedup models

Roofline model: tj(pj) =
wj

max(pj ,p̄j )
, for some 1 ≤ p̄j ≤ P

Communication model: tj(pj) =
wj

pj
+ (pj − 1)cj ,

where cj is the communication overhead

Amdahl’s model: tj(pj) = wj

(1−γj
pj

+ γj
)
,

where γj is the inherently sequential fraction

Monotonic model: tj(pj) ≥ tj(pj + 1) and aj(pj) ≤ aj(pj + 1),
i.e., execution time non-increasing and area is non-decreasing

Arbitrary model: tj(pj) is an arbitrary function of pj

Rigid jobs: pj is fixed and hence execution time is tj

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 5/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Failure model
Jobs can fail due to silent errors (or silent data corruptions)

A lightweight silent error detector (of negligible cost) is available to
flag errors at the end of each job’s execution

If a job is hit by silent errors, it must be re-executed (possibly
multiple times) till successful completion

A failure scenario f = (f1, f2, . . . , fn) describes the number of failures each
job experiences during a particular execution

Example: f = (2, 1, 0, 0, 0) for an execution of 5 jobs

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 6/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Problem complexity

Scheduling problem clearly NP-hard (failure-free is a special case)

A scheduling algorithm Alg is said to be a c-approximation if its
makespan is at most c times that of an optimal scheduler for all
possible sets of jobs, and for all possible failure scenarios, i.e.,

TAlg(f, s) ≤ c × Topt(f, s∗)

Topt(f, s∗) denotes the optimal makespan with scheduling
decision s∗ under failure scenario f

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 7/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Outline

1 Main results for rigid jobs

2 Main results for moldable jobs

3 Simulation results

4 Conclusion

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 8/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Lower bounds

Rigid jobs: pj is fixed and job j has execution time tj

Optimal makespan has two lower bounds:

Topt(f, s∗) ≥ tmax(f)

Topt(f, s∗) ≥ A(f)

P

tmax(f) = maxj=1...n(fj + 1)× tj : maximum cumulative execution
time of any job under f

A(f) =
∑n

j=1(fj + 1)× aj : total cumulative area

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 9/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

List-based algorithm

Resilient list-based scheduling algorithm, and O(1)-approximations for
any failure scenario:

Extends classical batch scheduler that combines reservation and
backfilling strategies

Organizes all jobs in a list (or queue) based on some priority rule

When a job completes: processors released; if error, inserted back in
the queue; remaining jobs scheduled

Approximation results:

2-approximation using Greedy heuristic without reservation

3-approximation using Large Job First priority with reservation

The results nicely extend the ones without job failures
[TWY’92: J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms scheduling

parallelizable tasks. SPAA’92].

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 10/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Shelf-based algorithm

Resilient shelf-based scheduling heuristic, but Ω(logP)-approx. for any
shelf-based solution in some failure scenario, e.g.:

The result defies the O(1)-approx. result without failures [TWY’92]

Why not re-execute failed jobs within a same shelf?

Optimal on this example!

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 11/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Shelf-based algorithm

Resilient shelf-based scheduling heuristic, but Ω(logP)-approx. for any
shelf-based solution in some failure scenario, e.g.:

The result defies the O(1)-approx. result without failures [TWY’92]

Why not re-execute failed jobs within a same shelf?

Optimal on this example!

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 11/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Shelf-fill variant: Fill shelfs when error detected

However, there exists a job instance and a failure scenario such that
Shelf-fill with the LPT priority rule has an approximation ratio of Ω(P)!

time

time

1

: 1+ε
P

(P−1 jobs)

P − 1 failures

1
P

: 1+ε
P2 ((P−1)P jobs)

P2 − 1 failures

1
P2

: 1+ε
P3 ((P−1)P2 jobs)

1
1
P

1
P2

+ Extensive simulation results of all heuristics using both synthetic jobs and job traces
from the Mira supercomputer

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 12/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Outline

1 Main results for rigid jobs

2 Main results for moldable jobs

3 Simulation results

4 Conclusion

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 13/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Main results for moldable jobs

Two resilient scheduling algorithms with analysis of approximation ratios
and simulation results

1 A list-based scheduling algorithm, called Lpa-List, and
approximation results for several speedup models

2 A batch-based scheduling algorithm, called Batch-List, and
approximation result for the arbitrary speedup model

3 Extensive simulations to evaluate and compare (average and
worst-case) performance of both algorithms against baseline
heuristics

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 14/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

(1) Lpa-List scheduling algorithm

Two-phase scheduling approach:

Phase 1: Allocate processors to jobs using the Local Processor
Allocation (Lpa) strategy

Minimize a local ratio individually for each job as guided by
the property of the List scheduling (next slide)
The processor allocation pj will remain unchanged for different
execution attempts of the same job j

Phase 2: Schedule jobs with fixed processor allocations using the
List Scheduling (List) strategy (as in rigid case)

Organize all jobs in a list according to any priority order
Schedule the jobs one by one at the earliest possible time (with
backfilling whenever possible)
If a job fails after an execution, insert it back into the queue for
rescheduling; Repeat this until the job completes successfully

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 15/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

(1) Lpa-List scheduling algorithm

Given a processor allocation p = (p1, p2, . . . , pn) and a failure scenario
f = (f1, f2, . . . , fn):

A(f,p) =
∑

j aj(pj): total area of all jobs

tmax(f,p) = maxj tj(pj): maximum execution time of any job

Property of List Scheduling

For any failure scenario f, if the processor allocation p satisfies:

A(f,p) ≤ α · A(f,p∗) ,

tmax(f,p) ≤ β · tmax(f,p∗) ,

where p∗ is the processor allocation of an optimal schedule, then a List
schedule using processor allocation p is r(α, β)-approximation:

r(α, β) =

{
2α, if α ≥ β
P

P−1α + P−2
P−1β, if α < β

(1)

Eq. (1) is used to guide the local processor allocation (Lpa) for each job

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 16/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

(1) Lpa-List scheduling algorithm

Approximation results of Lpa-List for some speedup models:

Speedup Model Approximation Ratio

Roofline 2
Communication 31

Amdahl 4

Monotonic Θ(
√
P)

Advantages and disadvantages of Lpa-List:

Pros: Simple to implement, and constant approximation for some
common speedup models

Cons: Uncoordinated processor allocation, and high approximation
for monotonic/arbitrary model

1For the communication model, our approx. ratio (3) improves upon the
best ratio to date (4), which was obtained without any resilience considerations:
[Havill and Mao. Competitive online scheduling of perfectly malleable jobs with setup

times, European Journal of Operational Research, 187:1126–1142, 2008]
CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 17/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

(2) Batch-List scheduling algorithm

Batched scheduling approach:

Different execution attempts of the jobs are organized in batches
that are executed one after another

In each batch k (= 1, 2, . . . ), all pending jobs are executed a
maximum of 2k−1 times

Uncompleted jobs in each batch will be processed in the next batch

Example: an execution of 5 jobs under a failure scenario f = (0, 1, 2, 4, 7)

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 18/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

(2) Batch-List scheduling algorithm

Within each batch k :

Processor allocations are done for pending jobs using the
Mt-Allotment algorithm2, which guarantees near optimal
allocation (within a factor of 1 + ε)

The maximum of 2k−1 execution attempts of the pending jobs are
scheduling using the List strategy

Approximation Result of Batch-List

The Batch-List algorithm is Θ((1 + ε) log2(fmax))-approximation for
arbitrary speedup model, where fmax = maxj fj is the maximum number
of failures of any job in a failure scenario

2The algorithm has runtime polynomial in 1/ε and works for jobs in
SP-graphs/trees (of which a set of independent linear chains is a special case)
[Lepère, Trystram, and Woeginger. Approximation algorithms for scheduling malleable

tasks under precedence constraints. European Symposium on Algorithms, 2001]
CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 19/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Outline

1 Main results for rigid jobs

2 Main results for moldable jobs

3 Simulation results

4 Conclusion

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 20/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Performance evaluation

We evaluate the performance of our algorithms using simulations

Synthetic jobs under three speedup models (Roofline,
Communication, Amdahl) and different parameter settings

Job failures follow exponential distribution with varying error rate λ

Baseline algorithm for comparison:

MinTime: allocate processors to minimize execution time of
each job and schedule jobs using List

Priority rules used in List:

LPT (Longest Processing Time)

Results normalized by a lower bound (minimum possible total
execution time of a job, minimum possible total area)

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 21/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Simulation results — with varying number of processors P

In Roofline model, Lpa (and MinTime) has better performance,
thanks to it simple and effective local processor allocation strategy

In Communication model, Batch catches up with Lpa and
performs better than MinTime

In Amdahl’s model (where parallelizing a job becomes less efficient
due to extra communication overhead), Batch has the best
performance, thanks to its coordinated processor allocation

5000 10000 15000
P

1.00

1.05

1.10

1.15

1.20

1.25

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(a) Roofline model

5000 10000 15000
P

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(b) Communication model

5000 10000 15000
P

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

(c) Amdahl’s model

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 22/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Simulation results — Summary

Both algorithms (Lpa and Batch) perform significantly better
than the baseline MinTime

Over the whole set of simulations, our best algorithm (Lpa or
Batch) is within a factor of 1.47 of the lower bound on average,
and within a factor of 1.8 of the lower bound in the worst case

Summary of the performance for three algorithms (over loose bound)

Speedup model Roofline Communication Amdahl

Lpa
Expected 1.055 1.310 1.960
Maximum 1.148 1.379 2.059

Batch
Expected 1.154 1.430 1.465
Maximum 1.280 1.897 1.799

MinTime
Expected 1.055 2.040 14.412
Maximum 1.148 2.184 24.813

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 23/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Outline

1 Main results for rigid jobs

2 Main results for moldable jobs

3 Simulation results

4 Conclusion

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 24/ 25



Rigid jobs Moldable jobs Simulation results Conclusion

Conclusion

Take-aways:
Future HPC platforms demand simultaneous resource scheduling
and resilience considerations for parallel applications

Resilient scheduling algorithms for rigid and moldable parallel jobs
with provable performance guarantees and good performance

Future work:
Analysis of average-case performance of the algorithms

Considering alternative failure models (e.g., fail-stop errors)

Performance validation of algorithms using datasets with realistic
job speedup profiles and failure traces

Thanks!!! And a few references:
Benoit, Le Fèvre, Raghavan, Robert, Sun. Resilient scheduling heuristics for rigid parallel jobs. IJNC 2021.

B, LF, Perotin, Ra, Ro, S. Resilient scheduling of moldable jobs on failure-prone platforms. Cluster 2020.

B, LF, P, Ra, Ro, S. Resilient scheduling of moldable parallel jobs to cope with silent errors. IEEE TC 2021.

CCDSC, Sept. 7, 2022 Anne.Benoit@ens-lyon.fr Resilient scheduling of parallel jobs 25/ 25


	Main results for rigid jobs
	Main results for moldable jobs
	Simulation results
	Conclusion

