Multi-criteria scheduling of workflow applications

Anne Benoit

Fanny Dufossé, Veronika Rehn-Sonigo, Yves Robert GRAAL team, LIP, École Normale Supérieure de Lyon, France

Kunal Agrawal, MIT, USA Harald Kosch, University of Passau, Germany

Clusters and Computational Grids for Scientific Computing September 16, 2008

Introduction

Definitions

Examples

Complexity result

Conclusion

Introduction and motivation

• Mapping applications onto parallel platforms Difficult challenge

• Heterogeneous clusters, fully heterogeneous platforms Even more difficult!

• Target platform

- more or less heterogeneity
- different communication models (overlap, one- vs multi-port)

• Target application

- Workflow: several data sets are processed by a set of tasks
- Structured: independent tasks, linear chains, ...
- Filtering: some tasks filter data

Mapping workflow applications onto heterogeneous platforms

Anne.Benoit@ens-lyon.fr

CCGSC'08 - Sept 16 Multi-criteria scheduling of workflow applications

2/28

Introduction and motivation

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Target platform
 - more or less heterogeneity
 - different communication models (overlap, one- vs multi-port)
- Target application
 - Workflow: several data sets are processed by a set of tasks
 - Structured: independent tasks, linear chains, ...
 - Filtering: some tasks filter data

Mapping workflow applications onto heterogeneous platforms

Introduction and motivation

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Target platform
 - more or less heterogeneity
 - different communication models (overlap, one- vs multi-port)
- Target application
 - Workflow: several data sets are processed by a set of tasks
 - Structured: independent tasks, linear chains, ...
 - Filtering: some tasks filter data

Mapping workflow applications onto heterogeneous platforms

Introduction and motivation

- Mapping applications onto parallel platforms Difficult challenge
- Heterogeneous clusters, fully heterogeneous platforms Even more difficult!
- Target platform
 - more or less heterogeneity
 - different communication models (overlap, one- vs multi-port)
- Target application
 - Workflow: several data sets are processed by a set of tasks
 - Structured: independent tasks, linear chains, ...
 - Filtering: some tasks filter data

Mapping workflow applications onto heterogeneous platforms

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P} : time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L} : maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP} , probability of failure of the application (i.e. some data sets will not be processed)

Multi-criteria!

$$- \bullet \bigcirc - \bullet \bigcirc$$

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P} : time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L} : maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP} , probability of failure of the application (i.e. some data sets will not be processed)

Multi-criteria!

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P} : time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L} : maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP} , probability of failure of the application (i.e. some data sets will not be processed)

Multi-criteria!

4 3 5 4 3

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P} : time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L} : maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP} , probability of failure of the application (i.e. some data sets will not be processed)

Multi-criteria!

Several consecutive data-sets enter the application graph.

Criteria to optimize?

Period \mathcal{P} : time interval between the beginning of execution of two consecutive data sets (inverse of throughput)

Latency \mathcal{L} : maximal time elapsed between beginning and end of execution of a data set

Reliability: inverse of \mathcal{FP} , probability of failure of the application (i.e. some data sets will not be processed)

Multi-criteria!

Workflow applications Computational platforms and communication models Multi-criteria mappings

Theory

Problem complexity Linear programming formulation

Practice

Heuristics for sub-problems Experiments: compare and evaluate heuristics Simulation of real applications (JPEG encoder)

In this talk: small examples to illustrate problem complexity

E 5 4 E

Workflow applications Computational platforms and communication models Multi-criteria mappings

Theory

Problem complexity Linear programming formulation

Practice

Heuristics for sub-problems Experiments: compare and evaluate heuristics Simulation of real applications (JPEG encoder)

In this talk: small examples to illustrate problem complexity

Workflow applications Computational platforms and communication models Multi-criteria mappings

Theory

Problem complexity Linear programming formulation

Practice

Heuristics for sub-problems Experiments: compare and evaluate heuristics Simulation of real applications (JPEG encoder)

In this talk: small examples to illustrate problem complexity

Workflow applications Computational platforms and communication models Multi-criteria mappings

Theory

Problem complexity Linear programming formulation

Practice

Heuristics for sub-problems Experiments: compare and evaluate heuristics Simulation of real applications (JPEG encoder)

In this talk: small examples to illustrate problem complexity

1 Definitions: Application, Platform and Mappings

2 Working out examples

Summary of complexity results

4 Conclusion

э

Introduction	Definitions	Examples	Complexity results	Conclusion
Applicatio	on model			

- Set of *n* application stages
- Workflow: each data set must be processed by all stages
- Computation cost of stage S_i: w_i
- Dependencies between stages

 Introduction
 Definitions
 Examples
 Complexity results
 Conclusion

 Application model: communication costs
 Complexity results
 Conclusion

- Two dependent stages $S_1 \rightarrow S_2$: data must be transferred from S_1 to S_2
- Fixed data size $\delta_{1,2}$, communication cost to pay only if S_1 and S_2 are mapped on different processors (i.e. red arrows in the example)

Application model: adding selectivity

- Stages with selectivity: stage S_i transforms (filters) data of size δ to size σ_i × δ (σ_i: stage selectivity)
- Computation cost depends on the data size (previous σ)
- May add dependencies to exploit selectivity

- S₁ and S₄ process file of initial size 1; S₁ removes even line numbers; S₂ removes two-third of the file
- Combined file of size $\frac{1}{2}.\frac{1}{3}=\frac{1}{6}$ (no cost for join)
- S₂ duplicates the file
- S₃ processes but does not alter the file

Platform model

- p processors P_u , $1 \le u \le p$, fully interconnected
- s_u : speed of processor P_u
- bidirectional link link_{$u,v} : <math>P_u \rightarrow P_v$, bandwidth b_{u,v}</sub></sub>
- fp_u: failure probability of processor P_u (independent of the duration of the application, meant to run for a long time)
- *P_{in}*: input data *P_{out}*: output data

Fully Homogeneous – Identical processors $(s_u = s)$ and links $(b_{u,v} = b)$: typical parallel machines

Communication Homogeneous – Different-speed processors $(s_u \neq s_v)$, identical links $(b_{u,v} = b)$: networks of workstations, clusters

$$\label{eq:fully Heterogeneous} \begin{split} & \textit{Fully Heterogeneous} - \textit{Fully heterogeneous architectures, } \mathsf{s}_u \neq \mathsf{s}_v \\ & \text{and } \mathsf{b}_{u,v} \neq \mathsf{b}_{u',v'} \text{: hierarchical platforms, grids} \end{split}$$

Fully Homogeneous – Identical processors $(s_{\mu} = s)$ and links $(b_{\mu,\nu} = b)$: typical parallel machines

Failure Homogeneous – Identically reliable processors ($fp_{,i} = fp_{,v}$)

Communication Homogeneous - Different-speed processors $(s_{\mu} \neq s_{\nu})$, identical links $(b_{\mu,\nu} = b)$: networks of workstations, clusters

Fully Heterogeneous – Fully heterogeneous architectures, $s_{\mu} \neq s_{\nu}$ and $b_{\mu,\nu} \neq b_{\mu',\nu'}$: hierarchical platforms, grids *Failure Heterogeneous* – Different failure probabilities $(fp_{\mu} \neq fp_{\nu})$

通 ト イヨ ト イヨト

 Introduction
 Definitions
 Examples
 Complexity results
 Conclusion

 Platform model: communications
 no overlap vs overlap
 soverlap
 soverlap
 soverlap

no overlap vs overlap

- no overlap: at each time step, either computation or communication
- overlap: a processor can simultaneously compute and communicate

 Introduction
 Definitions
 Examples
 Complexity results
 Conclusion

 Platform model: communications
 Complexity results
 Conclusion
 Conclusion

one-port vs multi-port

- one-port: each processor can either send or receive to/from a single other processor any time-step it is communicating
- bounded multi-port: simultaneous send and receive, but bound on the total outgoing/incoming communication (limitation of network card)

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

- Define connected-subgraph mapping (instead of interval)
- Replication: independent sets of processors, instead of a single processor as above

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

- Define connected-subgraph mapping (instead of interval)
- Replication: independent sets of processors, instead of a single processor as above

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

- Define connected-subgraph mapping (instead of interval)
- Replication: independent sets of processors, instead of a single processor as above

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

- Define connected-subgraph mapping (instead of interval)
- Replication: independent sets of processors, instead of a single processor as above

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

- Other applications: one-to-one and general always defined
- Define connected-subgraph mapping (instead of interval)
- Replication: independent sets of processors, instead of a single processor as above

- Map each application stage onto one or more processors
- Goal: minimize period/latency and maximize reliability
- The pipeline case: several mapping strategies

- Other applications: one-to-one and general always defined
- Define connected-subgraph mapping (instead of interval)
- Replication: independent sets of processors, instead of a single processor as above

- Monolithic stages: must be mapped on one single processor since computation for a data set may depend on result of previous computation
- Replicable stages: can be replicated on several processors, but not parallel, *i.e.* a data set must be entirely processed on a single processor
- Data-parallel stages: inherently parallel stages, one data set can be computed in parallel by several processors
- Replication for reliability (also called duplication): one data set is processed several times on different processors.

- Monolithic stages: must be mapped on one single processor since computation for a data set may depend on result of previous computation
- Replicable stages: can be replicated on several processors, but not parallel, *i.e.* a data set must be entirely processed on a single processor
- Data-parallel stages: inherently parallel stages, one data set can be computed in parallel by several processors
- Replication for reliability (also called duplication): one data set is processed several times on different processors.

Introduction

Definitions

Examples

Complexity result

Conclusion

Mapping: objective function?

Mono-criterion

- Minimize period \mathcal{P} (inverse of throughput)
- Minimize latency \mathcal{L} (time to process a data set)
- \bullet Minimize application failure probability \mathcal{FP}

Mapping: objective function?

Mono-criterion

- Minimize period \mathcal{P} (inverse of throughput)
- $\bullet\,$ Minimize latency ${\cal L}$ (time to process a data set)
- $\bullet\,$ Minimize application failure probability \mathcal{FP}

Multi-criteria

- How to define it? Minimize $\alpha . \mathcal{P} + \beta . \mathcal{L} + \gamma . \mathcal{FP}$?
- Values which are not comparable

Mono-criterion

- Minimize period \mathcal{P} (inverse of throughput)
- Minimize latency \mathcal{L} (time to process a data set)
- \bullet Minimize application failure probability \mathcal{FP}

Multi-criteria

- How to define it? Minimize $\alpha . \mathcal{P} + \beta . \mathcal{L} + \gamma . \mathcal{FP}$?
- Values which are not comparable
- \bullet Minimize ${\cal P}$ for a fixed latency and failure
- \bullet Minimize ${\cal L}$ for a fixed period and failure
- \bullet Minimize \mathcal{FP} for a fixed period and latency

Mono-criterion

- Minimize period \mathcal{P} (inverse of throughput)
- Minimize latency \mathcal{L} (time to process a data set)
- \bullet Minimize application failure probability \mathcal{FP}

Bi-criteria

- Period and Latency:
- Minimize \mathcal{P} for a fixed latency
- \bullet Minimize ${\cal L}$ for a fixed period
- And so on...

- Pipeline application, INTERVAL MAPPING
- Period/Latency problem with no replication
- Communication Homogeneous: one-port with no overlap

$$\mathcal{P} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\}$$

- Pipeline application, INTERVAL MAPPING
- Period/Latency problem with no replication
- Communication Homogeneous: one-port with no overlap

$$\mathcal{P} = \max_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} + \frac{\delta_{e_j}}{b} \right\}$$
$$\mathcal{L} = \sum_{1 \le j \le m} \left\{ \frac{\delta_{d_j - 1}}{b} + \frac{\sum_{i = d_j}^{e_j} w_i}{s_{\text{alloc}(j)}} \right\} + \frac{\delta_n}{b}$$

An example of formal definitions

- Pipeline application, INTERVAL MAPPING
- Period/Latency problem with no replication
- Communication Homogeneous: multi-port with overlap

$$\mathcal{P} = \max_{1 \le j \le m} \left\{ \max\left\{ \frac{\sum_{i=d_j}^{e_j} w_i}{\mathsf{s}_{\mathsf{alloc}(j)}}, \ \frac{\delta_{d_j-1}}{\mathsf{b}}, \ \frac{\delta_{d_j-1}}{\mathsf{B}^i}, \ \frac{\delta_{e_j}}{\mathsf{b}}, \ \frac{\delta_{e_j}}{\mathsf{B}^o} \right\} \right\}$$

An example of formal definitions

- Pipeline application, INTERVAL MAPPING
- Period/Latency problem with no replication
- Communication Homogeneous: multi-port with overlap

$$\mathcal{P} = \max_{1 \le j \le m} \left\{ \max\left\{ \frac{\sum_{i=d_j}^{e_j} w_i}{\mathsf{s}_{\mathsf{alloc}(j)}}, \ \frac{\delta_{d_j-1}}{\mathsf{b}}, \ \frac{\delta_{d_j-1}}{\mathsf{B}^i}, \ \frac{\delta_{e_j}}{\mathsf{b}}, \ \frac{\delta_{e_j}}{\mathsf{B}^o} \right\} \right\}$$

 $\mathcal{L}=$ the longest path of the mapping as without overlap, but does not necessarily respect previous period

 $\mathcal{L} = (2K + 1).\mathcal{P}$, where K is the number of changes of processors

Definitions: Application, Platform and Mappings

2 Working out examples

3 Summary of complexity results

4 Conclusion

Period - No communication, no replication

 $2\ \text{processors}$ of speed 1

Optimal period?

Period - No communication, no replication

2 processors of speed 1

Optimal period?

 $\mathcal{P}=$ 5, $\mathcal{S}_1\mathcal{S}_3
ightarrow P_1$, $\mathcal{S}_2\mathcal{S}_4
ightarrow P_2$

Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?

Examples

Complexity resul

Conclusion

Period - No communication, no replication

2 processors of speed 1

Optimal period?

 $\mathcal{P} = 5$, $\mathcal{S}_1 \mathcal{S}_3 \rightarrow P_1$, $\mathcal{S}_2 \mathcal{S}_4 \rightarrow P_2$ Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?

 $\mathcal{P}=\text{6}, \ \ \mathcal{S}_1\mathcal{S}_2\mathcal{S}_3 \to \textit{P}_1, \ \ \mathcal{S}_4 \to \textit{P}_2 \ \ - \ \ \text{Polynomial algorithm}?$

Period - No communication, no replication

\mathcal{S}_1	\rightarrow	\mathcal{S}_2	\rightarrow	\mathcal{S}_3	\rightarrow	\mathcal{S}_4
2		1		3		4

2 processors of speed 1

Optimal period?

 $\mathcal{P} = 5$, $\mathcal{S}_1 \mathcal{S}_3 \rightarrow P_1$, $\mathcal{S}_2 \mathcal{S}_4 \rightarrow P_2$ Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?

 $\mathcal{P} = 6$, $\mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_3 \rightarrow P_1$, $\mathcal{S}_4 \rightarrow P_2$ – Polynomial algorithm? Classical chains-on-chains problem, dynamic programming works IntroductionDefinitionsExamplesComplexity resultsConclusionPeriod - No communication, no replication $S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4$
 $2 \quad 1 \quad 3 \quad 4$
 $s_1 = 2$ and $s_2 = 3$ Optimal period?
 $\mathcal{P} = 5, S_1S_3 \rightarrow P_1, S_2S_4 \rightarrow P_2$

Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?

 $\mathcal{P} = 6$, $\mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_3 \rightarrow P_1$, $\mathcal{S}_4 \rightarrow P_2$ – Polynomial algorithm? Classical chains-on-chains problem, dynamic programming works

Heterogeneous platform?

A B A A B A

IntroductionDefinitionsExamplesComplexity resultsConclusionPeriod - No communication, no replication $S_1 \rightarrow S_2 \rightarrow S_3 \rightarrow S_4$
 $2 \quad 1 \quad 3 \quad 4$
 $s_1 = 2$ and $s_2 = 3$ Optimal period?
 $\mathcal{P} = 5, S_1S_3 \rightarrow P_1, S_2S_4 \rightarrow P_2$

Perfect load-balancing in this case, but NP-hard (2-PARTITION)

Interval mapping?

 $\mathcal{P} = 6$, $\mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_3 \rightarrow P_1$, $\mathcal{S}_4 \rightarrow P_2$ – Polynomial algorithm? Classical chains-on-chains problem, dynamic programming works

Heterogeneous platform?

 $\mathcal{P} = 2$, $\mathcal{S}_1 \mathcal{S}_2 \mathcal{S}_3 \rightarrow P_2$, $\mathcal{S}_4 \rightarrow P_1$ Heterogeneous chains-on-chains, NP-hard

• • = • • = •

Perfect load-balancing both for computation and comm.

Achieved latency?

Perfect load-balancing both for computation and comm.

Achieved latency?

With only one processor, $\mathcal{L} = 12$ No internal communication to pay

 Introduction Definitions Examples Latency - No replication, different comm. models 2 processors of speed 1 With overlap: optimal period? $\mathcal{P} = 5$, $\mathcal{S}_1 \mathcal{S}_3 \to \mathcal{P}_1$, $\mathcal{S}_2 \mathcal{S}_4 \to \mathcal{P}_2$ Perfect load-balancing both for computation and comm. Achieved latency? with $\mathcal{P} = 5$? Progress step-by-step in the pipeline \rightarrow no conflicts K = 4 processor changes, $\mathcal{L} = (2K + 1) \mathcal{P} = 9\mathcal{P} = 45$ \dots period k | period k + 1 | period k + 2 | \dots | ds^(k-8) $ds^{(k-7)}$ $ds^{(k-6)}$ $P_2 \rightarrow out$

With no overlap: optimal period and latency?

With no overlap: optimal period and latency? General mappings too difficult to handle: restrict to interval mappings IntroductionDefinitionsExamplesComplexity resultsConclusionLatency - No replication, different comm. models $\frac{1}{\rightarrow}$ S_1 $\frac{4}{\rightarrow}$ S_2 $\frac{4}{\rightarrow}$ S_3 $\frac{1}{\rightarrow}$ S_4 $\frac{1}{\rightarrow}$ 213422processors of speed 1

With no overlap: optimal period and latency? General mappings too difficult to handle: restrict to interval mappings

$$\mathcal{P}=$$
 8: $S_1,S_2,S_3
ightarrow P_1$, $S_4
ightarrow P_2$

IntroductionDefinitionsExamplesComplexity resultsConclusionLatency - No replication, different comm. models $\frac{1}{\rightarrow}$ S_1 $\frac{4}{\rightarrow}$ S_2 $\frac{4}{\rightarrow}$ S_3 $\frac{1}{\rightarrow}$ S_4 $\frac{1}{\rightarrow}$ 213422processors of speed 1

With no overlap: optimal period and latency? General mappings too difficult to handle: restrict to interval mappings

$$\begin{aligned} \mathcal{P} &= 8: \quad S_1, S_2, S_3 \rightarrow P_1, \ S_4 \rightarrow P_2 \\ \mathcal{L} &= 12: \quad S_1, S_2, S_3, S_4 \rightarrow P_1 \end{aligned}$$

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Replicate interval $[S_u..S_v]$ on P_1, \ldots, P_q

$$\mathcal{P} = rac{\sum_{k=u}^{v} \mathsf{w}_k}{q imes \mathsf{min}_i(\mathsf{s}_i)}$$
 and $\mathcal{L} = q imes \mathcal{P}$

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Data Parallelize single stage S_k on P_1, \ldots, P_q

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Optimal period?

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Optimal period?

$$\mathcal{S}_1 \stackrel{\mathrm{DP}}{\xrightarrow{}} \mathcal{P}_1 \mathcal{P}_2, \ \mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 \stackrel{\mathrm{REP}}{\xrightarrow{}} \mathcal{P}_3 \mathcal{P}_4$$

$$\mathcal{P} = \max(rac{14}{2+1},rac{4+2+4}{2 imes 1}) = 5$$
, $\mathcal{L} = 14.67$

Optimal latency?

Interval mapping, 4 processors, $\mathsf{s}_1=2$ and $\mathsf{s}_2=\mathsf{s}_3=\mathsf{s}_4=1$

Optimal period?

$$\mathcal{S}_1 \stackrel{\mathrm{DP}}{\xrightarrow{}} \mathcal{P}_1 \mathcal{P}_2, \ \mathcal{S}_2 \mathcal{S}_3 \mathcal{S}_4 \stackrel{\mathrm{REP}}{\xrightarrow{}} \mathcal{P}_3 \mathcal{P}_4$$

$$\mathcal{P} = \max(rac{14}{2+1},rac{4+2+4}{2 imes 1}) = 5$$
, $\mathcal{L} = 14.67$

Optimal latency?
$$S_1 \xrightarrow{DP} P_2 P_3 P_4, S_2 S_3 S_4 \rightarrow P_1$$

 $\mathcal{P} = \max(\frac{14}{1+1+1}, \frac{4+2+4}{2}) = 5, \mathcal{L} = 9.67 \text{ (optimal)}$

Anne.Benoit@ens-lyon.fr

Definitions: Application, Platform and Mappings

- 2 Working out examples
- 3 Summary of complexity results

4 Conclusion

Filters: stages with selectivity

- One-to-one mappings of independent tasks
 - No communication, homogeneous processors: period and latency polynomial
 - With heterogeneous processors: both problems NP-hard
 - With homogeneous communication, overlap or no-overlap: all problems NP-hard
- General mappings: everything is NP-hard (2-partition)
- For references, please ask me

Filters: stages with selectivity

- One-to-one mappings of independent tasks
 - No communication, homogeneous processors: period and latency polynomial
 - With heterogeneous processors: both problems NP-hard
 - With homogeneous communication, overlap or no-overlap: all problems NP-hard
- General mappings: everything is NP-hard (2-partition)
- For references, please ask me

Filters: stages with selectivity

- One-to-one mappings of independent tasks
 - No communication, homogeneous processors: period and latency polynomial
 - With heterogeneous processors: both problems NP-hard
 - With homogeneous communication, overlap or no-overlap: all problems NP-hard
- General mappings: everything is NP-hard (2-partition)
- For references, please ask me

Pipeline: minimizing period or latency

	Period			Latency		
	o2o	int	gen	o2o	int	gen
noc hom	P(t)	P(DP)	NPC(2P)		P(t)	
het	P(g)	NPC(*)	NPC(-)	P(g)	P(t)
noo fhom	P(t)	P(DP)	NPC(-)	P(t)		
chom	P(bs)	NPC(-)		P(g)	P(g) P(t)	
fhet	NPC(CT)	NPC(-)		NPC(T)	NPC(*)	P(DP)
wov fhom	P(t)	P(DP)	NPC(-)		similar	
chom	P(g)	NPC(-)		to		
fhet	NPC(TC)	NPC(-)		noo		

noc: No comm – noo: Comm, no overlap – wov: Comm, with overlap

- P: Polynomial (t) trivial (g) greedy algorithm (DP) dynamic programming algorithm – (bs) binary search algorithm
- NPC: NP-complete (-) comes from simpler case (2P) 2-Partition (CT) Chinese traveller – (T) TSP – (*) involved reduction

Introduction

Definitions

Examples

Complexity results

Conclusion

Pipeline: minimizing period or latency

	Bi-criteria			
	o2o	int	gen	
noc hom	P(t)	P(DP)	NPC(-)	
het	P(g)	NPC(-)		
noo fhom	P(t)	P(DP)	NPC(-)	
chom	P(m)	NPC(-)		
fhet		NPC(-)		
wov fhom	P(t)	P(DP)	NPC(-)	
chom	P(g)	NPC(-)		
fhet		NPC(-)		

noc: No comm – noo: Comm, no overlap – wov: Comm, with overlap
 P: Polynomial (t) trivial – (g) greedy algorithm – (DP) dynamic
 programming algorithm – (m) matching+binary search algorithm

NPC: NP-complete (-) comes from mono-criterion

- ... more cases I did not talk about
- period: rapidly NP-hard
- latency: difficult to define
- reliability: non-linear formula
- replication for period or reliability, data-parallelism, ...
- mix everything: even more exciting problems ③

- ... more cases I did not talk about
- period: rapidly NP-hard
- latency: difficult to define
- reliability: non-linear formula
- replication for period or reliability, data-parallelism, ...
- mix everything: even more exciting problems 🙂

Complexity results....

- ... more cases I did not talk about
- period: rapidly NP-hard
- latency: difficult to define
- reliability: non-linear formula
- replication for period or reliability, data-parallelism, ...
- mix everything: even more exciting problems 🙂

Definitions: Application, Platform and Mappings

- 2 Working out examples
- Summary of complexity results

Examples

Complexity results

Conclusion

Related work

Subhlok and Vondran- Pipeline on hom platforms: extended Chains-to-chains- Heterogeneous, replicate/data-parallelize Mapping pipelined computations onto clusters and grids- DAG [Taura et al.], DataCutter [Saltz et al.] Energy-aware mapping of pipelined computations- [Melhem et al.], three-criteria optimization Scheduling task graphs on heterogeneous platforms- Acyclic task graphs scheduled on different speed processors [Topcuoglu et al.]. Communication contention: 1-port model [Beaumont et al.] Mapping pipelined computations onto special-purpose architectures-FPGA arrays [Fabiani et al.]. Fault-tolerance for embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids– Use of stochastic process algebra [Benoit et al.]

Definitions: Applications, platforms, and multi-criteria mappings Theoretical side: Working out examples to show insight of problem complexity, and full complexity study

Practical side: not showed in this talk

- Several polynomial heuristics and simulations
- JPEG application, good results of the heuristics (close to LP solution)
- Future work: Extend to other application graphs
 - In particular, define latency for general DAGs (order communications)
 - New heuristics for NP-hard cases, further experiments