Performance and energy optimization of concurrent pipelined applications

Anne Benoit, Paul Renaud-Goud and Yves Robert

Institut Universitaire de France

ROMA team, LIP École Normale Supérieure de Lyon, France

CCGSC 2010, Flat Rock, NC

- Mapping concurrent pipelined applications onto distributed platforms: practical applications, but difficult problems
- \bullet Assess problem hardness \Rightarrow different mapping rules and platform characteristics
- Energy saving is becoming a crucial problem
- Several concurrent objective functions: period, latency, power
- → Multi-criteria approach: minimize power consumption while guaranteeing some performance
- Exhaustive complexity study
- Heuristics on most general (NP-complete) case

- Mapping concurrent pipelined applications onto distributed platforms: practical applications, but difficult problems
- \bullet Assess problem hardness \Rightarrow different mapping rules and platform characteristics
- Energy saving is becoming a crucial problem
- Several concurrent objective functions: period, latency, power
- → Multi-criteria approach: minimize power consumption while guaranteeing some performance
- Exhaustive complexity study
- Heuristics on most general (NP-complete) case

- Mapping concurrent pipelined applications onto distributed platforms: practical applications, but difficult problems
- Assess problem hardness \Rightarrow different mapping rules and platform characteristics
- Energy saving is becoming a crucial problem
- Several concurrent objective functions: period, latency, power
- → Multi-criteria approach: minimize power consumption while guaranteeing some performance
- Exhaustive complexity study
- Heuristics on most general (NP-complete) case

過 ト イ ヨ ト イ ヨ ト

- Mapping concurrent pipelined applications onto distributed platforms: practical applications, but difficult problems
- Assess problem hardness \Rightarrow different mapping rules and platform characteristics
- Energy saving is becoming a crucial problem
- Several concurrent objective functions: period, latency, power
- → Multi-criteria approach: minimize power consumption while guaranteeing some performance
- Exhaustive complexity study
- Heuristics on most general (NP-complete) case

Framework Complexity Experiments Conclusion Why bother with energy?

- Minimizing total energy consumed by processors: very important objective (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Algorithmic techniques:
 - Shut down idle processors
 - Dynamic speed scaling
 - The higher the speed, the higher the power consumption
 - Power = $f \times V^2$, and V (voltage) increases with f (frequency)
 - Speed s: $P(s) = s^{\alpha} + P_{static}$, with $2 \le \alpha \le 3$
- Problem: decide which processors to enroll, and at which speed to run them

過 ト イ ヨ ト イ ヨ ト

Why bother with energy?

- Minimizing total energy consumed by processors: very important objective (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Algorithmic techniques:
 - Shut down idle processors
 - Dynamic speed scaling
 - The higher the speed, the higher the power consumption
 - Power = $f \times V^2$, and V (voltage) increases with f (frequency)
 - Speed s: $P(s) = s^{\alpha} + P_{static}$, with $2 \le \alpha \le 3$
- Problem: decide which processors to enroll, and at which speed to run them

過 ト イ ヨ ト イ ヨ ト

Why bother with energy?

- Minimizing total energy consumed by processors: very important objective (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Algorithmic techniques:
 - Shut down idle processors
 - Dynamic speed scaling: processors can run at variable speed, e.g., Intel XScale, Intel Speed Step, AMD PowerNow
 - The higher the speed, the higher the power consumption
 - Power = $f \times V^2$, and V (voltage) increases with f (frequency)
 - Speed s: $P(s) = s^{\alpha} + P_{static}$, with $2 \le \alpha \le 3$
- Problem: decide which processors to enroll, and at which speed to run them

・ 同 ト ・ ヨ ト ・ ヨ ト …

Why bother with energy?

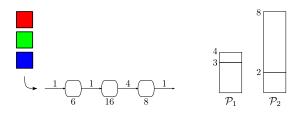
- Minimizing total energy consumed by processors: very important objective (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Algorithmic techniques:
 - Shut down idle processors
 - Dynamic speed scaling: processors can run at variable speed, e.g., Intel XScale, Intel Speed Step, AMD PowerNow
 - The higher the speed, the higher the power consumption
 - Power = $f \times V^2$, and V (voltage) increases with f (frequency)
 - Speed s: $P(s) = s^{\alpha} + P_{static}$, with $2 \le \alpha \le 3$
- Problem: decide which processors to enroll, and at which speed to run them

通 ト イヨ ト イヨ ト

Why bother with energy?

- Minimizing total energy consumed by processors: very important objective (economic and environmental reasons)
- M. P. Mills, The internet begins with coal, Environment and Climate News (1999)
- Algorithmic techniques:
 - Shut down idle processors
 - Dynamic speed scaling: processors can run at variable speed, e.g., Intel XScale, Intel Speed Step, AMD PowerNow
 - The higher the speed, the higher the power consumption
 - Power = $f \times V^2$, and V (voltage) increases with f (frequency)
 - Speed s: $P(s) = s^{\alpha} + P_{static}$, with $2 \le \alpha \le 3$
- Problem: decide which processors to enroll, and at which speed to run them

• • = • • = •

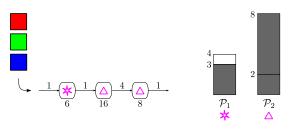


 \mathcal{P}_1

 \mathcal{P}_2

- Period: T = 3
- Latency: L = 8

- 4 同 ト 4 ヨ ト - 4 ヨ ト -

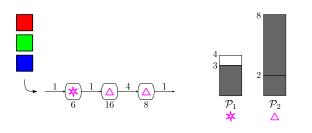


 \mathcal{P}_1

 \mathcal{P}_2

- Period: T = 3
- Latency: L = 8

- 4 同 ト 4 ヨ ト - 4 ヨ ト -



$$P = 3^3 + 8^3$$

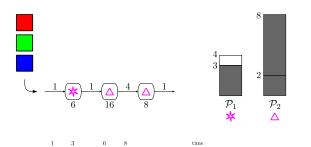
= 539

 \mathcal{P}_1

 \mathcal{P}_2

- Period: T = 3
- Latency: L = 8

- 4 同 ト 4 ヨ ト - 4 ヨ ト -



$$P = 3^3 + 8^3$$

= 539

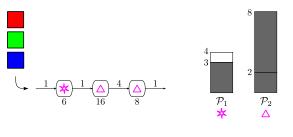
 \mathcal{P}_2

• Period: T = 3

• Latency: L = 8

ም.

A B F A B F



$$P = 3^3 + 8^3$$

= 539

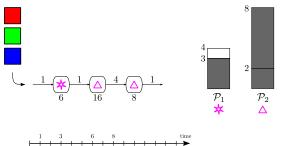
 \mathcal{P}_2

• Period:
$$T = 3$$

• Latency:
$$L = 8$$

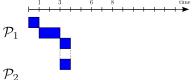
A B F A B F

A.



$$P = 3^3 + 8^3$$

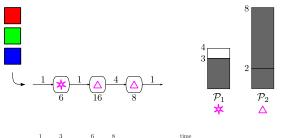
= 539



• Period:
$$T = 3$$

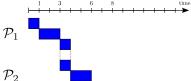
• Latency:
$$L = 8$$

글 > - + 글 >



$$P = 3^3 + 8^3$$

= 539

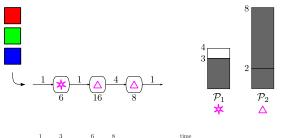


• Period:
$$T = 3$$

• Latency: L = 8

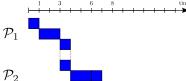
æ

E + 4 E +



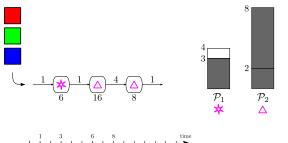
$$P = 3^3 + 8^3$$

= 539



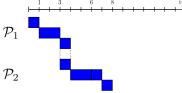
- Period: T = 3
- Latency: L = 8

æ



$$P = 3^3 + 8^3$$

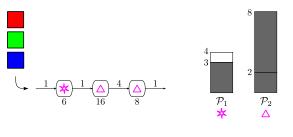
= 539



- Period: T = 3
- Latency: L = 8

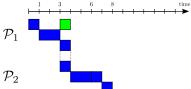
æ

(B)



$$P = 3^3 + 8^3$$

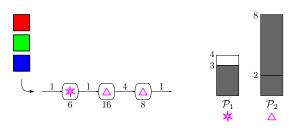
= 539



- Period: T = 3
- Latency: L = 8

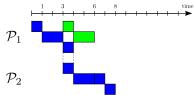
æ

A B < A B <</p>



$$P = 3^3 + 8^3$$

= 539



- Period: T = 3
- Latency: L = 8

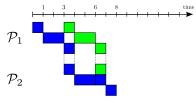
æ

(B)



$$P = 3^3 + 8^3$$

= 539



- Period: T = 3
- Latency: L = 8

-

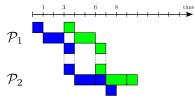
æ

→



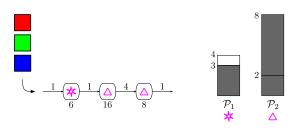
$$P = 3^3 + 8^3$$

= 539



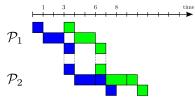
- Period: T = 3
- Latency: L = 8

æ



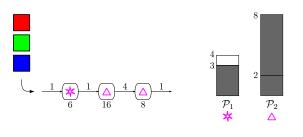
$$P = 3^3 + 8^3$$

= 539



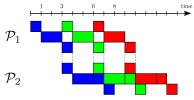
- Period: T = 3
- Latency: L = 8

æ



$$P = 3^3 + 8^3$$

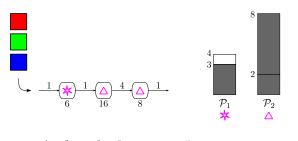
= 539



• Period: T = 3

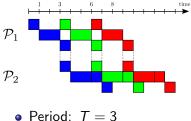
• Latency: L = 8

æ



$$P = 3^3 + 8^3$$

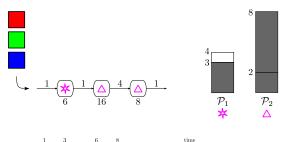
= 539



• Latency: L = 8

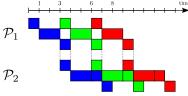
æ

→



$$P = 3^3 + 8^3$$

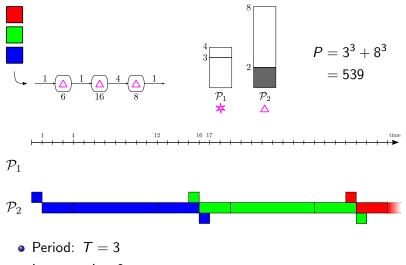
= 539



- Period: T = 3
- Latency: L = 8

æ

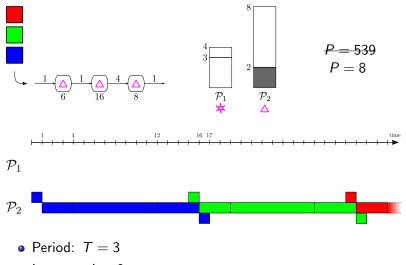
∃ ⇒



-∢ ∃ ▶

æ

→

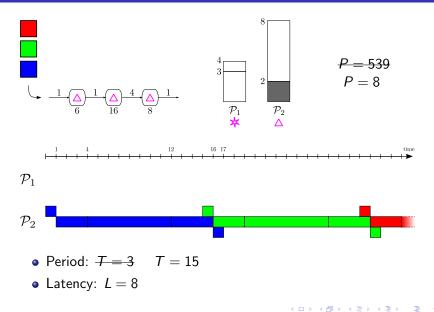


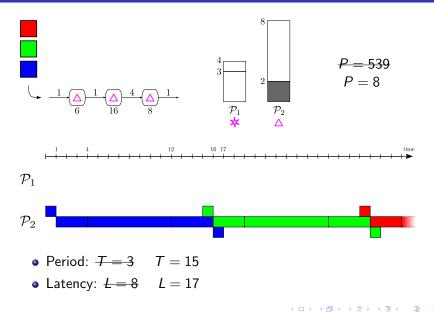
- ∢ ∃ ▶

< 67 ▶

æ

→ Ξ →





Outline of the talk

Framework

- Application and platform
- Mapping rules
- Metrics

2 Complexity results

- Mono-criterion problems
- Bi-criteria problems
- Tri-criteria problems
- With resource sharing

3 Experiments

- Heuristics
- Experiments
- Summary

Outline of the talk

- Framework
 - Application and platform
 - Mapping rules
 - Metrics

2 Complexity results

- Mono-criterion problems
- Bi-criteria problems
- Tri-criteria problems
- With resource sharing

3 Experiments

- Heuristics
- Experiments
- Summary

4 Conclusion

Application model and execution platform

- Concurrent pipelined applications
 - w_a^i : weight of stage S_a^i (*i*th stage of application *a*)
 - δ^i_a : size of outcoming data of \mathcal{S}^i_a
- Processors with multiple speeds (or modes): {s_{u,1},..., s_{u,m_u}} Constant speed during the execution
- Platform fully interconnected;

 $b_{u,v}$: bandwidth between processors \mathcal{P}_u and \mathcal{P}_v ; overlap or non-overlap of communications and computations

- Three platform types:
 - Fully homogeneous, or speed homogeneous
 - Communication homogeneous, or speed heterogeneous
 - Fully heterogeneous

Application model and execution platform

- Concurrent pipelined applications
 - w_a^i : weight of stage S_a^i (*i*th stage of application *a*)
 - δ^i_a : size of outcoming data of \mathcal{S}^i_a
- Processors with multiple speeds (or modes): $\{s_{u,1}, \ldots, s_{u,m_u}\}$ Constant speed during the execution
- Platform fully interconnected;

 $b_{u,v}$: bandwidth between processors \mathcal{P}_u and \mathcal{P}_v ; overlap or non-overlap of communications and computations

- Three platform types:
 - Fully homogeneous, or speed homogeneous
 - Communication homogeneous, or speed heterogeneous
 - Fully heterogeneous

過す イヨト イヨト

Application model and execution platform

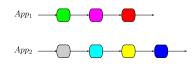
- Concurrent pipelined applications
 - w_a^i : weight of stage S_a^i (*i*th stage of application *a*)
 - $\delta^i_{\mathbf{a}}$: size of outcoming data of $\mathcal{S}^i_{\mathbf{a}}$
- Processors with multiple speeds (or modes): $\{s_{u,1}, \ldots, s_{u,m_u}\}$ Constant speed during the execution
- Platform fully interconnected;

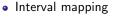
 $b_{u,v}$: bandwidth between processors \mathcal{P}_u and \mathcal{P}_v ; overlap or non-overlap of communications and computations

- Three platform types:
 - Fully homogeneous, or speed homogeneous
 - Communication homogeneous, or speed heterogeneous
 - Fully heterogeneous

Mapping rules

- Mapping with no processor sharing: relevant in practice (security rules)
 - One-to-one mapping





• General mapping with resource sharing:

Mapping rules

- Mapping with no processor sharing: relevant in practice (security rules)
 - One-to-one mapping

Interval mapping

• General mapping with resource sharing:

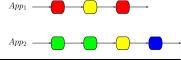
better resource utilization

Mapping rules

- Mapping with no processor sharing: relevant in practice (security rules)
 - One-to-one mapping

• Interval mapping

• General mapping with resource sharing:



◆□▶ ◆掃▶ ◆臣▶ ★臣▶ 三臣 - のへで

Interval mapping on a single application with no resource sharing; k intervals I_j of stages from S^{d_j} to S^{e_j}

• Period *T* of an application: minimum delay between the processing of two consecutive data sets

$$T^{(overlap)} = \max_{j \in \{1, \dots, k\}} \left(\max\left(\frac{\delta^{d_j - 1}}{b_{\mathsf{alloc}(d_j - 1), \mathsf{alloc}(d_j)}}, \frac{\sum_{i=d_j}^{e_j} w^i}{s_{\mathsf{alloc}(d_j)}}, \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j), \mathsf{alloc}(e_j + 1)}} \right) \right)$$

• Latency *L* of an application: time, for a data set, to go through the whole pipeline

$$L = \frac{\delta^0}{b_{\text{alloc}(0),\text{alloc}(1)}} + \sum_{j=1}^m \left(\sum_{i=d_j}^{e_j} \frac{w^i}{s_{\text{alloc}(d_j)}} + \frac{\delta^{e_j}}{b_{\text{alloc}(d_j),\text{alloc}(e_j+1)}} \right)$$

$$P = \sum_{\mathcal{P}_u} P(u), \quad P(u) = P_{dyn}(s_u) + P_{stat}(u), \quad P_{dyn}(s_u) = s_u^{\alpha}, \quad 2 \le \alpha \le 3$$

Interval mapping on a single application with no resource sharing; k intervals I_i of stages from \mathcal{S}^{d_j} to \mathcal{S}^{e_j}

• Period T of an application: minimum delay between the processing of two consecutive data sets

$$\mathcal{T}^{(\textit{overlap})} = \max_{j \in \{1, \dots, k\}} \left(\max\left(\frac{\delta^{d_j - 1}}{b_{\mathsf{alloc}(d_j - 1), \mathsf{alloc}(d_j)}}, \frac{\sum_{i=d_j}^{e_j} w^i}{s_{\mathsf{alloc}(d_j)}}, \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j), \mathsf{alloc}(e_j + 1)}}\right) \right)$$

• Latency L of an application: time, for a data set, to go

$$L = \frac{\delta^0}{b_{\text{alloc}(0),\text{alloc}(1)}} + \sum_{j=1}^m \left(\sum_{i=d_j}^{e_j} \frac{w^i}{s_{\text{alloc}(d_j)}} + \frac{\delta^{e_j}}{b_{\text{alloc}(d_j),\text{alloc}(e_j+1)}} \right)$$

$$P = \sum_{\mathcal{P}_u} P(u), \quad P(u) = P_{dyn}(s_u) + P_{stat}(u), \quad P_{dyn}(s_u) = s_u^{\alpha}, \quad 2 \le \alpha \le 3$$

Interval mapping on a single application with no resource sharing; k intervals I_i of stages from \mathcal{S}^{d_j} to \mathcal{S}^{e_j}

• Period T of an application: minimum delay between the processing of two consecutive data sets

$$T^{(\textit{overlap})} = \max_{j \in \{1, \dots, k\}} \left(\max\left(\frac{\delta^{d_j - 1}}{b_{\mathsf{alloc}(d_j - 1), \mathsf{alloc}(d_j)}}, \frac{\sum_{i=d_j}^{e_j} w^i}{s_{\mathsf{alloc}(d_j)}}, \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j), \mathsf{alloc}(e_j + 1)}}\right) \right)$$

• Latency L of an application: time, for a data set, to go through the whole pipeline

$$L = \frac{\delta^0}{b_{\mathsf{alloc}(0),\mathsf{alloc}(1)}} + \sum_{j=1}^m \left(\sum_{i=d_j}^{e_j} \frac{w^i}{s_{\mathsf{alloc}(d_j)}} + \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j),\mathsf{alloc}(e_j+1)}} \right)$$

$$P = \sum_{\mathcal{P}_u} P(u), \quad P(u) = P_{dyn}(s_u) + P_{stat}(u), \quad P_{dyn}(s_u) = s_u^{\alpha}, \quad 2 \le \alpha \le 3$$

Interval mapping on a single application with no resource sharing; k intervals I_j of stages from S^{d_j} to S^{e_j}

• Period *T* of an application: minimum delay between the processing of two consecutive data sets

$$T^{(\textit{overlap})} = \max_{j \in \{1, \dots, k\}} \left(\max\left(\frac{\delta^{d_j - 1}}{b_{\mathsf{alloc}(d_j - 1), \mathsf{alloc}(d_j)}}, \frac{\sum_{i=d_j}^{e_j} w^i}{s_{\mathsf{alloc}(d_j)}}, \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j), \mathsf{alloc}(e_j + 1)}}\right) \right)$$

• Latency *L* of an application: time, for a data set, to go through the whole pipeline

$$L = \frac{\delta^0}{b_{\mathsf{alloc}(0),\mathsf{alloc}(1)}} + \sum_{j=1}^m \left(\sum_{i=d_j}^{e_j} \frac{w^i}{s_{\mathsf{alloc}(d_j)}} + \frac{\delta^{e_j}}{b_{\mathsf{alloc}(d_j),\mathsf{alloc}(e_j+1)}} \right)$$

$$P = \sum_{\mathcal{P}_u} P(u), \quad P(u) = P_{dyn}(s_u) + P_{stat}(u), \quad P_{dyn}(s_u) = s_u^{\alpha}, \quad 2 \le \alpha \le 3$$

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

 \Rightarrow for general mappings, latency model of Özgüner: L = (2m - 1)T, where m - 1 is the number of processor changes, and T the period of the application

Period given \Rightarrow bound on number of processor changes

Given an application, we can check if the mapping is valid, given a bound on period and latency per application:

- For period, check that each processor can handle its load computation and meet some communication constraints
- For latency, check the number of processor changes

< 回 ト < 三 ト < 三 ト

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

 \Rightarrow for general mappings, latency model of Özgüner: L = (2m - 1)T, where m - 1 is the number of processor changes, and T the period of the application

Period given \Rightarrow bound on number of processor changes

Given an application, we can check if the mapping is valid, given a bound on period and latency per application:

- For period, check that each processor can handle its load computation and meet some communication constraints
- For latency, check the number of processor changes

・ 同 ト ・ ヨ ト ・ ヨ ト

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

 \Rightarrow for general mappings, latency model of Özgüner: L = (2m - 1)T, where m - 1 is the number of processor changes, and T the period of the application

Period given \Rightarrow bound on number of processor changes

Given an application, we can check if the mapping is valid, given a bound on period and latency per application:

- For period, check that each processor can handle its load computation and meet some communication constraints
- For latency, check the number of processor changes

・ 同 ト ・ ヨ ト ・ ヨ ト

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

 \Rightarrow for general mappings, latency model of Özgüner: L = (2m - 1)T, where m - 1 is the number of processor changes, and T the period of the application

 $L = 7 \times T$

Period given \Rightarrow bound on number of processor changes

Given an application, we can check if the mapping is valid, given a bound on period and latency per application:

- For period, check that each processor can handle its load computation and meet some communication constraints
- For latency, check the number of processor changes

< 回 ト < 三 ト < 三 ト

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

 \Rightarrow for general mappings, latency model of Özgüner: L = (2m - 1)T, where m - 1 is the number of processor changes, and T the period of the application

 $L = 7 \times T$

Period given \Rightarrow bound on number of processor changes

Given an application, we can check if the mapping is valid, given a bound on period and latency per application:

- For period, check that each processor can handle its load computation and meet some communication constraints
- For latency, check the number of processor changes

・ 同 ト ・ 三 ト ・ 三 ト

With classical latency definition, NP-completeness of the execution scheduling, given a mapping with a period/latency objective

 \Rightarrow for general mappings, latency model of Özgüner: L = (2m - 1)T, where m - 1 is the number of processor changes, and T the period of the application

 $L = 7 \times T$

Period given \Rightarrow bound on number of processor changes

Given an application, we can check if the mapping is valid, given a bound on period and latency per application:

- For period, check that each processor can handle its load computation and meet some communication constraints
- For latency, check the number of processor changes

Optimization problems

- Minimizing one criterion:
 - Period or latency: minimize $\max_a W_a \times T_a$ or $\max_a W_a \times L_a$
 - Power: minimize $P = \sum_{u} P(u)$
- Fixing one criterion:
 - Fix the period or latency of each application \rightarrow fix an array of periods or latencies
 - Fix a bound on total power consumption P
- Multi-criteria approach: minimizing one criterion, fixing the other ones
- Energy criterion = power consumption, i.e., energy per time unit ⇒ combination power/period

Optimization problems

- Minimizing one criterion:
 - Period or latency: minimize $\max_a W_a \times T_a$ or $\max_a W_a \times L_a$
 - Power: minimize $P = \sum_{u} P(u)$
- Fixing one criterion:
 - Fix the period or latency of each application \rightarrow fix an array of periods or latencies
 - Fix a bound on total power consumption P
- Multi-criteria approach: minimizing one criterion, fixing the other ones
- Energy criterion = power consumption, i.e., energy per time unit ⇒ combination power/period

Optimization problems

- Minimizing one criterion:
 - Period or latency: minimize $\max_a W_a \times T_a$ or $\max_a W_a \times L_a$
 - Power: minimize $P = \sum_{u} P(u)$
- Fixing one criterion:
 - Fix the period or latency of each application \rightarrow fix an array of periods or latencies
 - Fix a bound on total power consumption P
- Multi-criteria approach: minimizing one criterion, fixing the other ones
- Energy criterion = power consumption, i.e., energy per time unit ⇒ combination power/period

Outline of the talk

Framework

- Application and platform
- Mapping rules
- Metrics

2 Complexity results

- Mono-criterion problems
- Bi-criteria problems
- Tri-criteria problems
- With resource sharing

3 Experiments

- Heuristics
- Experiments
- Summary

Mono-criterion complexity results

Period minimization:

	proc-hom		proc-het	
	com-hom	special-app ¹ com-hom com-het		
one-to-one	polynomial (binary search) NP-complete			NP-complete
interval	polynomial	NP-complete	NP-o	complete

Latency minimization:

	proc-hom	proc-het			
	com-hom	special-app ¹ com-hom com-het			
one-to-one	polynomial	NP-com	NP-complete		
interval	polynomial (binary search)			NP-complete	

≣ ______ 13/ 38

Mono-criterion complexity results

Period minimization:

	proc-hom		proc-het	
	com-hom	special-app ¹ com-hom com-het		
one-to-one	polync	polynomial (binary search) NP-complete		
interval	polynomial	NP-complete	NP-o	complete

Latency minimization:

	proc-hom	proc-het			
	com-hom	special-app ¹ com-hom com-het			
one-to-one	polynomial	NP-com	NP-complete		
interval	polynomial (binary search)			NP-complete	

¹ special-app:	com-hom	&	pipe-hom	
---------------------------	---------	---	----------	--

э

Latency minimization (1)

Framework Complexity Experiments Conclusion

- Problem: one-to-one mapping many applications heterogeneous platform - no communication - homogeneous pipelines - minimize max_a L_a
- Single application: greedy polynomial algorithm
- Many applications: reduction from 3-PARTITION
- **3-**PARTITION:
 - Input: 3m + 1 integers a_1, a_2, \ldots, a_{3m} and B such that $\sum_i a_i = mB$
 - Does there exist a partition I_1, \ldots, I_m of $\{1, \ldots, 3m\}$ such that for all $j \in \{1, \ldots, m\}$, $|I_j| = 3$ and $\sum_{i \in I_i} a_i = B$?

超す イヨト イヨト ニヨ

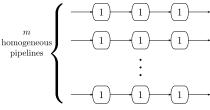
Mono-criterion Bi-criteria Tri-criteria With resource sharing

Latency minimization (2)

Framework Complexity Experiments Conclusion

• 3-PARTITION: renumbering of the *a_i* such that:

Reduction:



Can we obtain a latency $L^0 \leq B$?

• Equivalence of problems

Bi-criteria complexity results

Period/latency minimization:

Framework Complexity Experiments Conclusion

	proc-hom	proc-het		
	com-hom	special-app	com-hom	com-het
one-to-one			•	
or	polynomial	Ν	P-complete	
interval				

Power/period minimization:

	proc-hom	proc-het				
	com-hom	special-app com-hom com-het				
one-to-one	polynomia	al (minimum matching) NP-complete				
interval	polynomial	NP-complete				

Bi-criteria complexity results

Period/latency minimization:

Framework Complexity Experiments Conclusion

	proc-hom	proc-het		
	com-hom	special-app	com-hom	com-het
one-to-one			•	
or	polynomial	N	P-complete	
interval				

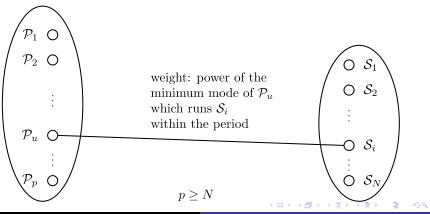
Power/period minimization:

	proc-hom	proc-het				
	com-hom	special-app com-hom com-het				
one-to-one	polynomia	I (minimum matching) NP-complete				
interval	polynomial	NP-complete				

Power/period minimization

Framework Complexity Experiments Conclusion

- Problem: one-to-one mapping many applications communication homogeneous platform - power minimization for a given array of periods
- Minimum weighted matching of a bipartite graph



Bi-criteria complexity results

Framework Complexity Experiments Conclusion

Period/latency minimization:

	proc-hom	proc-het		
	com-hom	special-app	com-hom	com-het
one-to-one				
or	polynomial	Ν	P-complete	
interval				

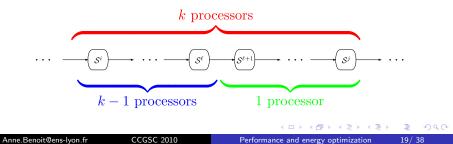
Power/period minimization:

	proc-hom	proc-het				
	com-hom	special-app com-hom com-het				
one-to-one	polynomial	I (minimum matching) NP-complete				
interval	polynomial	NP-complete				

Single application (1)

- Problem: interval mapping single application fully homogeneous platform power minimization for a given period
- P(i, j, k): minimum power to run stages S^i to S^j using exactly k processors \rightarrow looking for min_{1 \le k \le p} P(1, n, k)
- Recurrence relation:

$$\mathsf{P}(i,j,k) = \min_{1 \le \ell \le j-1} \left(\mathsf{P}(i,\ell,k-1) + \mathsf{P}(\ell+1,j,1) \right)$$



Single application (2)

•
$$P(i, i, q) = +\infty$$
 if $q > 1$

\$\mathcal{F}_i^j\$: possible powers of a processor running the stages \$\mathcal{S}^i\$ to \$\mathcal{S}^j\$, fulfilling the period constraint

$$\mathcal{F}_{i}^{j} = \left\{ P_{dyn}(s_{\ell}) + P_{stat}, \max\left(\frac{\delta^{i-1}}{b}, \frac{\sum_{k=i}^{j} w^{k}}{s_{\ell}}, \frac{\delta^{j}}{b}\right) \leq T, \ell \in \{1, \dots, m\} \right\}$$

•
$$P(i,j,1) = \begin{cases} \min \mathcal{F}_i^j & \text{if } \mathcal{F}_i^j \neq \varnothing \\ +\infty & \text{otherwise} \end{cases}$$

Many applications (1)

Framework Complexity Experiments Conclusion

- Problem: interval mapping fully homogeneous platform power minimization for given periods by application
- P_a^q : minimum power consumed by q processors so that the period constraint on the application a is met, found by the previous dynamic programming
- P(a, k): minimum power consumed by k processors on the applications $1, \ldots, a$, unknown

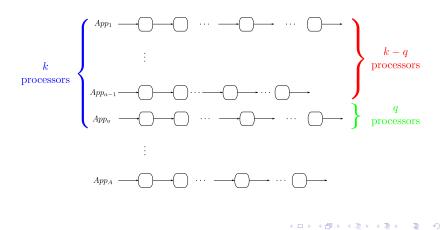
• Initialization:
$$\forall k \in \{1, \dots, p\}$$
 $P(1, k) = P_1^k$

Framework Complexity Experiments Conclusion

Mono-criterion Bi-criteria Tri-criteria With resource sharing

Many applications (2)

• Recurrence: $P(a,k) = \min_{1 \le q < k} \left(P(a-1,k-q) + P_a^q \right)$



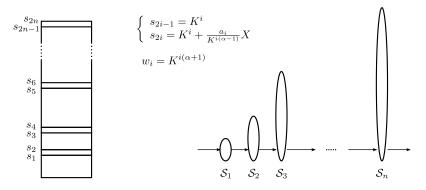
Tri-criteria complexity results

	proc-hom	proc-het		
	com-hom	special-app	com-hom	com-het
one-to-one				
or	NP-complete			
interval				

Reduction from 2-PARTITION (Instance of 2-PARTITION: $a_1, a_2, ..., a_n$ with $\sigma = \sum_{i=1}^n a_i$)

Problem instance

One-to-one mapping - fully homogeneous platform



 $P^0 = P^* + \alpha X(\sigma/2 + 1/2)$, $L^0 = L^* - X(\sigma/2 - 1/2)$, $T^0 = L^0$ where P^* and L^* are power and latency when each S_i is run at speed s_{2i-1}

Main ideas

- K big enough and X small enough so that the stage S_i must be processed at speed s_{2i-1} or s_{2i}
- For a subset \mathcal{I} of $\{1, \ldots, n\}$, if $(\mathcal{S}_i \text{ is run at speed } s_{2i} \Leftrightarrow i \in \mathcal{I})$,

$$P = P^* + \sum_{i \in \mathcal{I}} (\alpha a_i X + o(X)) \quad , \quad L = L^* - \sum_{i \in \mathcal{I}} (a_i X - o(X))$$

• Recall:

$$P^0 = P^* + lpha X(\sigma/2 + 1/2)$$
 , $L^0 = L^* - X(\sigma/2 - 1/2)$

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

And for general mappings with resource sharing?

- Exhaustive complexity study with no resource sharing: new polynomial algorithms for multiple applications and results of NP-completeness
- With the simplified latency model, tri-criteria polynomial dynamic programming algorithm with no resource sharing and speed-homogeneous platforms
- With resource sharing or speed-heterogeneous platforms, all problem instances are NP-hard, even for only period minimization

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

And for general mappings with resource sharing?

- Exhaustive complexity study with no resource sharing: new polynomial algorithms for multiple applications and results of NP-completeness
- With the simplified latency model, tri-criteria polynomial dynamic programming algorithm with no resource sharing and speed-homogeneous platforms
- With resource sharing or speed-heterogeneous platforms, all problem instances are NP-hard, even for only period minimization

Framework Complexity Experiments Conclusion Mono-criterion Bi-criteria Tri-criteria With resource sharing

And for general mappings with resource sharing?

- Exhaustive complexity study with no resource sharing: new polynomial algorithms for multiple applications and results of NP-completeness
- With the simplified latency model, tri-criteria polynomial dynamic programming algorithm with no resource sharing and speed-homogeneous platforms
- With resource sharing or speed-heterogeneous platforms, all problem instances are NP-hard, even for only period minimization

Outline of the talk

Framework

- Application and platform
- Mapping rules
- Metrics

2 Complexity results

- Mono-criterion problems
- Bi-criteria problems
- Tri-criteria problems
- With resource sharing

3 Experiments

- Heuristics
- Experiments
- Summary

4 Conclusion

э

Heuristics

Tri-criteria problem: power consumption minimization given a bound on period and latency per application, on speed heterogeneous platform

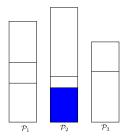
Each heuristic (except H2) exists in two variants: interval mapping without resource sharing and general mapping with resource sharing in order to evaluate the impact of processor reuse

Latency model of Özgüner: L = (2m - 1)T

- H1: random cuts
- H2: one entire application per processor (assignment problem)
- H2-split: interval splitting
- H3: two-step heuristic: choose a speed distribution and find a valid mapping (variants on both steps)

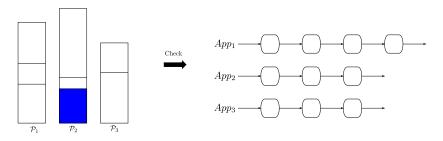
・ 同 ト ・ ヨ ト ・ ヨ ト …

Fix processor speeds

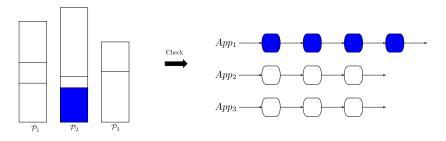


문 문 문

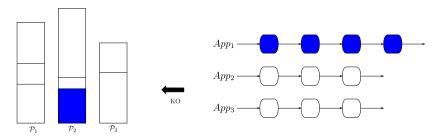
Mapping heuristic: find a valid maping



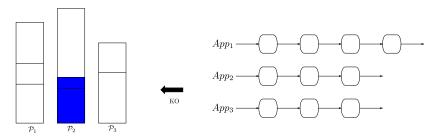
Mapping heuristic: find a valid maping



Mapping heuristic: find a valid maping

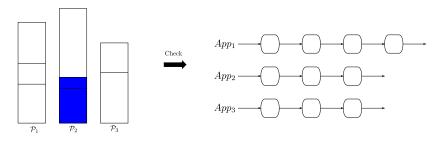


Iterate the process: increase processor speeds

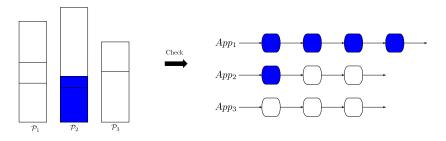


3. 3

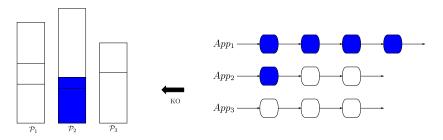
Iterate the process: increase processor speeds



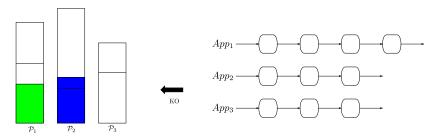
Iterate the process: increase processor speeds



Iterate the process: increase processor speeds

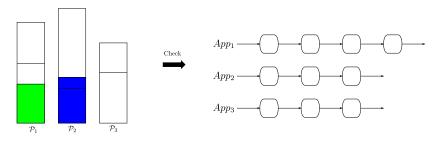


Iterate the process: increase processor speeds

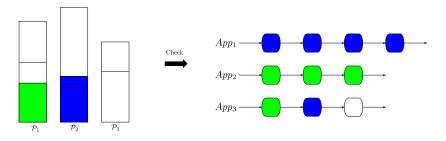


3. 3

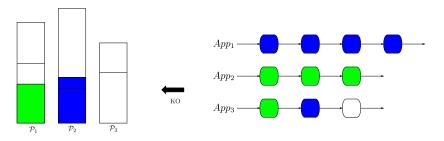
Iterate the process: increase processor speeds



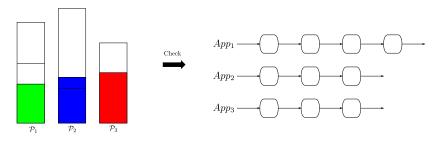
Iterate the process: increase processor speeds



Iterate the process: increase processor speeds

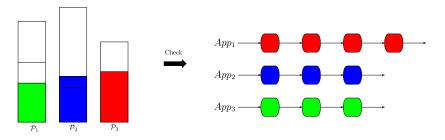


Iterate the process: increase processor speeds

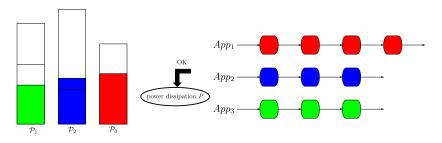


3. 3

Iterate the process: increase processor speeds



Iterate the process: increase processor speeds



Experimental plan

- Integer linear program to assess the absolute performance of the heuristics on small instances
- Small instances: two or three applications, around 15 stages per application, around 8 processors
- Execution time on 30 small instances: less than one second for all heuristics, one week for the ILP
- Each heuristic and the ILP: variant without sharing ("-n") and variant with sharing ("-r")
 - General behavior of heuristics
 - Impact of resource sharing
 - Scalability of heuristics

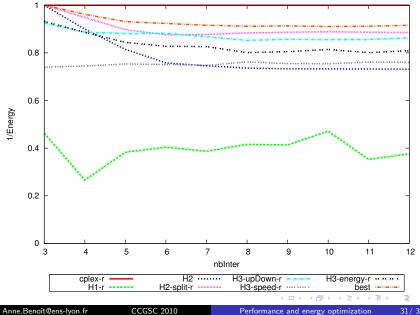
Experimental plan

- Integer linear program to assess the absolute performance of the heuristics on small instances
- Small instances: two or three applications, around 15 stages per application, around 8 processors
- Execution time on 30 small instances: less than one second for all heuristics, one week for the ILP
- Each heuristic and the ILP: variant without sharing ("-n") and variant with sharing ("-r")
 - General behavior of heuristics
 - Impact of resource sharing
 - Scalability of heuristics

Experimental plan

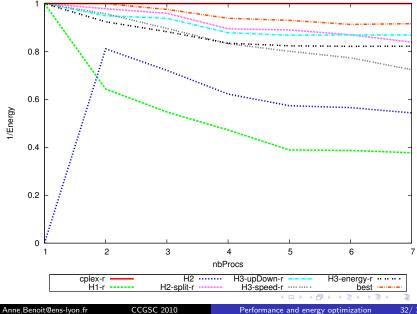
- Integer linear program to assess the absolute performance of the heuristics on small instances
- Small instances: two or three applications, around 15 stages per application, around 8 processors
- Execution time on 30 small instances: less than one second for all heuristics, one week for the ILP
- Each heuristic and the ILP: variant without sharing ("-n") and variant with sharing ("-r")
 - General behavior of heuristics
 - Impact of resource sharing
 - Scalability of heuristics

Increasing latency



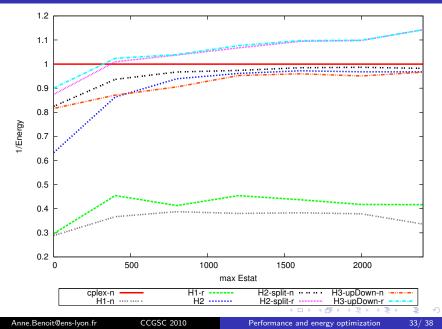
31/38

Increasing number of processors



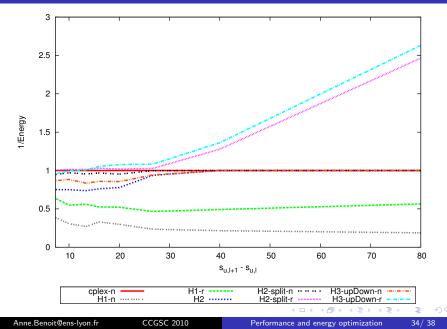
32/38

Impact of static power

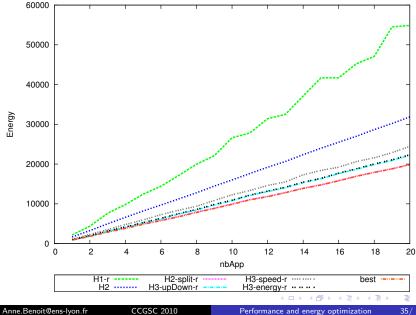


Heuristics Experiments Summary

Impact of mode distribution



Scalability



35/38

Summary of experiments

- Efficient heuristics: best heuristic always at 90% of the optimal solution on small instances
- Supremacy of H2-split-r, better in average, and gets even better when problem instances get larger
- H3 has smaller execution time (one second versus three minutes for 20 applications), ILP not usable in practice
- Resource sharing becomes crucial with important static power (use fewer processors) or with distant modes (better use of all available speed)

Summary of experiments

- Efficient heuristics: best heuristic always at 90% of the optimal solution on small instances
- Supremacy of H2-split-r, better in average, and gets even better when problem instances get larger
- H3 has smaller execution time (one second versus three minutes for 20 applications), ILP not usable in practice
- Resource sharing becomes crucial with important static power (use fewer processors) or with distant modes (better use of all available speed)

Outline of the talk

Framework

- Application and platform
- Mapping rules
- Metrics

2 Complexity results

- Mono-criterion problems
- Bi-criteria problems
- Tri-criteria problems
- With resource sharing

3 Experiments

- Heuristics
- Experiments
- Summary

э

Conclusion and future work

• Exhaustive complexity study

- new polynomial algorithms
- new NP-completeness proofs
- impact of model on complexity (tri-criteria homogeneous)

Experimental study

- efficient heuristics
- impact of resource reuse

• Current/future work

- continuous speeds
- approximation algorithms

Conclusion and future work

Exhaustive complexity study

- new polynomial algorithms
- new NP-completeness proofs
- impact of model on complexity (tri-criteria homogeneous)

Experimental study

- efficient heuristics
- impact of resource reuse

• Current/future work

- continuous speeds
- approximation algorithms

Conclusion and future work

Exhaustive complexity study

- new polynomial algorithms
- new NP-completeness proofs
- impact of model on complexity (tri-criteria homogeneous)

Experimental study

- efficient heuristics
- impact of resource reuse

• Current/future work

- continuous speeds
- approximation algorithms