Introduction

Tri-criteria

Checkpointin

Conclusion

Energy-efficient scheduling

Guillaume Aupy¹, Anne Benoit^{1,2}, Paul Renaud-Goud¹ and Yves Robert^{1,2,3}

Ecole Normale Supérieure de Lyon, France
 Institut Universitaire de France
 University of Tennessee Knoxville, USA

Anne.Benoit@ens-lyon.fr http://graal.ens-lyon.fr/~abenoit/

Dagstuhl Seminar 13381, September 2013 Algorithms and Scheduling Techniques for Exascale Systems

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
Energy: a	crucial is	ssue			

- Data centers
 - 330,000,000,000 Watts hour in 2007: more than France
 - 533,000,000 tons of CO_2 : in the top ten countries
- Exascale computers (10¹⁸ floating operations per second)
 - Need effort for feasibility
 - 1% of power saved \rightsquigarrow 1 million dollar per year
- Lambda user
 - 1 billion personal computers
 - 500, 000, 000, 000, 000 Watts hour per year
- $\bullet \rightsquigarrow$ crucial for both environmental and economical reasons

Introduction

lack-reclaiming

Tri-criteria

Checkpoi

Conclusion

Energy: a crucial issue

 Data centers 330,000,00 hore than France • 533,000,00 h countries Exascale computies bns per second) Need effort • 1% of powe r year Lambda user 1 billion per • 500,000,00 ear

 $\bullet \sim$ crucial for both environmental and economical reasons

 Introduction
 Greedy
 Slack-reclaiming
 Tri-criteria
 Checkpointing
 Conclusion

 Power dissipation of a processor

 • $P = P_{leak} + P_{dyn}$ • P_{leak} : constant
 • P_{leak} : constant

 • $P_{dyn} = B \times V^2 \times f_{dyn}$ • $P_{dyn} = f_{dyn}$ • $P_{dyn} = f_{dyn}$

voltage

• Standard approximation: $P = P_{\text{leak}} + f^{\alpha}$

 $(2 \le \alpha \le 3)$

frequency

• Energy $E = P \times time$

constant

- Dynamic Voltage and Frequency Scaling
 - Real life: discrete speeds
 - Continuous speeds can be emulated

1 Revisiting the greedy algorithm for independent jobs

- 2 Reclaiming the slack of a schedule
- 3 Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption

5 Conclusion

()

- Scheduling independent jobs
- GREEDY algorithm: assign next job to least-loaded processor
- Two variants:
 - ONLINE-GREEDY: assign jobs on the fly OFFLINE-GREEDY: sort jobs before execution

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
Classical	problem	1			

- *n* independent jobs $\{J_i\}_{1 \le i \le n}$, $a_i = \text{size of } J_i$
- p processors $\{\mathcal{P}_q\}_{1 \le q \le p}$
- allocation function $alloc: \{J_i\} \rightarrow \{\mathcal{P}_q\}$
- load of $\mathcal{P}_q = load(q) = \sum_{\{i \mid alloc(J_i) = \mathcal{P}_q\}} a_i$

 $\max_{1 \le q \le p}$ load(q)

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
ONLINE	C-GREEI	DY			

Theorem

ONLINE-GREEDY is a $2 - \frac{1}{p}$ approximation (tight bound)

ONLINE-GREEDY

Optimal solution

- 4 目 ト - 4 日 ト

3

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
OFFLINE	-Grei	EDY			

Theorem

OFFLINE-GREEDY is a $\frac{4}{3} - \frac{1}{3p}$ approximation (tight bound)

OffLine-Greedy

Optimal solution

イロト 不得 トイヨト イヨト

э

- Minimizing (dynamic) power consumption:
 - \Rightarrow use slowest possible speed

$$P_{dyn} = f^{\alpha} = f^3$$

• Bi-criteria problem:

Given bound M = 1 on execution time, minimize power consumption while meeting the bound

IntroductionGreedySlack-reclaimingTri-criteriaCheckpointingConclusionBi-criteriaproblemstatement

- *n* independent jobs $\{J_i\}_{1 \le i \le n}$, $a_i = \text{size of } J_i$
- p processors $\{\mathcal{P}_q\}_{1 \leq q \leq p}$
- allocation function $alloc: \{J_i\} \rightarrow \{\mathcal{P}_q\}$

• load of
$$\mathcal{P}_q = \mathit{load}(q) = \sum_{\{i \mid \mathit{alloc}(J_i) = \mathcal{P}_q\}} a_i$$

 $\left({\it load}(q)
ight)^3$ power dissipated by ${\cal P}_q$

$$\begin{array}{cc} \sum_{q=1}^{p} (\mathit{load}(q))^3 & \max_{1 \leq q \leq p} \mathit{load}(q) \\ \textbf{Power} & \textbf{Execution time} \end{array}$$

(B)

• Strategy: assign next job to least-loaded processor

Natural for execution-time

- smallest increment of maximum load
- minimize objective value for currently processed jobs

Natural for power too

- smallest increment of total power (convexity)
- minimize objective value for currently processed jobs

Introduction

Greedy

lack-reclaiming

Tri-criteria

Checkpoir

Conclusion

... but different optimal solution!

- Makespan 10, power 2531.441
- Makespan 10.1, power 2488.301

- ∢ ∃ ▶

$$N_r = \left(\sum_{q=1}^p (load(q))^r\right)^{rac{1}{r}}$$

Execution time N_∞ = lim_{r→∞} N_r = max_{1≤q≤p} load(q)
Power (N₃)³

э

• • = • • = •

- N_2 , OffLine-Greedy
 - Chandra and Wong 1975: upper and lower bounds
 - Leung and Wei 1995: tight approximation factor
- N_3 , OffLine-Greedy
 - Chandra and Wong 1975: upper and lower bounds

N_r

- Alon et al. 1997: PTAS for offline problem
- Avidor et al. 1998: upper bound $2 \Theta(\frac{\ln r}{r})$ for ONLINE-GREEDY

N₃

- Tight approximation factor for ONLINE-GREEDY
- Tight approximation factor for OFFLINE-GREEDY

• Greedy for power fully solved!

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion Approximation for ONLINE-GREEDY

$$\frac{P_{\text{online}}}{P_{\text{opt}}} \leq \underbrace{\frac{\frac{1}{p^3} \left((1 + (p-1)\beta)^3 + (p-1) (1-\beta)^3 \right)}{\beta^3 + \frac{(1-\beta)^3}{(p-1)^2}}}_{f_p^{(\text{on})}(\beta)}$$

Theorem

- $f_p^{(on)}$ has a single maximum in $\beta_p^{(on)} \in [\frac{1}{p}, 1]$
- ONLINE-GREEDY is a $f_p^{(on)}(\beta_p^{(on)})$ approximation
- This approximation factor is tight

 Introduction
 Greedy
 Slack-reclaiming
 Tri-criteria
 Checkpointing
 Conclusion

 Approximation for
 OFFLINE-GREEDY
 Conclusion
 Conclusion

$$\frac{P_{\text{offline}}}{P_{\text{opt}}} \leq \underbrace{\frac{\frac{1}{p^3} \left(\left(1 + \frac{(p-1)\beta}{3}\right)^3 + (p-1) \left(1 - \frac{\beta}{3}\right)^3 \right)}{\beta^3 + \frac{(1-\beta)^3}{(p-1)^2}}}_{f_p^{(\text{off})}(\beta)}$$

Theorem

- $f_p^{(\text{off})}$ has a single maximum in $\beta_p^{(\text{off})} \in [\frac{1}{p}, 1]$
- OFFLINE-GREEDY is a $f_p^{(\mathrm{off})}(eta_p^{(\mathrm{off})})$ approximation
- This approximation factor is tight

p	ONLINE-GREEDY	OffLine-Greedy
2	1.866	1.086
3	2.008	1.081
4	2.021	1.070
5	2.001	1.061
6	1.973	1.054
7	1.943	1.048
8	1.915	1.043
64	1.461	1.006
512	1.217	1.00083
2048	1.104	1.00010
224	1.006	1.00000025

2

∃ → (∃ →

< 一型

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion
Large values of p

Asymptotic approximation factor

ONLINE-GREEDY $\frac{4}{3}$ 1 OffLine-Greedy 2 1 \uparrow optimal

э

A B F A B F

< 🗗 🕨

- Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- 3 Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption

5 Conclusion

< 3 > < 3 >

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
Motivatio	n				

- Mapping of tasks is given (ordered list for each processor and dependencies between tasks)
- If deadline not tight, why not take our time?
- Slack: unused time slots

Goal: efficiently use speed scaling (DVFS)

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
Speed m	nodels				

		Change speed		
		Anytime	Beginning of tasks	
Type of speeds	[s _{min} , s _{max}]	Continuous	-	
	$\{s_1,, s_m\}$	VDD-HOPPING	DISCRETE, INCREMENTAL	

- CONTINUOUS: great for theory
- Other "discrete" models more realistic
- VDD-HOPPING simulates CONTINUOUS
- INCREMENTAL is a special case of DISCRETE with equally-spaced speeds: for all $1 \le q < m$, $s_{q+1} s_q = \delta$

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
Tasks					

• DAG:
$$\mathcal{G} = (V, E)$$

• $n = |V|$ tasks T_i of weight $w_i = \int_{t_i - d_i}^{t_i} s_i(t) dt$

• d_i : task duration; t_i : time of end of execution of T_i

Parameters for T_i scheduled on processor p_j

3 1 4 3 1

Assume T_i is executed at constant speed s_i

$$d_i = \mathcal{E}xe(w_i, s_i) = \frac{w_i}{s_i}$$

$$t_j + d_i \leq t_i$$
 for each $(T_j, T_i) \in E$

Constraint on makespan: $t_i \leq D$ for each $T_i \in V$

Energy to execute task T_i once at speed s_i :

$$E_i(s_i) = d_i s_i^3 = w_i s_i^2$$

 \rightarrow Dynamic part of classical energy models

Bi-criteria problem

- Constraint on deadline: $t_i \leq D$ for each $T_i \in V$
- Minimize energy consumption: $\sum_{i=1}^{n} w_i \times s_i^2$

Minimizing energy with fixed mapping on *p* processors:

- **CONTINUOUS**: Polynomial for some special graphs, geometric optimization in the general case
- **DISCRETE:** NP-complete (reduction from 2-partition); approximation algorithm
- INCREMENTAL: NP-complete (reduction from 2-partition); approximation algorithm
- VDD-HOPPING: Polynomial (linear programming)

- \bullet Results for $\operatorname{CONTINUOUS},$ but not very practical
- In real life, DISCRETE model (DVFS)
- VDD-HOPPING: good alternative, mixing two consecutive modes, smoothes out the discrete nature of modes
- INCREMENTAL: alternate (and simpler in practice) solution, with one unique speed during task execution; can be made arbitrarily efficient

- 1 Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- 3 Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption

5 Conclusion

()

- DAG: $\mathcal{G} = (V, E)$
- n = |V| tasks T_i of weight w_i

- p identical processors fully connected
- DVFS: interval of available continuous speeds [s_{min}, s_{max}]
- One speed per task

• (I will not discuss results for the VDD-HOPPING model)

Execution time of T_i at speed s_i :

$$d_i = \frac{w_i}{s_i}$$

If T_i is executed twice on the same processor at speeds s_i and s'_i :

$$d_i = \frac{w_i}{s_i} + \frac{w_i}{s'_i}$$

Constraint on makespan: end of execution before deadline *D*

- Transient fault: local, no impact on the rest of the system
- Reliability R_i of task T_i as a function of speed s
- Threshold reliability (and hence speed srel)

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion

Re-execution: a task is re-executed on the same processor, just after its first execution

With two executions, reliability R_i of task T_i is:

 $R_i = 1 - (1 - R_i(s_i))(1 - R_i(s'_i))$

Constraint on reliability: RELIABILITY: $R_i \ge R_i(s_{rel})$, and at most one re-execution

• Energy to execute task T_i once at speed s_i :

$$E_i(s_i) = w_i s_i^2$$

 \rightarrow Dynamic part of classical energy models

• With re-executions, it is natural to take the worst-case scenario:

ENERGY:
$$E_i = w_i \left(s_i^2 + s_i'^2\right)$$

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
TRI-CRIT	C-CONT				

Given
$$\mathcal{G} = (V, E)$$

Find

- A schedule of the tasks
- A set of tasks $I = \{i \mid T_i \text{ is executed twice}\}$
- Execution speed s_i for each task T_i
- Re-execution speed s'_i for each task in I

such that

$$\sum_{i\in I} w_i(s_i^2+s_i'^2)+\sum_{i\notin I} w_is_i^2$$

is minimized, while meeting reliability and deadline constraints

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
Complexit	y results				

- One speed per task
- Re-execution at same speed as first execution, i.e., $s_i = s'_i$

- TRI-CRIT-CONT is NP-hard even for a linear chain, but not known to be in NP (because of CONTINUOUS model)
- Polynomial-time solution for a fork

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion Energy-reducing heuristics

Two steps:

- Mapping (NP-hard) \rightarrow List scheduling
- Speed scaling + re-execution (NP-hard) \rightarrow Energy reducing

- The list-scheduling heuristic maps tasks onto processors at speed s_{max} , and we keep this mapping in step two
- Step two = slack reclamation! Use of deceleration and re-execution

• Deceleration: select a set of tasks that we execute at speed $\max(s_{rel}, s_{max} \frac{\max_{i=1.n} t_i}{D})$: slowest possible speed meeting both reliability and deadline constraints

• Re-execution: greedily select tasks for re-execution

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion
Super-weight (SW) of a task

- SW: sum of the weights of the tasks (including *T_i*) whose execution interval is included into *T_i*'s execution interval
- SW of task slowed down = estimation of the total amount of work that can be slowed down together with that task

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
Selected h	neuristics				

- A.SUS-Crit: efficient on DAGs with low degree of parallelism
 - Set the speed of every task to $\max(s_{rel}, s_{\max} \frac{\max_{i=1..n} t_i}{D})$
 - Sort the tasks of every *critical path* according to their **SW** and try to re-execute them
 - Sort all the tasks according to their **weight** and try to re-execute them
- **B.SUS-Crit-Slow**: good for highly parallel tasks: re-execute, then decelerate
 - Sort the tasks of every *critical path* according to their **SW** and try to re-execute them. If not possible, then try to slow them down
 - Sort all tasks according to their **weight** and try to re-execute them. If not possible, then try to slow them down

We compare the impact of:

- the number of processors p
- the ratio D of the deadline over the minimum deadline D_{\min} (given by the list-scheduling heuristic at speed s_{\max})

on the output of each heuristic

Results normalized by heuristic running each task at speed s_{max} ; the lower the better

With increasing p, D = 1.2 (left), D = 2.4 (right)

- A better when number of processors is small
- B better when number of processors is large
- Superiority of B for tight deadlines: decelerates critical tasks that cannot be re-executed

- Tri-criteria energy/makespan/reliability optimization problem
- Various theoretical results
- Two-step approach for polynomial-time heuristics:
 - List-scheduling heuristic
 - Energy-reducing heuristics
- Two complementary energy-reducing heuristics for TRI-CRIT-CONT

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
Outline					

- Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- 3 Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption

5 Conclusion

- Execution of a divisible task (W operations)
- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy given a deadline bound
- Decisions before execution:
 - Chunks: how many (n)? which sizes (W_i for chunk i)?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?

- Execution of a divisible task (W operations)
- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy given a deadline bound
- Decisions before execution:
 - Chunks: how many (n)? which sizes (W_i for chunk i)?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?

- Execution of a divisible task (W operations)
- Failures may occur
 - Transient faults
 - Resilience through checkpointing
- Objective: minimize expected energy given a deadline bound
- Decisions before execution:
 - Chunks: how many (n)? which sizes (W_i for chunk i)?
 - Speeds of each chunk: first run (s_i) ? re-execution (σ_i) ?

 Introduction
 Greedy
 Slack-reclaiming
 Tri-criteria
 Checkpointing
 Conclusion

 Summary of results:
 single chunk
 Checkpointing
 Conclusion

- Single speed
 - $s \mapsto \mathbb{E}(E)$ convex (expected energy consumption)
 - $s \mapsto \mathbb{E}(T)$ (expected execution time) and $s \mapsto T_{wc}$ (worst-case execution time) decreasing

 \rightarrow Expression of *s* and $\mathbb{E}(E)$ (function of λ, W, s, E_c, T_c)

- Multiple speeds
 - Energy minimized when deadline tight
 - $\rightsquigarrow \sigma$ expressed as a function of s
 - \rightarrow Minimization of single-variable function

 Introduction
 Greedy
 Slack-reclaiming
 Tri-criteria
 Checkpointing
 Conclusion

 Summary of results:
 multiple chunks
 Checkpointing
 Conclusion

- Single speed
 - Equal-sized chunks, executed at same speed
 - Bound on s given n
 - \rightarrow Minimization of double-variable function

- Multiple speeds
 - Conjecture: equal-sized chunks, same first-execution / re-execution speeds
 - σ as a function of s, bound on s given n
 - \rightarrow Minimization of double-variable function

Introduction	Greedy	Slack-reclaiming	Tri-criteria	Checkpointing	Conclusion
Simulation	n setting	;s			

- Large set of simulations: illustrate differences between models
- Maple software to solve problems
- \bullet We plot relative energy consumption as a function of λ
 - The lower the better
 - Given a deadline constraint (hard or expected), normalize with the result of single-chunk single-speed
 - Impact of the constraint: normalize expected deadline with hard deadline
- Parameters varying within large ranges

 Introduction
 Greedy
 Slack-reclaiming
 Tri-criteria
 Checkpointing
 Conclusion

 Comparison with single-chunk single-speed

 </td

- Results identical for any value of W/D
- For expected deadline, with small λ (< 10⁻²), using multiple chunks or multiple speeds do not improve energy ratio: re-execution term negligible; increasing λ: improvement with multiple chunks
- For hard deadline, better to run at high speed during second execution: use multiple speeds; use multiple chunks if frequent failures

Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion Expected vs hard deadline constraint

- Important differences for single speed models, confirming previous conclusions: with hard deadline, use multiple speeds
- Multiple speeds: no difference for small λ: re-execution at maximum speed has little impact on expected energy consumption; increasing λ: more impact of re-execution, and expected deadline may use slower re-execution speed, hence reducing energy consumption

- 1 Revisiting the greedy algorithm for independent jobs
- 2 Reclaiming the slack of a schedule
- 3 Tri-criteria problem: execution time, reliability, energy
- 4 Checkpointing and energy consumption

< 3 > < 3 >

- ONLINE-GREEDY and OFFLINE-GREEDY for power: tight approximation factor for any *p*, extends long series of papers and completely solves *N*₃ minimization problem
- Different energy models, from continuous to discrete (through VDD-hopping and incremental)
- Tri-criteria heuristics with re-execution to deal with reliability
- Checkpointing techniques for reliability while minimizing energy consumption

Introduction

reedv

lack-reclaiming

Tri-criteri

Checkp

Conclusion

What we had:

Energy-efficient scheduling + frequency scaling

What we aim at:

Anne.Benoit@ens-lyon.fr

Dagstuhl 2013

Energy-efficient scheduling