
Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy-efficient scheduling

Guillaume Aupy1, Anne Benoit1,2,
Paul Renaud-Goud1 and Yves Robert1,2,3

1. Ecole Normale Supérieure de Lyon, France
2. Institut Universitaire de France

3. University of Tennessee Knoxville, USA

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/~abenoit/

Dagstuhl Seminar 13381, September 2013
Algorithms and Scheduling Techniques for Exascale Systems

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 1/ 52

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/


Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy: a crucial issue

Data centers

330, 000, 000, 000 Watts hour in 2007: more than France
533, 000, 000 tons of CO2: in the top ten countries

Exascale computers (1018 floating operations per second)

Need effort for feasibility
1% of power saved ; 1 million dollar per year

Lambda user

1 billion personal computers
500, 000, 000, 000, 000 Watts hour per year

; crucial for both environmental and economical reasons

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 2/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy: a crucial issue

Data centers

330, 000, 000, 000 Watts hour in 2007: more than France
533, 000, 000 tons of CO2: in the top ten countries

Exascale computers (1018 floating operations per second)

Need effort for feasibility
1% of power saved ; 1 million dollar per year

Lambda user

1 billion personal computers
500, 000, 000, 000, 000 Watts hour per year

; crucial for both environmental and economical reasons

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 2/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Power dissipation of a processor

P = Pleak + Pdyn

• Pleak: constant

• Pdyn = B × V 2 × f

constant
supply
voltage

frequency

Standard approximation: P = Pleak + f α (2 ≤ α ≤ 3)

Energy E = P × time

Dynamic Voltage and Frequency Scaling

Real life: discrete speeds
Continuous speeds can be emulated

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 3/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Outline

1 Revisiting the greedy algorithm for independent jobs

2 Reclaiming the slack of a schedule

3 Tri-criteria problem: execution time, reliability, energy

4 Checkpointing and energy consumption

5 Conclusion

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 4/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Framework

Scheduling independent jobs

Greedy algorithm: assign next job to least-loaded processor

Two variants:
OnLine-Greedy: assign jobs on the fly
OffLine-Greedy: sort jobs before execution

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 5/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Classical problem

n independent jobs {Ji}1≤i≤n, ai = size of Ji

p processors {Pq}1≤q≤p

allocation function alloc : {Ji} → {Pq}
load of Pq = load(q) =

∑
{i | alloc(Ji )=Pq} ai

P1

load(1)

a1 a10 a3 a13

P2 a7 a6

P3 a9 a12 a8

P4 a4

P5 a2 a11 a5

Execution time:

max1≤q≤p load(q)

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 6/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

OnLine-Greedy

Theorem

OnLine-Greedy is a 2− 1
p approximation (tight bound)

OnLine-Greedy Optimal solution

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 7/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

OffLine-Greedy

Theorem

OffLine-Greedy is a 4
3 −

1
3p approximation (tight bound)

OffLine-Greedy Optimal solution

—

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 8/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Bi-criteria problem

Minimizing (dynamic) power consumption:
⇒ use slowest possible speed Pdyn = f α = f 3

Bi-criteria problem:
Given bound M = 1 on execution time,
minimize power consumption while meeting the bound

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 9/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Bi-criteria problem statement

n independent jobs {Ji}1≤i≤n, ai = size of Ji

p processors {Pq}1≤q≤p

allocation function alloc : {Ji} → {Pq}
load of Pq = load(q) =

∑
{i | alloc(Ji )=Pq} ai

(load(q))3 power dissipated by Pq

∑p
q=1 (load(q))3 max1≤q≤p load(q)

Power Execution time

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 10/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Same Greedy algorithm . . .

Strategy: assign next job to least-loaded processor

Natural for execution-time

smallest increment of maximum load
minimize objective value for currently processed jobs

Natural for power too

smallest increment of total power (convexity)
minimize objective value for currently processed jobs

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 11/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

. . . but different optimal solution!

Makespan 10, power 2531.441

Makespan 10.1, power 2488.301

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 12/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Greedy and Lr norms

Nr =

 p∑
q=1

(load(q))r

 1
r

Execution time N∞ = limr→∞Nr = max1≤q≤p load(q)

Power (N3)3

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 13/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Known results

N2, OffLine-Greedy

Chandra and Wong 1975: upper and lower bounds

Leung and Wei 1995: tight approximation factor

N3, OffLine-Greedy

Chandra and Wong 1975: upper and lower bounds

Nr

Alon et al. 1997: PTAS for offline problem

Avidor et al. 1998: upper bound 2−Θ( ln r
r ) for

OnLine-Greedy

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 14/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Contribution

N3

Tight approximation factor for OnLine-Greedy

Tight approximation factor for OffLine-Greedy

Greedy for power fully solved!

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 15/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Approximation for OnLine-Greedy

Ponline

Popt
≤

1
p3

(
(1 + (p − 1)β)3 + (p − 1) (1− β)3

)
β3 + (1−β)3

(p−1)2︸ ︷︷ ︸
f

(on)
p (β)

Theorem

f
(on)
p has a single maximum in β

(on)
p ∈ [ 1

p , 1]

OnLine-Greedy is a f
(on)
p (β

(on)
p ) approximation

This approximation factor is tight

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 16/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Approximation for OffLine-Greedy

Poffline

Popt
≤

1
p3

((
1 + (p−1)β

3

)3
+ (p − 1)

(
1− β

3

)3
)

β3 + (1−β)3

(p−1)2︸ ︷︷ ︸
f

(off)
p (β)

Theorem

f
(off)
p has a single maximum in β

(off)
p ∈ [ 1

p , 1]

OffLine-Greedy is a f
(off)
p (β

(off)
p ) approximation

This approximation factor is tight

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 17/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Numerical values of approximation ratios

p OnLine-Greedy OffLine-Greedy
2 1.866 1.086
3 2.008 1.081
4 2.021 1.070
5 2.001 1.061
6 1.973 1.054
7 1.943 1.048
8 1.915 1.043

64 1.461 1.006
512 1.217 1.00083

2048 1.104 1.00010
224 1.006 1.000000025

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 18/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Large values of p

Asymptotic approximation factor

OnLine-Greedy 4
3 1

OffLine-Greedy 2 1
↑

optimal

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 19/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Outline

1 Revisiting the greedy algorithm for independent jobs

2 Reclaiming the slack of a schedule

3 Tri-criteria problem: execution time, reliability, energy

4 Checkpointing and energy consumption

5 Conclusion

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 20/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Motivation

Mapping of tasks is given (ordered list for each processor and
dependencies between tasks)

If deadline not tight, why not take our time?

Slack: unused time slots

Goal: efficiently use speed scaling (DVFS)

D D

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 21/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Speed models

Change speed
Anytime Beginning of tasks

Type of speeds
[smin, smax] Continuous -
{s1, ..., sm} Vdd-Hopping Discrete, Incremental

Continuous: great for theory

Other ”discrete” models more realistic

Vdd-Hopping simulates Continuous

Incremental is a special case of Discrete with
equally-spaced speeds: for all 1 ≤ q < m, sq+1 − sq = δ

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 22/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Tasks

DAG: G = (V ,E )

n = |V | tasks Ti of weight wi =
∫ ti
ti−di si (t)dt

di : task duration; ti : time of end of execution of Ti

time

pj · · · · · ·

di

ti

si (t)

Parameters for Ti scheduled on processor pj

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 23/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Makespan

Assume Ti is executed at constant speed si

di = Exe(wi , si ) =
wi

si

tj + di ≤ ti for each (Tj ,Ti ) ∈ E

Constraint on makespan:
ti ≤ D for each Ti ∈ V

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 24/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy

Energy to execute task Ti once at speed si :

Ei (si ) = di s
3
i = wi s

2
i

→ Dynamic part of classical energy models

Bi-criteria problem

Constraint on deadline: ti ≤ D for each Ti ∈ V

Minimize energy consumption:
∑n

i=1 wi × s2
i

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 25/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Complexity results

Minimizing energy with fixed mapping on p processors:

Continuous: Polynomial for some special graphs, geometric
optimization in the general case

Discrete: NP-complete (reduction from 2-partition);
approximation algorithm

Incremental: NP-complete (reduction from 2-partition);
approximation algorithm

Vdd-Hopping: Polynomial (linear programming)

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 26/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Summary

Results for Continuous, but not very practical

In real life, Discrete model (DVFS)

Vdd-Hopping: good alternative, mixing two consecutive
modes, smoothes out the discrete nature of modes

Incremental: alternate (and simpler in practice) solution,
with one unique speed during task execution; can be made
arbitrarily efficient

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 27/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Outline

1 Revisiting the greedy algorithm for independent jobs

2 Reclaiming the slack of a schedule

3 Tri-criteria problem: execution time, reliability, energy

4 Checkpointing and energy consumption

5 Conclusion

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 28/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Framework

DAG: G = (V ,E )

n = |V | tasks Ti of weight wi

p identical processors fully connected

DVFS: interval of available continuous speeds [smin, smax]

One speed per task

(I will not discuss results for the Vdd-Hopping model)

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 29/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Makespan

Execution time of Ti at speed si :

di =
wi

si

If Ti is executed twice on the same processor at speeds si and s ′i :

di =
wi

si
+

wi

s ′i

Constraint on makespan:
end of execution before deadline D

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 30/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Reliability

Transient fault: local, no impact on the rest of the system

Reliability Ri of task Ti as a function of speed s

Threshold reliability (and hence speed srel)

s

Ri (s)

1

smin smaxsrel

Ri (srel)

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 31/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Re-execution: a task is re-executed on the same processor, just
after its first execution

With two executions, reliability Ri of task Ti is:

Ri = 1− (1− Ri (si ))(1− Ri (s ′i ))

Constraint on reliability:
Reliability: Ri ≥ Ri (srel), and at most one re-execution

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 32/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy

Energy to execute task Ti once at speed si :

Ei (si ) = wi s
2
i

→ Dynamic part of classical energy models

With re-executions, it is natural to take the worst-case
scenario:

Energy : Ei = wi

(
s2
i + s ′2i

)

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 33/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Tri-Crit-Cont

Given G = (V ,E )
Find

A schedule of the tasks

A set of tasks I = {i | Ti is executed twice}
Execution speed si for each task Ti

Re-execution speed s ′i for each task in I

such that ∑
i∈I

wi (s2
i + s ′2i ) +

∑
i /∈I

wi s
2
i

is minimized, while meeting reliability and deadline constraints

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 34/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Complexity results

One speed per task

Re-execution at same speed as first execution, i.e., si = s ′i

Tri-Crit-Cont is NP-hard even for a linear chain, but not
known to be in NP (because of Continuous model)

Polynomial-time solution for a fork

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 35/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy-reducing heuristics

Two steps:

Mapping (NP-hard) → List scheduling

Speed scaling + re-execution (NP-hard) → Energy reducing

The list-scheduling heuristic maps tasks onto processors at
speed smax, and we keep this mapping in step two

Step two = slack reclamation! Use of deceleration and
re-execution

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 36/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Deceleration and re-execution

Deceleration: select a set of tasks that we execute at speed
max(srel, smax

maxi=1..n ti
D ): slowest possible speed meeting both

reliability and deadline constraints

Re-execution: greedily select tasks for re-execution

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 37/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Super-weight (SW) of a task

SW: sum of the weights of the tasks (including Ti ) whose
execution interval is included into Ti ’s execution interval

SW of task slowed down = estimation of the total amount of
work that can be slowed down together with that task

time

p1

p2

p3

p4 Ti

s e

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 38/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Selected heuristics

A.SUS-Crit: efficient on DAGs with low degree of parallelism

Set the speed of every task to max(srel, smax
maxi=1..n ti

D )
Sort the tasks of every critical path according to their SW and
try to re-execute them
Sort all the tasks according to their weight and try to
re-execute them

B.SUS-Crit-Slow: good for highly parallel tasks: re-execute,
then decelerate

Sort the tasks of every critical path according to their SW and
try to re-execute them. If not possible, then try to slow them
down
Sort all tasks according to their weight and try to re-execute
them. If not possible, then try to slow them down

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 39/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Results

We compare the impact of:

the number of processors p

the ratio D of the deadline over the minimum deadline Dmin

(given by the list-scheduling heuristic at speed smax)

on the output of each heuristic

Results normalized by heuristic running each task at speed smax;
the lower the better

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 40/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Results

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

E
g 

/ E
g_

fm
ax

Number of processors

A.SUS-Crit
B.SUS-Crit-Slow

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90 100

E
g 

/ E
g_

fm
ax

Number of processors

A.SUS-Crit
B.SUS-Crit-Slow

With increasing p, D = 1.2 (left), D = 2.4 (right)

A better when number of processors is small

B better when number of processors is large

Superiority of B for tight deadlines: decelerates critical tasks
that cannot be re-executed

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 40/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Summary

Tri-criteria energy/makespan/reliability optimization problem

Various theoretical results

Two-step approach for polynomial-time heuristics:

List-scheduling heuristic
Energy-reducing heuristics

Two complementary energy-reducing heuristics for
Tri-Crit-Cont

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 41/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Outline

1 Revisiting the greedy algorithm for independent jobs

2 Reclaiming the slack of a schedule

3 Tri-criteria problem: execution time, reliability, energy

4 Checkpointing and energy consumption

5 Conclusion

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 42/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Framework

Execution of a divisible task (W operations)

Failures may occur

Transient faults
Resilience through checkpointing

Objective: minimize expected energy given a deadline bound

Decisions before execution:

Chunks: how many (n)? which sizes (Wi for chunk i)?
Speeds of each chunk: first run (si )? re-execution (σi )?

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 43/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Framework

Execution of a divisible task (W operations)

Failures may occur

Transient faults
Resilience through checkpointing

Objective: minimize expected energy given a deadline bound

Decisions before execution:

Chunks: how many (n)? which sizes (Wi for chunk i)?
Speeds of each chunk: first run (si )? re-execution (σi )?

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 43/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Framework

Execution of a divisible task (W operations)

Failures may occur

Transient faults
Resilience through checkpointing

Objective: minimize expected energy given a deadline bound

Decisions before execution:

Chunks: how many (n)? which sizes (Wi for chunk i)?
Speeds of each chunk: first run (si )? re-execution (σi )?

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 43/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Models

Chunks

Single chunk Multiple chunks
VS

Speed per chunk

Single speed Multiple speeds

VS

Deadline bound

Hard (∼ Worst-case) Soft (Expected)

VS

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 44/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Summary of results: single chunk

Single speed

s 7→ E(E ) convex (expected energy consumption)
s 7→ E(T ) (expected execution time) and s 7→ Twc (worst-case
execution time) decreasing

→ Expression of s and E(E ) (function of λ,W , s,Ec ,Tc)

Multiple speeds

Energy minimized when deadline tight
; σ expressed as a function of s

→ Minimization of single-variable function

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 45/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Summary of results: multiple chunks

Single speed

Equal-sized chunks, executed at same speed
Bound on s given n

→ Minimization of double-variable function

Multiple speeds

Conjecture: equal-sized chunks, same first-execution /
re-execution speeds
σ as a function of s, bound on s given n

→ Minimization of double-variable function

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 46/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Simulation settings

Large set of simulations: illustrate differences between models

Maple software to solve problems

We plot relative energy consumption as a function of λ

The lower the better

Given a deadline constraint (hard or expected), normalize with
the result of single-chunk single-speed

Impact of the constraint: normalize expected deadline with
hard deadline

Parameters varying within large ranges

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 47/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Comparison with single-chunk single-speed

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

0.25

0.50

0.75

1.00

1e−06 1e−03 1e+00
lambda

E

Model (/SCSS)
●

●

●

●

●

●

SCMSed

SCMShd

MCSSed

MCSShd

MCMSed

MCMShd

Results identical for any value
of W /D

For expected deadline, with
small λ (< 10−2), using
multiple chunks or multiple
speeds do not improve energy
ratio: re-execution term
negligible;
increasing λ: improvement
with multiple chunks

For hard deadline, better to run
at high speed during second
execution: use multiple speeds;
use multiple chunks if frequent
failures

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 48/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Expected vs hard deadline constraint

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

0.25

0.50

0.75

1.00

1e−06 1e−03 1e+00
lambda

E

Model
●

●

●

●

SCSS

SCMS

MCSS

MCMS

Important differences for single
speed models, confirming
previous conclusions: with hard
deadline, use multiple speeds

Multiple speeds: no difference
for small λ: re-execution at
maximum speed has little
impact on expected energy
consumption;
increasing λ: more impact of
re-execution, and expected
deadline may use slower
re-execution speed, hence
reducing energy consumption

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 49/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Outline

1 Revisiting the greedy algorithm for independent jobs

2 Reclaiming the slack of a schedule

3 Tri-criteria problem: execution time, reliability, energy

4 Checkpointing and energy consumption

5 Conclusion

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 50/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Conclusion

OnLine-Greedy and OffLine-Greedy for power: tight
approximation factor for any p, extends long series of papers
and completely solves N3 minimization problem ,

Different energy models, from continuous to discrete (through
VDD-hopping and incremental)

Tri-criteria heuristics with re-execution to deal with reliability

Checkpointing techniques for reliability while minimizing
energy consumption

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 51/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

What we had:

What we aim at:

Energy-efficient
scheduling

+
frequency

scaling

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 52/ 52


	Revisiting the greedy algorithm for independent jobs
	Reclaiming the slack of a schedule
	Tri-criteria problem: execution time, reliability, energy
	Checkpointing and energy consumption
	Conclusion

