
Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy-efficient scheduling

Guillaume Aupy1, Anne Benoit1,2,
Paul Renaud-Goud1 and Yves Robert1,2,3

1. Ecole Normale Supérieure de Lyon, France
2. Institut Universitaire de France

3. University of Tennessee Knoxville, USA

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/~abenoit/

Dagstuhl Seminar 13381, September 2013
Algorithms and Scheduling Techniques for Exascale Systems

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 1/ 52

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/


Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Energy: a crucial issue

Data centers

330, 000, 000, 000 Watts hour in 2007: more than France
533, 000, 000 tons of CO2: in the top ten countries

Exascale computers (1018 floating operations per second)

Need effort for feasibility
1% of power saved ; 1 million dollar per year

Lambda user

1 billion personal computers
500, 000, 000, 000, 000 Watts hour per year

; crucial for both environmental and economical reasons
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Power dissipation of a processor

P = Pleak + Pdyn

• Pleak: constant

• Pdyn = B × V 2 × f

constant
supply
voltage

frequency

Standard approximation: P = Pleak + f α (2 ≤ α ≤ 3)

Energy E = P × time

Dynamic Voltage and Frequency Scaling

Real life: discrete speeds
Continuous speeds can be emulated
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Framework

Scheduling independent jobs

Greedy algorithm: assign next job to least-loaded processor

Two variants:
OnLine-Greedy: assign jobs on the fly
OffLine-Greedy: sort jobs before execution
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Classical problem

n independent jobs {Ji}1≤i≤n, ai = size of Ji

p processors {Pq}1≤q≤p

allocation function alloc : {Ji} → {Pq}
load of Pq = load(q) =

∑
{i | alloc(Ji )=Pq} ai

P1

load(1)

a1 a10 a3 a13

P2 a7 a6

P3 a9 a12 a8

P4 a4

P5 a2 a11 a5

Execution time:

max1≤q≤p load(q)

a1

a2

a3

a4

a5

a6

a7

a8

a9

a10

a11

a12

a13
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OnLine-Greedy

Theorem

OnLine-Greedy is a 2− 1
p approximation (tight bound)

OnLine-Greedy Optimal solution
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OffLine-Greedy

Theorem

OffLine-Greedy is a 4
3 −

1
3p approximation (tight bound)

OffLine-Greedy Optimal solution

—
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Bi-criteria problem

Minimizing (dynamic) power consumption:
⇒ use slowest possible speed Pdyn = f α = f 3

Bi-criteria problem:
Given bound M = 1 on execution time,
minimize power consumption while meeting the bound
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Bi-criteria problem statement

n independent jobs {Ji}1≤i≤n, ai = size of Ji

p processors {Pq}1≤q≤p

allocation function alloc : {Ji} → {Pq}
load of Pq = load(q) =

∑
{i | alloc(Ji )=Pq} ai

(load(q))3 power dissipated by Pq

∑p
q=1 (load(q))3 max1≤q≤p load(q)

Power Execution time

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 10/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Same Greedy algorithm . . .

Strategy: assign next job to least-loaded processor

Natural for execution-time

smallest increment of maximum load
minimize objective value for currently processed jobs

Natural for power too

smallest increment of total power (convexity)
minimize objective value for currently processed jobs
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. . . but different optimal solution!

Makespan 10, power 2531.441

Makespan 10.1, power 2488.301
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Greedy and Lr norms

Nr =

 p∑
q=1

(load(q))r

 1
r

Execution time N∞ = limr→∞Nr = max1≤q≤p load(q)

Power (N3)3
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Known results

N2, OffLine-Greedy

Chandra and Wong 1975: upper and lower bounds

Leung and Wei 1995: tight approximation factor

N3, OffLine-Greedy

Chandra and Wong 1975: upper and lower bounds

Nr

Alon et al. 1997: PTAS for offline problem

Avidor et al. 1998: upper bound 2−Θ( ln r
r ) for

OnLine-Greedy
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Contribution

N3

Tight approximation factor for OnLine-Greedy

Tight approximation factor for OffLine-Greedy

Greedy for power fully solved!
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Approximation for OnLine-Greedy

Ponline

Popt
≤

1
p3

(
(1 + (p − 1)β)3 + (p − 1) (1− β)3

)
β3 + (1−β)3

(p−1)2︸ ︷︷ ︸
f

(on)
p (β)

Theorem

f
(on)
p has a single maximum in β

(on)
p ∈ [ 1

p , 1]

OnLine-Greedy is a f
(on)
p (β

(on)
p ) approximation

This approximation factor is tight
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Approximation for OffLine-Greedy

Poffline

Popt
≤

1
p3

((
1 + (p−1)β

3

)3
+ (p − 1)

(
1− β

3

)3
)

β3 + (1−β)3

(p−1)2︸ ︷︷ ︸
f

(off)
p (β)

Theorem

f
(off)
p has a single maximum in β

(off)
p ∈ [ 1

p , 1]

OffLine-Greedy is a f
(off)
p (β

(off)
p ) approximation

This approximation factor is tight
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Numerical values of approximation ratios

p OnLine-Greedy OffLine-Greedy
2 1.866 1.086
3 2.008 1.081
4 2.021 1.070
5 2.001 1.061
6 1.973 1.054
7 1.943 1.048
8 1.915 1.043

64 1.461 1.006
512 1.217 1.00083

2048 1.104 1.00010
224 1.006 1.000000025
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Large values of p

Asymptotic approximation factor

OnLine-Greedy 4
3 1

OffLine-Greedy 2 1
↑

optimal
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Motivation

Mapping of tasks is given (ordered list for each processor and
dependencies between tasks)

If deadline not tight, why not take our time?

Slack: unused time slots

Goal: efficiently use speed scaling (DVFS)

D D
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Speed models

Change speed
Anytime Beginning of tasks

Type of speeds
[smin, smax] Continuous -
{s1, ..., sm} Vdd-Hopping Discrete, Incremental

Continuous: great for theory

Other ”discrete” models more realistic

Vdd-Hopping simulates Continuous

Incremental is a special case of Discrete with
equally-spaced speeds: for all 1 ≤ q < m, sq+1 − sq = δ
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Tasks

DAG: G = (V ,E )

n = |V | tasks Ti of weight wi =
∫ ti
ti−di si (t)dt

di : task duration; ti : time of end of execution of Ti

time

pj · · · · · ·

di

ti

si (t)

Parameters for Ti scheduled on processor pj
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Makespan

Assume Ti is executed at constant speed si

di = Exe(wi , si ) =
wi

si

tj + di ≤ ti for each (Tj ,Ti ) ∈ E

Constraint on makespan:
ti ≤ D for each Ti ∈ V
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Energy

Energy to execute task Ti once at speed si :

Ei (si ) = di s
3
i = wi s

2
i

→ Dynamic part of classical energy models

Bi-criteria problem

Constraint on deadline: ti ≤ D for each Ti ∈ V

Minimize energy consumption:
∑n

i=1 wi × s2
i
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Complexity results

Minimizing energy with fixed mapping on p processors:

Continuous: Polynomial for some special graphs, geometric
optimization in the general case

Discrete: NP-complete (reduction from 2-partition);
approximation algorithm

Incremental: NP-complete (reduction from 2-partition);
approximation algorithm

Vdd-Hopping: Polynomial (linear programming)
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Summary

Results for Continuous, but not very practical

In real life, Discrete model (DVFS)

Vdd-Hopping: good alternative, mixing two consecutive
modes, smoothes out the discrete nature of modes

Incremental: alternate (and simpler in practice) solution,
with one unique speed during task execution; can be made
arbitrarily efficient
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Framework

DAG: G = (V ,E )

n = |V | tasks Ti of weight wi

p identical processors fully connected

DVFS: interval of available continuous speeds [smin, smax]

One speed per task

(I will not discuss results for the Vdd-Hopping model)
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Makespan

Execution time of Ti at speed si :

di =
wi

si

If Ti is executed twice on the same processor at speeds si and s ′i :

di =
wi

si
+

wi

s ′i

Constraint on makespan:
end of execution before deadline D
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Reliability

Transient fault: local, no impact on the rest of the system

Reliability Ri of task Ti as a function of speed s

Threshold reliability (and hence speed srel)

s

Ri (s)

1

smin smaxsrel

Ri (srel)
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Re-execution: a task is re-executed on the same processor, just
after its first execution

With two executions, reliability Ri of task Ti is:

Ri = 1− (1− Ri (si ))(1− Ri (s ′i ))

Constraint on reliability:
Reliability: Ri ≥ Ri (srel), and at most one re-execution
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Energy

Energy to execute task Ti once at speed si :

Ei (si ) = wi s
2
i

→ Dynamic part of classical energy models

With re-executions, it is natural to take the worst-case
scenario:

Energy : Ei = wi

(
s2
i + s ′2i

)
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Tri-Crit-Cont

Given G = (V ,E )
Find

A schedule of the tasks

A set of tasks I = {i | Ti is executed twice}
Execution speed si for each task Ti

Re-execution speed s ′i for each task in I

such that ∑
i∈I

wi (s2
i + s ′2i ) +

∑
i /∈I

wi s
2
i

is minimized, while meeting reliability and deadline constraints
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Complexity results

One speed per task

Re-execution at same speed as first execution, i.e., si = s ′i

Tri-Crit-Cont is NP-hard even for a linear chain, but not
known to be in NP (because of Continuous model)

Polynomial-time solution for a fork
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Energy-reducing heuristics

Two steps:

Mapping (NP-hard) → List scheduling

Speed scaling + re-execution (NP-hard) → Energy reducing

The list-scheduling heuristic maps tasks onto processors at
speed smax, and we keep this mapping in step two

Step two = slack reclamation! Use of deceleration and
re-execution
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Deceleration and re-execution

Deceleration: select a set of tasks that we execute at speed
max(srel, smax

maxi=1..n ti
D ): slowest possible speed meeting both

reliability and deadline constraints

Re-execution: greedily select tasks for re-execution
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Super-weight (SW) of a task

SW: sum of the weights of the tasks (including Ti ) whose
execution interval is included into Ti ’s execution interval

SW of task slowed down = estimation of the total amount of
work that can be slowed down together with that task

time

p1

p2

p3

p4 Ti

s e
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Selected heuristics

A.SUS-Crit: efficient on DAGs with low degree of parallelism

Set the speed of every task to max(srel, smax
maxi=1..n ti

D )
Sort the tasks of every critical path according to their SW and
try to re-execute them
Sort all the tasks according to their weight and try to
re-execute them

B.SUS-Crit-Slow: good for highly parallel tasks: re-execute,
then decelerate

Sort the tasks of every critical path according to their SW and
try to re-execute them. If not possible, then try to slow them
down
Sort all tasks according to their weight and try to re-execute
them. If not possible, then try to slow them down
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Results

We compare the impact of:

the number of processors p

the ratio D of the deadline over the minimum deadline Dmin

(given by the list-scheduling heuristic at speed smax)

on the output of each heuristic

Results normalized by heuristic running each task at speed smax;
the lower the better
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Results
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With increasing p, D = 1.2 (left), D = 2.4 (right)

A better when number of processors is small

B better when number of processors is large

Superiority of B for tight deadlines: decelerates critical tasks
that cannot be re-executed
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Summary

Tri-criteria energy/makespan/reliability optimization problem

Various theoretical results

Two-step approach for polynomial-time heuristics:

List-scheduling heuristic
Energy-reducing heuristics

Two complementary energy-reducing heuristics for
Tri-Crit-Cont
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Framework

Execution of a divisible task (W operations)

Failures may occur

Transient faults
Resilience through checkpointing

Objective: minimize expected energy given a deadline bound

Decisions before execution:

Chunks: how many (n)? which sizes (Wi for chunk i)?
Speeds of each chunk: first run (si )? re-execution (σi )?
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Models

Chunks

Single chunk Multiple chunks
VS

Speed per chunk

Single speed Multiple speeds

VS

Deadline bound

Hard (∼ Worst-case) Soft (Expected)

VS
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Summary of results: single chunk

Single speed

s 7→ E(E ) convex (expected energy consumption)
s 7→ E(T ) (expected execution time) and s 7→ Twc (worst-case
execution time) decreasing

→ Expression of s and E(E ) (function of λ,W , s,Ec ,Tc)

Multiple speeds

Energy minimized when deadline tight
; σ expressed as a function of s

→ Minimization of single-variable function

Anne.Benoit@ens-lyon.fr Dagstuhl 2013 Energy-efficient scheduling 45/ 52



Introduction Greedy Slack-reclaiming Tri-criteria Checkpointing Conclusion

Summary of results: multiple chunks

Single speed

Equal-sized chunks, executed at same speed
Bound on s given n

→ Minimization of double-variable function

Multiple speeds

Conjecture: equal-sized chunks, same first-execution /
re-execution speeds
σ as a function of s, bound on s given n

→ Minimization of double-variable function
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Simulation settings

Large set of simulations: illustrate differences between models

Maple software to solve problems

We plot relative energy consumption as a function of λ

The lower the better

Given a deadline constraint (hard or expected), normalize with
the result of single-chunk single-speed

Impact of the constraint: normalize expected deadline with
hard deadline

Parameters varying within large ranges
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Comparison with single-chunk single-speed
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Results identical for any value
of W /D

For expected deadline, with
small λ (< 10−2), using
multiple chunks or multiple
speeds do not improve energy
ratio: re-execution term
negligible;
increasing λ: improvement
with multiple chunks

For hard deadline, better to run
at high speed during second
execution: use multiple speeds;
use multiple chunks if frequent
failures
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Expected vs hard deadline constraint
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Important differences for single
speed models, confirming
previous conclusions: with hard
deadline, use multiple speeds

Multiple speeds: no difference
for small λ: re-execution at
maximum speed has little
impact on expected energy
consumption;
increasing λ: more impact of
re-execution, and expected
deadline may use slower
re-execution speed, hence
reducing energy consumption
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Conclusion

OnLine-Greedy and OffLine-Greedy for power: tight
approximation factor for any p, extends long series of papers
and completely solves N3 minimization problem ,

Different energy models, from continuous to discrete (through
VDD-hopping and incremental)

Tri-criteria heuristics with re-execution to deal with reliability

Checkpointing techniques for reliability while minimizing
energy consumption
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What we had:

What we aim at:

Energy-efficient
scheduling

+
frequency

scaling
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