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Computing at Exascale

Exascale platform:

105 or 106 nodes, each equipped with 102 or 103 cores

Shorter Mean Time Between Failures (MTBF) µ

Theorem: µp = µind
p for arbitrary distributions

MTBF (individual node) 1 year 10 years 120 years
MTBF (platform of 106 nodes) 30 sec 5 mn 1 h

Need more reliable components!!
Need more resilient techniques!!!
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General-purpose approach

Periodic checkpoint, rollback and recovery:

TimeW W

Error

Corrupt Detect

C C C

Fail-stop errors: instantaneous error detection, e.g., resource crash

Silent errors (aka silent data corruptions): e.g., soft faults in L1
cache, ALU, double bit flip

Silent error is detected only when corrupted data is activated,
which could happen long after its occurrence

Detection latency is problematic ⇒ risk of saving corrupted checkpoint!
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Coping with silent errors
Couple checkpointing with verification:

TimeW W

Error Detect

V ∗ C V ∗ C V ∗ C

Before each checkpoint, run some verification mechanism
(checksum, ECC, coherence tests, TMR, etc)

Silent error is detected by verification ⇒ checkpoint always valid ,

Optimal period (Young/Daly):

Fail-stop (classical) Silent errors
Pattern T = W + C T = W + V ∗ + C

Optimal W ∗ =
√

2Cµ W ∗ =
√

(C + V ∗)µ
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One step further

Perform several verifications before each checkpoint:

Time

Error Detect

V ∗ C V ∗ V ∗ V ∗ C V ∗ V ∗ V ∗ C

Pro: silent error is detected earlier in the pattern ,
Con: additional overhead in error-free executions /

How many intermediate verifications to use and the positions?
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Partial verification

Guaranteed/perfect verifications (V ∗) can be very expensive!
Partial verifications (V ) are available for many HPC applications!

Lower accuracy: recall r = #detected errors
#total errors < 1 /

Much lower cost, i.e., V < V ∗ ,

Time

Error Detect? Detect!

V ∗ C V1 V2 V ∗ C V1 V2 V ∗ C

Which verification(s) to use? How many? Positions?
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Outline
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Model and objective

Silent errors

Poisson process: arrival rate λ = 1/µ, where µ is platform MTBF

Strike only computations; checkpointing, recovery, and verifications
are protected

Resilience parameters

Cost of checkpointing C , cost of recovery R

k types of partial detectors and a perfect detector(
D(1),D(2), . . . ,D(k),D∗)

D(i): cost V (i) and recall r (i) < 1
D∗: cost V ∗ and recall r ∗ = 1

Design an optimal periodic computing pattern that minimizes
execution time (or makespan) of the application
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Pattern

Formally, a pattern Pattern(W , n,α,D) is defined by

W : pattern work length (or period)

n: number of work segments, of lengths wi (with
∑n

i=1 wi = W )

α = [α1, α2, . . . , αn]: work fraction of each segment (αi = wi/W
and

∑n
i=1 αi = 1)

D = [D1,D2, . . . ,Dn−1,D∗]: detectors used at the end of each
segment (Di = D(j) for some type j)

Timew1 w2 w3 wn

· · ·
· · ·

D∗ C D1 D2 D3 Dn−1 D∗ C

- Last detector is perfect to avoid saving corrupted checkpoints
- The same detector type D(j) could be used at the end of several
segments
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Summary of results

In a nutshell:

Given a pattern Pattern(W , n,α,D),
We show how to compute the expected execution time
We are able to characterize its optimal length
We can compute the optimal positions of the partial
verifications

However, we prove that finding the optimal pattern is NP-hard

We design an FPTAS (Fully Polynomial-Time Approximation
Scheme) that gives a makespan within (1 + ε) times the optimal
with running time polynomial in the input size and 1/ε

We show a simple greedy algorithm that works well in practice
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Summary of results

Algorithm to determine a pattern Pattern(W , n,α,D):

Use FPTAS or Greedy (or even brute force for small instances) to
find (optimal) number n of segments and set D of used detectors

Arrange the n − 1 partial detectors in any order

Compute W ∗ =
√

off
λfre

and α∗
i = 1

Un
· 1−gi−1gi

(1+gi−1)(1+gi ) for 1 ≤ i ≤ n,

where off =
n−1∑
i=1

Vi + V ∗ + C and fre =
1
2

(
1 +

1
Un

)
with gi = 1 − ri and Un = 1 +

n−1∑
i=1

1 − gi
1 + gi
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Expected execution time of a pattern

Proposition

The expected time to execute a pattern Pattern(W , n,α,D) is

E(W ) = W +
n−1∑
i=1

Vi + V ∗ + C + λW (R + W αT Aα + dT α) + o(λ),

where A is a symmetric matrix defined by Aij = 1
2

(
1 +

∏j−1
k=i gk

)
for

i ≤ j and d is a vector defined by di =
∑n

j=i

(∏j−1
k=i gk

)
Vi for 1 ≤ i ≤ n.

First-order approximation (as in Young/Daly’s classic formula)
Matrix A is essential to analysis. For instance, when n = 4 we have:

A = 1
2


2 1 + g1 1 + g1g2 1 + g1g2g3

1 + g1 2 1 + g2 1 + g2g3
1 + g1g2 1 + g2 2 1 + g3

1 + g1g2g3 1 + g2g3 1 + g3 2


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Minimizing makespan
For an application with total work Wbase, the makespan is

Wfinal ≈
E(W )

W ×Wbase

= Wbase + H(W )×Wbase,

where H(W ) = E(W )
W − 1 is the execution overhead

For instance, if Wbase = 100,Wfinal = 120, we have H(W ) = 20%

Minimizing makespan is equivalent to minimizing overhead!

H(W ) = off
W + λfreW + λ(R + dT α) + o(λ)

fault-free overhead: off =
n−1∑
i=1

Vi + V ∗ + C

re-execution fraction: fre = αT Aα
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Optimal pattern length to minimize overhead

Proposition

The execution overhead of a pattern Pattern(W , n,α,D) is minimized
when its length is

W ∗ =
√

off
λfre

.

The optimal overhead is

H(W ∗) = 2
√
λofffre + o(

√
λ).

When the platform MTBF µ = 1/λ is large, o(
√
λ) is negligible

Minimizing overhead is reduced to minimizing the product offfre!
Tradeoff between fault-free overhead and fault-induced
re-execution
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Optimal positions of verifications to minimize fre

Theorem

The re-execution fraction fre of a pattern Pattern(W , n,α,D) is
minimized when α = α∗, where

α∗
k = 1

Un
× 1− gk−1gk

(1 + gk−1)(1 + gk ) for 1 ≤ k ≤ n,

where g0 = gn = 0 and Un = 1 +
∑n−1

i=1
1−gi
1+gi

.

In this case, the optimal value of fre is

f ∗
re = 1

2

(
1 + 1

Un

)
.

Most technically involved result (lengthy proof of 3 pages!)
Given a set of partial verifications, the minimal value of fre does not
depend upon their ordering within the pattern
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Two special cases

When all verifications use the same partial detector (r), we get

α∗
k =

{
1

(n−2)r+2 for k = 1 and k = n
r

(n−2)r+2 for 2 ≤ k ≤ n − 1

Time1 r r 1

· · ·
· · ·

D∗ C D D D D D∗ C

When all verifications use the perfect detector, we get equal-length
segments, i.e., α∗

k = 1
n for all 1 ≤ k ≤ n

Time1 1 1 1

· · ·
· · ·

D∗ C D∗ D∗ D∗ D∗ D∗ C
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Optimal number and set of detectors

It remains to determine optimal n and D of a pattern
Pattern(W , n,α,D).

Equivalent to the following optimization problem:

Minimize freoff = V ∗ + C
2

(
1 + 1

1 +
∑k

j=1 mj a(j)

)(
1 +

k∑
j=1

mj b(j)

)
subject to mj ∈ N0 ∀j = 1, 2, . . . , k

accuracy: a(j) = 1− g (j)

1 + g (j) relative cost: b(j) = V (j)

V ∗ + C

accuracy-to-cost ratio: φ(j) = a(j)

b(j)

NP-hard even when all detectors share the same accuracy-to-cost ratio
(reduction from unbounded subset sum), but admits an FPTAS.
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Greedy algorithm

Practically, a greedy algorithm:

Employs only the detector with highest accuracy-to-cost ratio
φmax = a

b

Optimal number of detectors: m∗ = −1
a +

√
1
a

(
1
b −

1
a

)

Optimal overhead: H∗ =

√
2(C + V ∗)

µ

(√
1

φmax +

√
1− 1

φmax

)

Rounds up the optimal rational solution dm∗e

The greedy algorithm has an approximation ratio
√

3/2 < 1.23
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Outline
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Simulation configuration

Exascale platform:

105 computing nodes with individual MTBF of 100 years
⇒ platform MTBF µ ≈ 8.7 hours

Checkpoint sizes of 300GB with throughput of 0.5GB/s
⇒ C = 600s

Realistic detectors (designed at ANL):

cost recall ACR
Time series prediction D(1) V (1) = 3s r (1) = 0.5 φ(1) = 133
Spatial interpolation D(2) V (2) = 30s r (2) = 0.95 φ(2) = 36
Combination of the two D(3) V (3) = 6s r (3) = 0.8 φ(3) = 133
Perfect detector D∗ V ∗ = 600s r ∗ = 1 φ∗ = 2
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Evaluation results

Using individual detector (greedy algorithm)

Best partial detectors offer ∼9% improvement in overhead.
Saving ∼55 minutes for every 10 hours of computation!



23/1

Evaluation results

Mixing two detectors: depending on application or dataset, a detector’s
recall may vary, but its cost stays the same

Realistic data
again!
r (1) = [0.5, 0.9]
r (2) = [0.75, 0.95]
r (3) = [0.8, 0.99]

φ(1) = [133, 327]
φ(2) = [24, 36]
φ(3) = [133, 196]

m overhead H diff. from opt.

Scenario 1: r (1) = 0.51, r (3) = 0.82, φ(1) ≈ 137, φ(3) ≈ 139
Optimal solution (1, 15) 29.828% 0%
Greedy with D(3) (0, 16) 29.829% 0.001%

Scenario 2: r (1) = 0.58, r (3) = 0.9, φ(1) ≈ 163, φ(3) ≈ 164
Optimal solution (1, 14) 29.659% 0%
Greedy with D(3) (0, 15) 29.661% 0.002%

Scenario 3: r (1) = 0.64, r (3) = 0.97, φ(1) ≈ 188, φ(3) ≈ 188
Optimal solution (1, 13) 29.523% 0%
Greedy with D(1) (27, 0) 29.524% 0.001%
Greedy with D(3) (0, 14) 29.525% 0.002%

The greedy algorithm works very well in this practical scenario!
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Conclusion
A first comprehensive analysis of computing patterns with partial
verifications to detect silent errors

Theoretically: assess the complexity of the problem and propose
efficient approximation schemes

Practically: present a greedy algorithm and demonstrate its good
performance with realistic detectors

Future directions

Partial detectors with false positives/alarms

precision p = #true errors
#detected errors < 1

Errors in checkpointing, recovery, and verifications

Coexistence of fail-stop and silent errors

Research report available at https://hal.inria.fr/hal-01164445v1

https://hal.inria.fr/hal-01164445v1
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