
Introduction Framework Policies Complexity Multiple-Single Conclusion

Comparison of Access Policies
for Replica Placement

in Tree Networks

Anne Benoit

LIP, École Normale Supérieure de Lyon, France

Euro-Par 2009
August 27, 2009

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 1/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Introduction and motivation

Replica placement in tree networks

Set of clients (tree leaves): requests known in advance

Internal nodes may be provided with a replica;
in this case they become servers
and process requests (up to their capacity limit)

How many replicas required?
Which locations?
Total replica cost?

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 2/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Introduction and motivation

Replica placement in tree networks

Set of clients (tree leaves): requests known in advance

Internal nodes may be provided with a replica;
in this case they become servers
and process requests (up to their capacity limit)

How many replicas required?
Which locations?
Total replica cost?

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 2/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Introduction and motivation

Replica placement in tree networks

Set of clients (tree leaves): requests known in advance

Internal nodes may be provided with a replica;
in this case they become servers
and process requests (up to their capacity limit)

How many replicas required?
Which locations?
Total replica cost?

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 2/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Introduction and motivation

Replica placement in tree networks

Set of clients (tree leaves): requests known in advance

Internal nodes may be provided with a replica;
in this case they become servers
and process requests (up to their capacity limit)

How many replicas required?
Which locations?
Total replica cost?

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 2/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Rule of the game

Handle all client requests, and minimize cost of replicas

Several policies to assign replicas

W = 10

5 4 3

1

2 2 3

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 3/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Rule of the game

Handle all client requests, and minimize cost of replicas

Several policies to assign replicas

W = 10

5 4 3

1

2 2 3

Single with Closest

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 3/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Rule of the game

Handle all client requests, and minimize cost of replicas

Several policies to assign replicas

W = 10

5 3

1

2 2 34

Single

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 3/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Rule of the game

Handle all client requests, and minimize cost of replicas

Several policies to assign replicas

W = 10

5 3

1

2 2 3

2

3

4

Multiple

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 3/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Outline

1 Framework

2 Access policies comparison

3 Complexity results

4 From Multiple to Single

5 Conclusion

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 4/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Definitions and notations

Distribution tree: clients C (leaf nodes), internal nodes N

Client i ∈ C:

Sends ri requests per time unit

Node j ∈ N :

Can contain the object database replica (server) or not
Processing capacity Wj

Storage cost scj

Tree notations
r : tree root
children(j): set of children of node j ∈ N
parent(k): parent in the tree of node k ∈ N ∪ C
ancestors(k): set of ancestors of node k
subtree(k): subtree rooted in k , including k

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 5/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Definitions and notations

Distribution tree: clients C (leaf nodes), internal nodes N

Client i ∈ C:

Sends ri requests per time unit

Node j ∈ N :

Can contain the object database replica (server) or not
Processing capacity Wj

Storage cost scj

Tree notations
r : tree root
children(j): set of children of node j ∈ N
parent(k): parent in the tree of node k ∈ N ∪ C
ancestors(k): set of ancestors of node k
subtree(k): subtree rooted in k , including k

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 5/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Definitions and notations

Distribution tree: clients C (leaf nodes), internal nodes N

Client i ∈ C:

Sends ri requests per time unit

Node j ∈ N :

Can contain the object database replica (server) or not
Processing capacity Wj

Storage cost scj

Tree notations
r : tree root
children(j): set of children of node j ∈ N
parent(k): parent in the tree of node k ∈ N ∪ C
ancestors(k): set of ancestors of node k
subtree(k): subtree rooted in k , including k

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 5/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Definitions and notations

Distribution tree: clients C (leaf nodes), internal nodes N

Client i ∈ C:

Sends ri requests per time unit

Node j ∈ N :

Can contain the object database replica (server) or not
Processing capacity Wj

Storage cost scj

Tree notations
r : tree root
children(j): set of children of node j ∈ N
parent(k): parent in the tree of node k ∈ N ∪ C
ancestors(k): set of ancestors of node k
subtree(k): subtree rooted in k , including k

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 5/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Problem definition

Goal: place replicas to process client requests

Client i ∈ C: servers(i) ⊆ ancestors(i) set of servers
responsible for processing its requests

ri ,s : number of requests from client i processed by server s
(
∑

s∈servers(i) ri ,s = ri)

R = {s ∈ N| ∃i ∈ C , s ∈ servers(i)}: set of replicas

Server capacity constraint: ∀s ∈ R,
∑

i∈C|s∈servers(i) ri ,s ≤Ws

Objective function: Min
∑

s∈R scs

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 6/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Problem definition

Goal: place replicas to process client requests

Client i ∈ C: servers(i) ⊆ ancestors(i) set of servers
responsible for processing its requests

ri ,s : number of requests from client i processed by server s
(
∑

s∈servers(i) ri ,s = ri)

R = {s ∈ N| ∃i ∈ C , s ∈ servers(i)}: set of replicas

Server capacity constraint: ∀s ∈ R,
∑

i∈C|s∈servers(i) ri ,s ≤Ws

Objective function: Min
∑

s∈R scs

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 6/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Problem definition

Goal: place replicas to process client requests

Client i ∈ C: servers(i) ⊆ ancestors(i) set of servers
responsible for processing its requests

ri ,s : number of requests from client i processed by server s
(
∑

s∈servers(i) ri ,s = ri)

R = {s ∈ N| ∃i ∈ C , s ∈ servers(i)}: set of replicas

Server capacity constraint: ∀s ∈ R,
∑

i∈C|s∈servers(i) ri ,s ≤Ws

Objective function: Min
∑

s∈R scs

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 6/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Problem instances

Number of servers assigned to each client:

Single. A unique server handles the ri requests of
client i (|servers(i)| = 1)

Multiple. Several servers in the set servers(i)

Platform types:

Different servers. Restrict to case where scs = Ws ,
Replica Cost problem

Identical servers. Identical node capacities
(∀s ∈ N , Ws = W), scs = 1,
Replica Counting problem

Literature: Single further constrained to Closest (server of
client i : first server on the path from i to r)

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 7/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Problem instances

Number of servers assigned to each client:

Single. A unique server handles the ri requests of
client i (|servers(i)| = 1)

Multiple. Several servers in the set servers(i)

Platform types:

Different servers. Restrict to case where scs = Ws ,
Replica Cost problem

Identical servers. Identical node capacities
(∀s ∈ N , Ws = W), scs = 1,
Replica Counting problem

Literature: Single further constrained to Closest (server of
client i : first server on the path from i to r)

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 7/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Problem instances

Number of servers assigned to each client:

Single. A unique server handles the ri requests of
client i (|servers(i)| = 1)

Multiple. Several servers in the set servers(i)

Platform types:

Different servers. Restrict to case where scs = Ws ,
Replica Cost problem

Identical servers. Identical node capacities
(∀s ∈ N , Ws = W), scs = 1,
Replica Counting problem

Literature: Single further constrained to Closest (server of
client i : first server on the path from i to r)

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 7/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Outline

1 Framework

2 Access policies comparison

3 Complexity results

4 From Multiple to Single

5 Conclusion

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 8/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Solution existence

A

B

1 1

A

B

2

(a) (b)

W=1

(a): One replica per node, solution for Single
(and thus for Multiple)

(b): Solution only with Multiple

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 9/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Solution existence

A

B

1 1

A

B

2

(a) (b)

W=1

(a): One replica per node, solution for Single
(and thus for Multiple)

(b): Solution only with Multiple

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 9/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Solution existence

A

B

1 1

A

B

2

(a) (b)

W=1

(a): One replica per node, solution for Single
(and thus for Multiple)

(b): Solution only with Multiple

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 9/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Solution cost for Replica Counting

A

B C 1 2 n...

...
4n 2n-1 2n 2n+1 2 2 2

W = 4n

Multiple: 3 replicas in A, B and C

Single: replicas everywhere (n + 3)

Performance factor: n+3
3 , can be arbitrarily big

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 10/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Solution cost for Replica Counting

A

B C 1 2 n...

...
4n 2n-1 2n 2n+1 2 2 2

W = 4n

Multiple: 3 replicas in A, B and C

Single: replicas everywhere (n + 3)

Performance factor: n+3
3 , can be arbitrarily big

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 10/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Solution cost for Replica Counting

A

B C 1 2 n...

...
4n 2n-1 2n 2n+1 2 2 2

W = 4n

Multiple: 3 replicas in A, B and C

Single: replicas everywhere (n + 3)

Performance factor: n+3
3 , can be arbitrarily big

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 10/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Lower bound for Replica Counting

Obvious lower bound:
⌈P

i∈C ri
W

⌉
= 3n/n = 3

A

B 1 2 n...

...
n n 1 1 1

W = n

All policies require n + 2 replica (one at each node).

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 11/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Lower bound for Replica Counting

Obvious lower bound:
⌈P

i∈C ri
W

⌉
= 3n/n = 3

A

B 1 2 n...

...
n n 1 1 1

W = n

All policies require n + 2 replica (one at each node).

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 11/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Outline

1 Framework

2 Access policies comparison

3 Complexity results

4 From Multiple to Single

5 Conclusion

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 12/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Complexity results

Single Multiple

Replica Counting NP-complete polynomial
Replica Cost NP-complete NP-complete

Single/Replica Counting: NP-hard, while polynomial with
Closest (dynamic programming algorithms)

Replica Cost: NP-hard because of resource heterogeneity

Multiple/Replica Counting: only polynomial case,
multi-pass greedy algorithm

(Proofs: see TPDS’2008 paper 19(12), 1614-1627)

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 13/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Complexity results

Single Multiple

Replica Counting NP-complete polynomial
Replica Cost NP-complete NP-complete

Single/Replica Counting: NP-hard, while polynomial with
Closest (dynamic programming algorithms)

Replica Cost: NP-hard because of resource heterogeneity

Multiple/Replica Counting: only polynomial case,
multi-pass greedy algorithm

(Proofs: see TPDS’2008 paper 19(12), 1614-1627)

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 13/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Complexity results

Single Multiple

Replica Counting NP-complete polynomial
Replica Cost NP-complete NP-complete

Single/Replica Counting: NP-hard, while polynomial with
Closest (dynamic programming algorithms)

Replica Cost: NP-hard because of resource heterogeneity

Multiple/Replica Counting: only polynomial case,
multi-pass greedy algorithm

(Proofs: see TPDS’2008 paper 19(12), 1614-1627)

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 13/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Complexity results

Single Multiple

Replica Counting NP-complete polynomial
Replica Cost NP-complete NP-complete

Single/Replica Counting: NP-hard, while polynomial with
Closest (dynamic programming algorithms)

Replica Cost: NP-hard because of resource heterogeneity

Multiple/Replica Counting: only polynomial case,
multi-pass greedy algorithm

(Proofs: see TPDS’2008 paper 19(12), 1614-1627)

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 13/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Outline

1 Framework

2 Access policies comparison

3 Complexity results

4 From Multiple to Single

5 Conclusion

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 14/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Problem formulation

Procedure to build a Single allocation for Replica
Counting with a guarantee on the cost

Single can be arbitrarily worse than Multiple: when can we
derive good Single solutions?

Let (C,N) be a problem instance in which ri ≤W for all i ∈ C
(otherwise, there is no solution to the Single problem).
We are given an optimal Multiple solution for this problem, of
cost M (i.e., M is the number of servers in this solution).
We aim at finding a Single solution with a cost S ≤ 2M, and at
characterizing cases in which this is possible.

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 15/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Problem formulation

Procedure to build a Single allocation for Replica
Counting with a guarantee on the cost

Single can be arbitrarily worse than Multiple: when can we
derive good Single solutions?

Let (C,N) be a problem instance in which ri ≤W for all i ∈ C
(otherwise, there is no solution to the Single problem).
We are given an optimal Multiple solution for this problem, of
cost M (i.e., M is the number of servers in this solution).
We aim at finding a Single solution with a cost S ≤ 2M, and at
characterizing cases in which this is possible.

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 15/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Problem formulation

Procedure to build a Single allocation for Replica
Counting with a guarantee on the cost

Single can be arbitrarily worse than Multiple: when can we
derive good Single solutions?

Let (C,N) be a problem instance in which ri ≤W for all i ∈ C
(otherwise, there is no solution to the Single problem).
We are given an optimal Multiple solution for this problem, of
cost M (i.e., M is the number of servers in this solution).
We aim at finding a Single solution with a cost S ≤ 2M, and at
characterizing cases in which this is possible.

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 15/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Linear trees

|N | = n nodes rooted in node 1: 1→ 2→ · · · → n

Cj : set of clients attached to node j

Condition:
jW ≥ 2

∑
i∈∪1≤k≤jCk

ri

At each tree level, twice more nodes than min nb of servers
requested to handle all requests from root to this level

Condition on the whole tree: n ≥ 2
W

∑
i∈C ri

Procedure which assigns servers, never fails because of
condition

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 16/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Linear trees

|N | = n nodes rooted in node 1: 1→ 2→ · · · → n

Cj : set of clients attached to node j

Condition:
jW ≥ 2

∑
i∈∪1≤k≤jCk

ri

At each tree level, twice more nodes than min nb of servers
requested to handle all requests from root to this level

Condition on the whole tree: n ≥ 2
W

∑
i∈C ri

Procedure which assigns servers, never fails because of
condition

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 16/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Linear trees

|N | = n nodes rooted in node 1: 1→ 2→ · · · → n

Cj : set of clients attached to node j

Condition:
jW ≥ 2

∑
i∈∪1≤k≤jCk

ri

At each tree level, twice more nodes than min nb of servers
requested to handle all requests from root to this level

Condition on the whole tree: n ≥ 2
W

∑
i∈C ri

Procedure which assigns servers, never fails because of
condition

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 16/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

linear-tree procedure

procedure linear-tree (C,N)

∀i ∈ C,∀j ∈ N , si ,j = 0; ∀j ∈ N , sj = 0; // Initialisation.
for j = 1..n do for i ∈ Cj do
// Loop 1: try to add requests to an existing server.
for j ′ = j ..1 do

if
∑

k∈N si ,k = 0 and sj ′ 6= 0 then
if ri + sj ′ ≤W then si ,j ′ = ri ; sj ′ = sj ′ + ri

end
end
// Loop 2: If Loop 1 did not succeed, create a new server.
if

∑
k∈N si ,k = 0 then

for j ′ = j ..1 do if sj ′ = 0 then si ,j ′ = ri ; sj ′ = ri ; break;
end
return {si ,j | i ∈ C, 1 ≤ j ≤ n}

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 17/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Linear trees: proof of correctness

Sj : nb of servers allocated at each step of loop on j

We prove that Sj ≤ j : enough nodes available, Loop 2 always
find a node with no requests

Note that sk + sk ′ > W for all (k , k ′) (greedy allocation), all
servers but the last one handle at least W /2 requests

If Sj = 1, then Sj ≤ j since j ≥ 1

If Sj ≥ 2, sk + sk ′ > W and other servers with at least W /2
requests, thus req > (Sj − 2)W

2 + W = Sj
W
2 . We have

req =
∑

i∈∪1≤k≤jCk
ri , thus, with the condition,

Sj <
2

W

∑
i∈∪1≤k≤jCk

ri ≤ j

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 18/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Linear trees: proof of correctness

Sj : nb of servers allocated at each step of loop on j

We prove that Sj ≤ j : enough nodes available, Loop 2 always
find a node with no requests

Note that sk + sk ′ > W for all (k , k ′) (greedy allocation), all
servers but the last one handle at least W /2 requests

If Sj = 1, then Sj ≤ j since j ≥ 1

If Sj ≥ 2, sk + sk ′ > W and other servers with at least W /2
requests, thus req > (Sj − 2)W

2 + W = Sj
W
2 . We have

req =
∑

i∈∪1≤k≤jCk
ri , thus, with the condition,

Sj <
2

W

∑
i∈∪1≤k≤jCk

ri ≤ j

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 18/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Linear trees: proof of correctness

Sj : nb of servers allocated at each step of loop on j

We prove that Sj ≤ j : enough nodes available, Loop 2 always
find a node with no requests

Note that sk + sk ′ > W for all (k , k ′) (greedy allocation), all
servers but the last one handle at least W /2 requests

If Sj = 1, then Sj ≤ j since j ≥ 1

If Sj ≥ 2, sk + sk ′ > W and other servers with at least W /2
requests, thus req > (Sj − 2)W

2 + W = Sj
W
2 . We have

req =
∑

i∈∪1≤k≤jCk
ri , thus, with the condition,

Sj <
2

W

∑
i∈∪1≤k≤jCk

ri ≤ j

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 18/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Linear trees: proof of correctness

Sj : nb of servers allocated at each step of loop on j

We prove that Sj ≤ j : enough nodes available, Loop 2 always
find a node with no requests

Note that sk + sk ′ > W for all (k , k ′) (greedy allocation), all
servers but the last one handle at least W /2 requests

If Sj = 1, then Sj ≤ j since j ≥ 1

If Sj ≥ 2, sk + sk ′ > W and other servers with at least W /2
requests, thus req > (Sj − 2)W

2 + W = Sj
W
2 . We have

req =
∑

i∈∪1≤k≤jCk
ri , thus, with the condition,

Sj <
2

W

∑
i∈∪1≤k≤jCk

ri ≤ j

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 18/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Linear trees: proof of cost

Multiple solution handles all requests:

M ≥

⌈
1

W

∑
i∈C

ri

⌉

Number of servers in the new solution:

S = Sn ≤
2

W

∑
i∈C

ri ≤ 2M

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 19/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Linear trees: proof of cost

Multiple solution handles all requests:

M ≥

⌈
1

W

∑
i∈C

ri

⌉

Number of servers in the new solution:

S = Sn ≤
2

W

∑
i∈C

ri ≤ 2M

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 19/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees

Problem: several branches of the tree in conflict

Solution: apply linear-tree procedure on each tree branch,
but need a condition on the min nb of nodes on each branch

New constraint:

∀j ∈ {j ′ ∈ N | |children(j ′) ∩N| ≥ 2} ∪ {r}, ∀k ∈ subtree(j) ∩N ,

let X = {j} ∪ ancestors(k) ∩ subtree(j).

Then |X | ≥ 2

W

∑
`∈X

∑
i∈children(`)∩C

ri (1)

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 20/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

general-tree procedure

procedure general-tree (C,N)

1 ∀j ∈ N , br(j) = |children(j) ∩N| (nb of branches rooted in j
not yet processed)

2 Call linear-tree on leftmost branch, current branch
cb = (1, 2, ..., k) ⊆ N ; cb processed:
∀` ∈ cb, br(`) = br(`)− 1

3 For j = maxj ′∈cb{j ′ | br(j ′) ≥ 1}, call linear-tree on
cb = (j , j1, ..., jk); cb processed

4 If required, merge-servers on current branch

5 Go back to step 3 until ∀j ∈ N , br(j) ≤ 0

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 21/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: proof

Cost S ≤ 2M with in some cases extra constraint of binary
tree

End of step 2: at most one server handling less than W /2
requests, allocation possible because of constraint (1) on r

Step 3: at most W requests attached to j1; possible to create
server at this node, idem for nodes j2 to jk

End of this call: may have two servers handling less than W /2
requests: x and y

Procedure merge-servers: aims at suppressing one of these
servers

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 22/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: proof

Cost S ≤ 2M with in some cases extra constraint of binary
tree

End of step 2: at most one server handling less than W /2
requests, allocation possible because of constraint (1) on r

Step 3: at most W requests attached to j1; possible to create
server at this node, idem for nodes j2 to jk

End of this call: may have two servers handling less than W /2
requests: x and y

Procedure merge-servers: aims at suppressing one of these
servers

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 22/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: proof

Cost S ≤ 2M with in some cases extra constraint of binary
tree

End of step 2: at most one server handling less than W /2
requests, allocation possible because of constraint (1) on r

Step 3: at most W requests attached to j1; possible to create
server at this node, idem for nodes j2 to jk

End of this call: may have two servers handling less than W /2
requests: x and y

Procedure merge-servers: aims at suppressing one of these
servers

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 22/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: proof

Cost S ≤ 2M with in some cases extra constraint of binary
tree

End of step 2: at most one server handling less than W /2
requests, allocation possible because of constraint (1) on r

Step 3: at most W requests attached to j1; possible to create
server at this node, idem for nodes j2 to jk

End of this call: may have two servers handling less than W /2
requests: x and y

Procedure merge-servers: aims at suppressing one of these
servers

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 22/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: proof

Cost S ≤ 2M with in some cases extra constraint of binary
tree

End of step 2: at most one server handling less than W /2
requests, allocation possible because of constraint (1) on r

Step 3: at most W requests attached to j1; possible to create
server at this node, idem for nodes j2 to jk

End of this call: may have two servers handling less than W /2
requests: x and y

Procedure merge-servers: aims at suppressing one of these
servers

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 22/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: merge-servers(x,y)

j : root of the current branch

If x ∈ ancestors(j), move requests processed by y to x

If one node in ancestors(j) not yet a server, move requests of
x and y onto this node

Otherwise, thanks to constraint (1) at node j , process
requests of current branch without using j

Extra constraint: j has no more than 2 children

Move requests from x to j (possible since j has less than W /2
clients), and then if necessary from y to j

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 23/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: merge-servers(x,y)

j : root of the current branch

If x ∈ ancestors(j), move requests processed by y to x

If one node in ancestors(j) not yet a server, move requests of
x and y onto this node

Otherwise, thanks to constraint (1) at node j , process
requests of current branch without using j

Extra constraint: j has no more than 2 children

Move requests from x to j (possible since j has less than W /2
clients), and then if necessary from y to j

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 23/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: merge-servers(x,y)

j : root of the current branch

If x ∈ ancestors(j), move requests processed by y to x

If one node in ancestors(j) not yet a server, move requests of
x and y onto this node

Otherwise, thanks to constraint (1) at node j , process
requests of current branch without using j

Extra constraint: j has no more than 2 children

Move requests from x to j (possible since j has less than W /2
clients), and then if necessary from y to j

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 23/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: merge-servers(x,y)

j : root of the current branch

If x ∈ ancestors(j), move requests processed by y to x

If one node in ancestors(j) not yet a server, move requests of
x and y onto this node

Otherwise, thanks to constraint (1) at node j , process
requests of current branch without using j

Extra constraint: j has no more than 2 children

Move requests from x to j (possible since j has less than W /2
clients), and then if necessary from y to j

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 23/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: binary tree constraint

A

B

4

W=10

C D E

4 4 4

2 clients processed by A, and 2 servers processing 4 < W /2
requests each

Not possible to merge

Performance guarantee respected since S = M (3 servers
requested for both policies)

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 24/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: binary tree constraint

A

B

4

W=10

C D E

4 4 4

2 clients processed by A, and 2 servers processing 4 < W /2
requests each

Not possible to merge

Performance guarantee respected since S = M (3 servers
requested for both policies)

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 24/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

General trees: binary tree constraint

A

B

4

W=10

C D E

4 4 4

2 clients processed by A, and 2 servers processing 4 < W /2
requests each

Not possible to merge

Performance guarantee respected since S = M (3 servers
requested for both policies)

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 24/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Outline

1 Framework

2 Access policies comparison

3 Complexity results

4 From Multiple to Single

5 Conclusion

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 25/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Conclusion

Analysis of different strategies for replica placement

Multiple solution may be arbitrarily better than Single one

Algorithm to build Single solution guaranteed to use no more
than two times more servers than optimal Multiple solution,
given constraints on problem instance

Interesting since Single problem is NP-hard, and some
applications may not support multiple servers

Restrictive constraints but procedure can be applied on any
tree, without guarantee

Intuition: ratio of 2 should be achievable in most practical
situations (to be investigated)

Other research direction: dynamic setting

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 26/ 26

Introduction Framework Policies Complexity Multiple-Single Conclusion

Conclusion

Analysis of different strategies for replica placement

Multiple solution may be arbitrarily better than Single one

Algorithm to build Single solution guaranteed to use no more
than two times more servers than optimal Multiple solution,
given constraints on problem instance

Interesting since Single problem is NP-hard, and some
applications may not support multiple servers

Restrictive constraints but procedure can be applied on any
tree, without guarantee

Intuition: ratio of 2 should be achievable in most practical
situations (to be investigated)

Other research direction: dynamic setting

Anne.Benoit@ens-lyon.fr Euro-Par 2009, August 27 Replica Placement in Tree Networks 26/ 26

	Introduction
	Framework
	Access policies comparison
	Complexity results
	From Multiple to Single
	Conclusion

