Static Worksharing Strategies for Heterogeneous Computers with Unrecoverable Failures

Anne Benoit, Yves Robert, Arnold Rosenberg and Frédéric Vivien

École Normale Supérieure de Lyon, France Anne.Benoit@ens-lyon.fr http://graal.ens-lyon.fr/~abenoit

HeteroPar'2009, August 25

- Large divisible computational workload
- Single-round distribution, one-port model
- Assemblage of p different-speed computers
- Unrecoverable interruptions
- A-priori knowledge of risk (failure probability)

Goal: maximize expected amount of work done

- Landmark paper by Bhatt, Chung, Leighton & Rosenberg on cycle stealing
- Hardware failures

 \odot Fault tolerant computing (hence scheduling) becomes unavoidable

 $oxoldsymbol{ar{\odot}}$ Well, same story told since very long!

- Landmark paper by Bhatt, Chung, Leighton & Rosenberg on cycle stealing
- Hardware failures

$\ensuremath{\textcircled{\ensuremath{\mathbb{C}}}}$ Fault tolerant computing (hence scheduling) becomes unavoidable

 \odot Well, same story told since very long!

- Landmark paper by Bhatt, Chung, Leighton & Rosenberg on cycle stealing
- Hardware failures

 $\ensuremath{\textcircled{\ensuremath{\mathbb{C}}}}$ Fault tolerant computing (hence scheduling) becomes unavoidable

☺ Well, same story told since very long!

Cycle-stealing scenario

- Big job of size W to execute during week-end
- Enroll p computers P_1 to P_p
- Assign load fraction to each P_i
- How to compute these load fractions?
- How to order communications?
- Risk increases with time
- Machines reclaimed at 8am on Monday with probability 1

Cycle-stealing scenario

- Big job of size W to execute during week-end
- Enroll p computers P_1 to P_p
- Assign load fraction to each P_i
- How to compute these load fractions?
- How to order communications?
- Risk increases linearly with time
- $\bullet\,$ Machines reclaimed at 8am on Monday with probability 1

Cycle-stealing scenario

- Big job of size W to execute during week-end
- Enroll p computers P_1 to P_p
- Assign load fraction to each P_i
- How to compute these load fractions?
- How to order communications?
- Risk increases linearly with time
- Machines reclaimed at 8am on Monday with probability 1

- 2 Homogeneous computers, with communication costs
- 3 Heterogeneous computers, no communication costs
- 4 Heterogeneous computers, with communication costs

5 Conclusion

1 Technical framework

- 2 Homogeneous computers, with communication costs
- 3 Heterogeneous computers, no communication costs
- 4 Heterogeneous computers, with communication costs

5 Conclusion

Framework

Interruption model

$$dPr = \begin{cases} \kappa dt & \text{for } t \in [0, 1/\kappa] \\ 0 & \text{otherwise} \end{cases}$$
$$Pr(w) = \min\left\{1, \int_0^w \kappa dt\right\} = \min\{1, \kappa w\}$$

Framework

Interruption model

$$dPr = \begin{cases} \kappa dt & \text{for } t \in [0, 1/\kappa] \\ 0 & \text{otherwise} \end{cases}$$
$$Pr(w) = \min\left\{1, \int_0^w \kappa dt\right\} = \min\{1, \kappa w\}$$

Goal: maximize expected work production

E ▶.

Rules of the game

- Single-round, no overlap, one-port communications
- Homogeneous network
- Different-speed computers

• Failure-rate per unit-load communication

$$z = \frac{\kappa}{bw}$$

• Failure-rate per unit-load **computation** by computer *P_i*

$$x_i = \frac{\kappa}{\text{speed}_i}$$

Rules of the game

- Single-round, no overlap, one-port communications
- Homogeneous network
- Different-speed computers
- Failure-rate per unit-load communication

$$z = \frac{\kappa}{bw}$$

• Failure-rate per unit-load **computation** by computer *P_i*

$$\mathsf{x}_i = \frac{\kappa}{\mathsf{speed}_i}$$

With two computers (1/2)

 $P_1 \quad \underline{z \ Y} \quad x_1 \ Y$

- First send P_1 a chunk of size Y: $E_1 = Y (1 - (z + x_1)Y)$
- Then send P_2 the remaining load (of size W Y): $E_2 = (W - Y) (1 - (zW + x_2(W - Y)))$
- Total expectation: $E(Y) = E_1 + E_2$

- 4 目 ト - 4 日 ト - 4 日 ト

With two computers (1/2)

$$P_1 \quad \underline{z \ Y} \quad \underline{x_1 \ Y}$$

$$P_2 \qquad \underline{z (W-Y)} \quad \underline{x_2 (W-Y)}$$

• First send
$$P_1$$
 a chunk of size Y :
 $E_1 = Y (1 - (z + x_1)Y)$

- Then send P_2 the remaining load (of size W Y): $E_2 = (W - Y) (1 - (zW + x_2(W - Y)))$
- Total expectation: $E(Y) = E_1 + E_2$

くほと くほと くほと

With two computers (1/2)

$$P_1 \quad \underline{z \ Y} \quad \underline{x_1 \ Y}$$

$$P_2 \qquad \underline{z (W-Y)} \underline{x_2 (W-Y)}$$

• First send
$$P_1$$
 a chunk of size Y :
 $E_1 = Y (1 - (z + x_1)Y)$

- Then send P_2 the remaining load (of size W Y): $E_2 = (W - Y)(1 - (zW + x_2(W - Y)))$
- Total expectation: $E(Y) = E_1 + E_2$

• • = • • = •

With two computers (2/2)

$$E(Y) = Y (1 - (z + x_1)Y) + (W - Y) (1 - (zW + x_2(W - Y)))$$

$$E(Y) = W - (z + x_2)W^2 - (z + x_1 + x_2)Y^2 + (z + 2x_2)WY$$

$$Y^{(\text{opt})} = \frac{z + 2x_2}{2(z + x_1 + x_2)}W$$

$$E_{\rm opt}(W,2) = E(Y^{\rm (opt)}) = W - \left(\frac{4x_1x_2 + 4(x_1 + x_2)z + 3z^2}{4(x_1 + x_2 + z)}\right)W^2$$

Anne.Benoit@ens-lyon.fr

With two computers (2/2)

$$E(Y) = Y(1 - (z + x_1)Y) + (W - Y)(1 - (zW + x_2(W - Y)))$$

$$E(Y) = W - (z + x_2)W^2 - (z + x_1 + x_2)Y^2 + (z + 2x_2)WY$$

$$Y^{(opt)} = \frac{z + 2x_2}{2(z + x_1 + x_2)}W$$

$$E_{\rm opt}(W,2) = E(Y^{\rm (opt)}) = W - \left(\frac{4x_1x_2 + 4(x_1 + x_2)z + 3z^2}{4(x_1 + x_2 + z)}\right)W^2$$

Anne.Benoit@ens-lyon.fr

With two computers (2/2)

$$E(Y) = Y (1 - (z + x_1)Y) + (W - Y) (1 - (zW + x_2(W - Y)))$$

$$E(Y) = W - (z + x_2)W^2 - (z + x_1 + x_2)Y^2 + (z + 2x_2)WY$$

$$Y^{(opt)} = \frac{z + 2x_2}{2(z + x_1 + x_2)}W$$

$$E_{\rm opt}(W,2) = E(Y^{\rm (opt)}) = W - \left(\frac{4x_1x_2 + 4(x_1 + x_2)z + 3z^2}{4(x_1 + x_2 + z)}\right) W^2$$

Symmetric in x_1 and x_2 \Rightarrow ordering of the communications has **no impact**

Anne.Benoit@ens-lyon.fr

Extra rule: distribute entire load

- Total load W small enough so that we distribute it entirely
- Quite reasonable but dramatic impact on solution

Definition

DISTRIB(*p*): compute $E_{opt}(W, p)$, the optimal value of expected total amount of work done when distributing entire workload $W \leq \frac{1}{z + \max(x_i)}$ to the *p* remote computers

A sufficient condition

Proposition

If $W \leq \frac{1}{z + \max(x_i)}$, there is a non-zero probability that the last computer does not fail before or during its computation

Proof

- last computer P_i can start computing at time-step Y/bw, where $Y \le W$ is the total load sent to all preceding computers - introducing idle times cannot improve solution:

failure risk grows with time

- then P_i needs V/speed_i time-steps to execute its own chunk of size V, where $Y + V \le W$

1 Technical framework

2 Homogeneous computers, with communication costs

3 Heterogeneous computers, no communication costs

4 Heterogeneous computers, with communication costs

5 Conclusion

Optimal solution

Theorem

When $x_i = x$ (identical speeds), the optimal solution to DISTRIB(p) is obtained with same size chunks (hence of size $\frac{W}{p}$), and

$$E_{opt}(W,p) = W - rac{(p+1)z + 2x}{2p}W^2$$

- Closed-form formula 🙂
- Proof by induction

• Let
$$f_p = \frac{(p+1)z+2x}{2p}$$

• We prove by induction on p that $E_{opt}(W, p) = W - f_p W^2$, with same size chunks

• Case
$$p = 1$$
, $f_1 = z + x$, $E_{opt}(W, 1) = W(1 - (z + x)W)$, OK

- From *n* to n + 1 computers:
 - chunk sent to P_{n+1} of size W Y
 - by induction $E_{opt}(Y, n) = Y(1 f_n Y)$, with chunk sizes $\frac{Y}{n}$

- for n+1 computers, we have

 $E(Y) = Y (1 - f_n Y) + (W - Y) (1 - zW - x(W - Y))$

A (10) A (10)

• Let
$$f_p = \frac{(p+1)z+2x}{2p}$$

- We prove by induction on p that $E_{opt}(W, p) = W f_p W^2$, with same size chunks
- Case p = 1, $f_1 = z + x$, $E_{opt}(W, 1) = W(1 (z + x)W)$, OK
- From *n* to n + 1 computers:
 - chunk sent to P_{n+1} of size W Y
 - by induction $E_{opt}(Y, n) = Y(1 f_n Y)$, with chunk sizes $\frac{Y}{n}$

- for n+1 computers, we have

 $E(Y) = Y (1 - f_n Y) + (W - Y) (1 - zW - x(W - Y))$

< 回 ト < 三 ト < 三 ト

• Let
$$f_p = \frac{(p+1)z+2x}{2p}$$

- We prove by induction on p that $E_{opt}(W, p) = W f_p W^2$, with same size chunks
- Case p = 1, $f_1 = z + x$, $E_{opt}(W, 1) = W(1 (z + x)W)$, OK
- From *n* to n + 1 computers:
 - chunk sent to P_{n+1} of size W Y
 - by induction $E_{opt}(Y, n) = Y(1 f_n Y)$, with chunk sizes $\frac{Y}{n}$

- for
$$n+1$$
 computers, we have

$$E(Y) = Y \left(1 - f_n Y\right) + (W - Y) \left(1 - zW - x(W - Y)\right)$$

•
$$E(Y) = W - (z + x)W^2 - (f_n + x)Y^2 + (z + 2x)WY$$

• $Y^{(opt)} = \frac{z+2x}{2(f_n + x)}W$

•
$$E_{opt}(W, n + 1) = E(Y^{(opt)}) = W - \alpha W^2$$
,
where $\alpha = z + x - \frac{(z+2x)^2}{4(f_n+x)}$
• By induction, $f_n + x = \frac{(n+1)z+2x}{2n} + x = \frac{(n+1)(z+2x)}{2n}$
• Finally, $\alpha = z + x - \frac{n(z+2x)}{2(n+1)} = \frac{(n+2)z+2x}{2(n+1)} = f_{n+1}$

•
$$Y^{(opt)} = \frac{n}{n+1}W$$
, with chunk sizes $\frac{Y^{(opt)}}{n} = \frac{W}{n+1}$

æ

•
$$E(Y) = W - (z + x)W^2 - (f_n + x)Y^2 + (z + 2x)WY$$

• $Y^{(opt)} = \frac{z+2x}{2(f_n+x)}W$

•
$$E_{opt}(W, n+1) = E(Y^{(opt)}) = W - \alpha W^2$$
,
where $\alpha = z + x - \frac{(z+2x)^2}{4(f_n+x)}$
• By induction, $f_n + x = \frac{(n+1)z+2x}{2n} + x = \frac{(n+1)(z+2x)}{2n}$
• Finally, $\alpha = z + x - \frac{n(z+2x)}{2n} - \frac{(n+2)z+2x}{2n} = f_{n+1}$

• Finally,
$$\alpha = z + x - \frac{n(z+2x)}{2(n+1)} = \frac{(n+2)z+2x}{2(n+1)} = f_{n+1}$$

•
$$Y^{(opt)} = \frac{n}{n+1}W$$
, with chunk sizes $\frac{Y^{(opt)}}{n} = \frac{W}{n+1}$

æ

•
$$E(Y) = W - (z + x)W^2 - (f_n + x)Y^2 + (z + 2x)WY$$

• $Y^{(opt)} = \frac{z+2x}{2(f_n+x)}W$

•
$$E_{opt}(W, n+1) = E(Y^{(opt)}) = W - \alpha W^2$$
,
where $\alpha = z + x - \frac{(z+2x)^2}{4(f_n+x)}$
• By induction, $f_n + x = \frac{(n+1)z+2x}{2n} + x = \frac{(n+1)(z+2x)}{2n}$
• Finally, $\alpha = z + x - \frac{n(z+2x)}{2(n+1)} = \frac{(n+2)z+2x}{2(n+1)} = f_{n+1}$

•
$$Y^{(opt)} = \frac{n}{n+1}W$$
, with chunk sizes $\frac{Y^{(opt)}}{n} = \frac{W}{n+1}$

æ

Technical framework

- 2 Homogeneous computers, with communication costs
- 3 Heterogeneous computers, no communication costs
- 4 Heterogeneous computers, with communication costs

5 Conclusion

Symmetric functions

Definition

Given $n \ge 1$, for $0 \le i \le n$, $\sigma_i^{(n)}$ denotes the *i*-th symmetric function of x_1, x_2, \ldots, x_n :

$$\sigma_i^{(n)} = \sum_{1 \le j_1 < j_2 < \dots < j_i \le n} \prod_{k=1}^i \mathsf{x}_{j_k}.$$

By convention $\sigma_0^{(n)} = 1$

For instance with
$$n = 3$$
, $\sigma_1^{(3)} = x_1 + x_2 + x_3$,
 $\sigma_2^{(3)} = x_1x_2 + x_1x_3 + x_2x_3$ and $\sigma_3^{(3)} = x_1x_2x_3$

Optimal solution

Theorem

When z = 0 (no communication cost), the optimal solution to DISTRIB(p) is to send P_i a chunk of size $\frac{\prod_{k \neq i} x_k}{\sigma_{p-1}^{(p)}}W$, and $E_{opt}(W, p) = W - \frac{\sigma_p^{(p)}}{\sigma_{p-1}^{(p)}}W^2$

- Closed-form formula 🙂 🙂
- Proof by induction

1 Technical framework

- 2 Homogeneous computers, with communication costs
- 3 Heterogeneous computers, no communication costs
- 4 Heterogeneous computers, with communication costs

5 Conclusion

Optimal solution (1/2)

Theorem

When using the ordering P_1, P_2, \ldots, P_p , the optimal solution is to send P_i a chunk of size $\alpha_{i,p}W$, and

$$E_{opt}(W,p) = W - f_p W^2$$

• For
$$p \ge 1$$
, $f_p = \frac{\sum_{i=0}^{p} \lambda_i \sigma_{p-i}^{(p)} z^i}{\sum_{i=0}^{p-1} \lambda_i \sigma_{p-i-1}^{(p)} z^i}$, with $\lambda_i = \frac{4(1+i)}{2^i}$

•
$$\alpha_{1,1} = 1$$
, and for $p \ge 2$, $\alpha_{p,p} = \frac{2f_{p-1} - z}{2(f_{p-1} + x_p)}$

•
$$\alpha_{1,p} = 1 - \alpha_{2,p}$$
 for $p \ge 2$

•
$$\alpha_{i,p} = \frac{z + 2x_{i-1}}{2(f_{i-1} + x_i)} (1 - \alpha_{i+1,p})$$
 for $p > i \ge 2$

< 67 ▶

→ Ξ →

Optimal solution (2/2)

Theorem

In the general case, the optimal solution to DISTRIB(p) does not depend upon the ordering of the communications from the master

- ullet Easy algorithm \odot but no closed-form formula \odot
- Quite complicated proof (still by induction) $\ensuremath{\mathfrak{S}}$

1 Technical framework

- 2 Homogeneous computers, with communication costs
- Beterogeneous computers, no communication costs
- 4 Heterogeneous computers, with communication costs

5 Conclusion

- 4 E N

Conclusion

- First extension to master-slave divisible load approach with unrecoverable failures
- ullet Nice set of results, similar to classical setting igodot
- Turned out more difficult than expected (☺ or ☺?)
- Tractability of case with different link bandwidths?

Perspectives

- Resources with different risk functions (different owner categories?)
- Case with different speeds, different link bandwidths and different risk functions
- Combine with replication strategies
- Combine with multi-round techniques
- Comparison with dynamic approaches