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Introduction and motivation

Mapping applications onto parallel platforms
Difficult challenge

Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

Structured programming approach

Easier to program (deadlocks, process starvation)
Range of well-known paradigms (pipeline, farm)
Algorithmic skeleton: help for mapping

Mapping skeleton workflows (pipeline, fork)
onto heterogeneous platforms
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Rule of the game

Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)

Goal: minimize execution time
(extended later: throughput and latency)

Several mapping strategies

S1 ... ...S2 Sk Sn

The pipeline application
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Rule of the game

Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)

Goal: minimize execution time
(extended later: throughput and latency)

Several mapping strategies

S1 ... ...S2 Sk Sn

One-to-one Mapping
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Rule of the game

Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)

Goal: minimize execution time
(extended later: throughput and latency)

Several mapping strategies

S1 ... ...S2 Sk Sn

Interval Mapping
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Rule of the game

Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)

Goal: minimize execution time
(extended later: throughput and latency)

Several mapping strategies

S1 ... ...S2 Sk Sn

General Mapping
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Major contributions

Theory Formal approach to the problem
Definition of replication and data-parallelism (stages
on several processors)
Consider several optimization criteria
→ Problem complexity for several cases

Practice Wait for my next talk!
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The application: pipeline graphs

... ...S2 Sk SnS1

w1 w2 wk wn

δ0 δ1 δk−1 δk δn

n stages Sk , 1 ≤ k ≤ n

Sk :

receives input of size δk−1 from Sk−1

performs wk computations
outputs data of size δk to Sk+1
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The application: fork graphs

w0

S2 Sk SnS1 ... ...

S0

δ−1

δ0

δ0δ0

δ0

δnδkδ2δ1

w1 w2 wk wn

n + 1 stages Sk , 0 ≤ k ≤ n

S0: root stage
S1 to Sn: independent stages

A data-set goes through stage S0, then it can be executed
simultaneously for all other stages
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The platform

bin,u

Pv

PoutPin

sv

Pu

su

bv ,out

bu,v

sin sout

p processors Pu, 1 ≤ u ≤ p, fully interconnected

su: speed of processor Pu

bidirectional link linku,v : Pu → Pv , bandwidth bu,v

one-port model: each processor can either send, receive or
compute at any time-step

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 9/ 30



Introduction Framework Example Complexity results Conclusion

Different platforms

NO COMMUNICATIONS

Homogeneous – Identical processors (su = s): typical parallel
machines

Heterogeneous – Different-speed processors (su 6= sv ), identical
links since we do not consider communications
(bu,v = b): networks of workstations, clusters
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Rule of the game

Consecutive data-sets fed into the workflow

Period Tperiod = time interval between beginning of execution
of two consecutive data sets (throughput=1/Tperiod)

Latency Tlatency(x) = time elapsed between beginning and
end of execution for a given data set x , and
Tlatency = maxx Tlatency(x)

Map each pipeline/fork stage on one or several processors

Goal: minimize Tperiod or Tlatency or bi-criteria minimization
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Stage types

Monolithic stages: must be mapped on one single processor
since computation for a data-set may depend on result of
previous computation

Replicable stages: can be replicated on several processors, but
not parallel, i.e. a data-set must be entirely processed on a
single processor

Data-parallel stages: inherently parallel stages, one data-set
can be computed in parallel by several processors
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Replication

Replicate stage Sk on P1, . . . ,Pq

. . . Sk−1

� Sk on P1: data sets 1, 4, 7, . . . �
−− Sk on P2: data sets 2, 5, 8, . . . −−
� Sk on P3: data sets 3, 5, 9, . . . �

Sk+1 . . .

Sk+1 may be monolithic: output order must be respected

Round-robin rule to ensure output order

Cannot feed more fast processors than slow ones

Most efficient with similar-speed processors

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 13/ 30



Introduction Framework Example Complexity results Conclusion

Replication

Replicate stage Sk on P1, . . . ,Pq

. . . Sk−1

� Sk on P1: data sets 1, 4, 7, . . . �
−− Sk on P2: data sets 2, 5, 8, . . . −−
� Sk on P3: data sets 3, 5, 9, . . . �

Sk+1 . . .

Sk+1 may be monolithic: output order must be respected

Round-robin rule to ensure output order

Cannot feed more fast processors than slow ones

Most efficient with similar-speed processors

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 13/ 30



Introduction Framework Example Complexity results Conclusion

Data-parallelism

Data-parallelize stage Sk on P1, . . . ,Pq

Sk (w = 16)
• • • •• • • •• • • •• • • •

⇒
P1 (s1 = 2) : • • • • • • • •
P2 (s2 = 1) : • • • •
P3 (s3 = 1) : • • • •

Perfect sharing of the work

Data-parallelize single stage only
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Interval Mapping for pipeline graphs

Several consecutive stages onto the same processor

Increase computational load, reduce communications

Partition of [1..n] into m intervals Ij = [dj , ej ]
(with dj ≤ ej for 1 ≤ j ≤ m, d1 = 1, dj+1 = ej + 1 for
1 ≤ j ≤ m − 1 and em = n)

Interval Ij mapped onto processor Palloc(j)

Tperiod = max
1≤j≤m

∑ej

i=dj
wi

salloc(j)
Tlatency =

∑
1≤j≤m

∑ej

i=dj
wi

salloc(j)
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Replication and data-parallelism

No data-parallelism overheads

Cost to execute Si on Pu alone: wi
su

Cost to data-parallelize [Si ,Sj ] (i = j for pipeline; 0 < i ≤ j or
i = j = 0 for fork) on k processors Pq1 , . . . ,Pqk

:∑j
`=i w`∑k
u=1 squ

Cost = Tperiod of assigned processors
Cost = delay to traverse the interval
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Replication and data-parallelism

Cost to replicate [Si ,Sj ] on k processors Pq1 , . . . ,Pqk
:∑j

`=i w`

k ×min1≤u≤k squ

.

Cost = Tperiod of assigned processors
Delay to traverse the interval = time needed by slowest
processor:

tmax =

∑j
`=i w`

min1≤u≤k squ

With these formulas: easy to compute Tperiod and Tlatency for
pipeline graphs
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Working out an example

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1

Optimal period?
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Example with replication and data-parallelism

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1
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Example with replication and data-parallelism

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1

Optimal period?

S1
DP

→ P1P2, S2S3S4
REP

→ P3P4

Tperiod = max( 14
2+1 , 4+2+4

2×1 ) = 5, Tlatency = 14.67
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Example with replication and data-parallelism

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1

Optimal period?

S1
DP

→ P1P2, S2S3S4
REP

→ P3P4

Tperiod = max( 14
2+1 , 4+2+4

2×1 ) = 5, Tlatency = 14.67

S1
DP

→ P2P3P4, S2S3S4 → P1

Tperiod = max( 14
1+1+1 , 4+2+4

2 ) = 5, Tlatency = 9.67 (optimal)
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2 Working out an example
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Complexity results

Pipeline and fork graphs

No communications

Homogeneous or Heterogeneous platforms

Interval Mapping only

Replicable stages, and either data-parallelism or not

Bi-criteria optimization
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Complexity results

Without data-parallelism, Homogeneous platforms

Objective period latency bi-criteria

Hom. pipeline -
Het. pipeline Poly (str)

Hom. fork - Poly (DP)
Het. fork Poly (str) NP-hard

str = straightforward (map everything on the same proc...)

DP = dynamic programming

* = interesting case
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Complexity results

Most interesting case:
Without data-parallelism, Heterogeneous platforms

Objective period latency bi-criteria

Hom. pipeline Poly (*) - Poly (*)
Het. pipeline NP-hard (**) Poly (str) NP-hard

Hom. fork Poly (*)
Het. fork NP-hard -
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No data-parallelism, Heterogeneous platforms

For pipeline, minimizing the latency is straightforward:
map all stages on fastest proc

Minimizing the period is NP-hard (involved reduction similar
to the heterogeneous chain-to-chain one) for general pipeline

Homogeneous pipeline: all stages have same workload w:
in this case, polynomial complexity.

Polynomial bi-criteria algorithm for homogeneous pipeline
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Lemma: form of the solution

Pipeline, no data-parallelism, Heterogeneous platform

Lemma

If an optimal solution which minimizes pipeline period uses q
processors, consider q fastest processors P1, ...,Pq, ordered by
non-decreasing speeds: s1 ≤ ... ≤ sq.
There exists an optimal solution which replicates intervals of stages
onto k intervals of processors Ir = [Pdr ,Per ], with 1 ≤ r ≤ k ≤ q,
d1 = 1, ek = q, and er + 1 = dr+1 for 1 ≤ r < k.

Proof: exchange argument, which does not increase latency
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Binary-search/Dynamic programming algorithm

Given latency L, given period K

Loop on number of processors q

Dynamic programming algorithm to minimize latency

Success if L is obtained

Binary search on L to minimize latency for fixed period

Binary search on K to minimize period for fixed latency
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Dynamic programming algorithm

Compute L(n, 1, q), where L(m, i , j) = minimum latency to
map m pipeline stages on processors Pi to Pj , while fitting in
period K .

L(m, i , j) = min
1 ≤ m′ < m
i ≤ k < j

{ m.w
si

if m.w
(j−i).si

≤ K (1)

L(m′, i , k) + L(m −m′, k + 1, j) (2)

Case (1): replicating m stages onto processors Pi , ...,Pj

Case (2): splitting the interval
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Dynamic programming algorithm

Compute L(n, 1, q), where L(m, i , j) = minimum latency to
map m pipeline stages on processors Pi to Pj , while fitting in
period K .

L(m, i , j) = min
1 ≤ m′ < m
i ≤ k < j

{ m.w
si

if m.w
(j−i).si

≤ K (1)

L(m′, i , k) + L(m −m′, k + 1, j) (2)

Initialization:

L(1, i , j) =

{ w
si

if w
(j−i).si

≤ K

+∞ otherwise

L(m, i , i) =

{ m.w
si

if m.w
si
≤ K

+∞ otherwise
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Dynamic programming algorithm

Compute L(n, 1, q), where L(m, i , j) = minimum latency to
map m pipeline stages on processors Pi to Pj , while fitting in
period K .

L(m, i , j) = min
1 ≤ m′ < m
i ≤ k < j

{ m.w
si

if m.w
(j−i).si

≤ K (1)

L(m′, i , k) + L(m −m′, k + 1, j) (2)

Complexity of the dynamic programming: O(n2.p4)

Number of iterations of the binary search formally bounded,
very small number of iterations in practice.
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Outline

1 Framework

2 Working out an example

3 Complexity results

4 Conclusion
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Conclusion

Theoretical side – Complexity results for several cases.
Solid theoretical foundation for study of
single/bi-criteria mappings, with possibility to
replicate and data-parallelize application stages.

Practical side – Optimal polynomial algorithms.
Some heuristics on particular cases
(stay for next talk ,).

Future work – Heuristics based on our polynomial algorithms for
general application graphs structured as
combinations of pipeline and fork kernels.
Lots of open problems.
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Related work

Subhlok and Vondran– Extension of their work (pipeline on hom
platforms)

Chains-to-chains– In our work possibility to replicate or
data-parallelize

Mapping pipelined computations onto clusters and grids– DAG
[Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations [Melhem et al.],
three-criteria optimization

Mapping pipelined computations onto special-purpose architectures–
FPGA arrays [Fabiani et al.]. Fault-tolerance for
embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids– Use of stochastic
process algebra [Benoit et al.]
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