
Introduction Framework Example Complexity results Conclusion

Complexity Results
for Throughput and Latency Optimization
of Replicated and Data-parallel Workflows

Anne Benoit and Yves Robert

GRAAL team, LIP
École Normale Supérieure de Lyon

September 2007

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 1/ 30

Introduction Framework Example Complexity results Conclusion

Introduction and motivation

Mapping applications onto parallel platforms
Difficult challenge

Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

Structured programming approach

Easier to program (deadlocks, process starvation)
Range of well-known paradigms (pipeline, farm)
Algorithmic skeleton: help for mapping

Mapping skeleton workflows (pipeline, fork)
onto heterogeneous platforms

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 2/ 30

Introduction Framework Example Complexity results Conclusion

Introduction and motivation

Mapping applications onto parallel platforms
Difficult challenge

Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

Structured programming approach

Easier to program (deadlocks, process starvation)
Range of well-known paradigms (pipeline, farm)
Algorithmic skeleton: help for mapping

Mapping skeleton workflows (pipeline, fork)
onto heterogeneous platforms

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 2/ 30

Introduction Framework Example Complexity results Conclusion

Introduction and motivation

Mapping applications onto parallel platforms
Difficult challenge

Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

Structured programming approach

Easier to program (deadlocks, process starvation)
Range of well-known paradigms (pipeline, farm)
Algorithmic skeleton: help for mapping

Mapping skeleton workflows (pipeline, fork)
onto heterogeneous platforms

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 2/ 30

Introduction Framework Example Complexity results Conclusion

Introduction and motivation

Mapping applications onto parallel platforms
Difficult challenge

Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

Structured programming approach

Easier to program (deadlocks, process starvation)
Range of well-known paradigms (pipeline, farm)
Algorithmic skeleton: help for mapping

Mapping skeleton workflows (pipeline, fork)
onto heterogeneous platforms

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 2/ 30

Introduction Framework Example Complexity results Conclusion

Introduction and motivation

Mapping applications onto parallel platforms
Difficult challenge

Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

Structured programming approach

Easier to program (deadlocks, process starvation)
Range of well-known paradigms (pipeline, farm)
Algorithmic skeleton: help for mapping

Mapping skeleton workflows (pipeline, fork)
onto heterogeneous platforms

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 2/ 30

Introduction Framework Example Complexity results Conclusion

Introduction and motivation

Mapping applications onto parallel platforms
Difficult challenge

Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

Structured programming approach

Easier to program (deadlocks, process starvation)
Range of well-known paradigms (pipeline, farm)
Algorithmic skeleton: help for mapping

Mapping skeleton workflows (pipeline, fork)
onto heterogeneous platforms

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 2/ 30

Introduction Framework Example Complexity results Conclusion

Introduction and motivation

Mapping applications onto parallel platforms
Difficult challenge

Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

Structured programming approach

Easier to program (deadlocks, process starvation)
Range of well-known paradigms (pipeline, farm)
Algorithmic skeleton: help for mapping

Mapping skeleton workflows (pipeline, fork)
onto heterogeneous platforms

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 2/ 30

Introduction Framework Example Complexity results Conclusion

Rule of the game

Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)

Goal: minimize execution time
(extended later: throughput and latency)

Several mapping strategies

S1S2 Sk Sn

The pipeline application

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 3/ 30

Introduction Framework Example Complexity results Conclusion

Rule of the game

Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)

Goal: minimize execution time
(extended later: throughput and latency)

Several mapping strategies

S1S2 Sk Sn

The pipeline application

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 3/ 30

Introduction Framework Example Complexity results Conclusion

Rule of the game

Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)

Goal: minimize execution time
(extended later: throughput and latency)

Several mapping strategies

S1S2 Sk Sn

One-to-one Mapping

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 3/ 30

Introduction Framework Example Complexity results Conclusion

Rule of the game

Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)

Goal: minimize execution time
(extended later: throughput and latency)

Several mapping strategies

S1S2 Sk Sn

Interval Mapping

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 3/ 30

Introduction Framework Example Complexity results Conclusion

Rule of the game

Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)

Goal: minimize execution time
(extended later: throughput and latency)

Several mapping strategies

S1S2 Sk Sn

General Mapping

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 3/ 30

Introduction Framework Example Complexity results Conclusion

Major contributions

Theory Formal approach to the problem
Definition of replication and data-parallelism (stages
on several processors)
Consider several optimization criteria
→ Problem complexity for several cases

Practice Wait for my next talk!

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 4/ 30

Introduction Framework Example Complexity results Conclusion

Major contributions

Theory Formal approach to the problem
Definition of replication and data-parallelism (stages
on several processors)
Consider several optimization criteria
→ Problem complexity for several cases

Practice Wait for my next talk!

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 4/ 30

Introduction Framework Example Complexity results Conclusion

Major contributions

Theory Formal approach to the problem
Definition of replication and data-parallelism (stages
on several processors)
Consider several optimization criteria
→ Problem complexity for several cases

Practice Wait for my next talk!

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 4/ 30

Introduction Framework Example Complexity results Conclusion

Outline

1 Framework

2 Working out an example

3 Complexity results

4 Conclusion

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 5/ 30

Introduction Framework Example Complexity results Conclusion

Outline

1 Framework

2 Working out an example

3 Complexity results

4 Conclusion

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 6/ 30

Introduction Framework Example Complexity results Conclusion

The application: pipeline graphs

... ...S2 Sk SnS1

w1 w2 wk wn

δ0 δ1 δk−1 δk δn

n stages Sk , 1 ≤ k ≤ n

Sk :

receives input of size δk−1 from Sk−1

performs wk computations
outputs data of size δk to Sk+1

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 7/ 30

Introduction Framework Example Complexity results Conclusion

The application: fork graphs

w0

S2 Sk SnS1

S0

δ−1

δ0

δ0δ0

δ0

δnδkδ2δ1

w1 w2 wk wn

n + 1 stages Sk , 0 ≤ k ≤ n

S0: root stage
S1 to Sn: independent stages

A data-set goes through stage S0, then it can be executed
simultaneously for all other stages

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 8/ 30

Introduction Framework Example Complexity results Conclusion

The platform

bin,u

Pv

PoutPin

sv

Pu

su

bv ,out

bu,v

sin sout

p processors Pu, 1 ≤ u ≤ p, fully interconnected

su: speed of processor Pu

bidirectional link linku,v : Pu → Pv , bandwidth bu,v

one-port model: each processor can either send, receive or
compute at any time-step

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 9/ 30

Introduction Framework Example Complexity results Conclusion

Different platforms

NO COMMUNICATIONS

Homogeneous – Identical processors (su = s): typical parallel
machines

Heterogeneous – Different-speed processors (su 6= sv), identical
links since we do not consider communications
(bu,v = b): networks of workstations, clusters

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 10/ 30

Introduction Framework Example Complexity results Conclusion

Different platforms

NO COMMUNICATIONS

Homogeneous – Identical processors (su = s): typical parallel
machines

Heterogeneous – Different-speed processors (su 6= sv), identical
links since we do not consider communications
(bu,v = b): networks of workstations, clusters

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 10/ 30

Introduction Framework Example Complexity results Conclusion

Rule of the game

Consecutive data-sets fed into the workflow

Period Tperiod = time interval between beginning of execution
of two consecutive data sets (throughput=1/Tperiod)

Latency Tlatency(x) = time elapsed between beginning and
end of execution for a given data set x , and
Tlatency = maxx Tlatency(x)

Map each pipeline/fork stage on one or several processors

Goal: minimize Tperiod or Tlatency or bi-criteria minimization

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 11/ 30

Introduction Framework Example Complexity results Conclusion

Rule of the game

Consecutive data-sets fed into the workflow

Period Tperiod = time interval between beginning of execution
of two consecutive data sets (throughput=1/Tperiod)

Latency Tlatency(x) = time elapsed between beginning and
end of execution for a given data set x , and
Tlatency = maxx Tlatency(x)

Map each pipeline/fork stage on one or several processors

Goal: minimize Tperiod or Tlatency or bi-criteria minimization

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 11/ 30

Introduction Framework Example Complexity results Conclusion

Stage types

Monolithic stages: must be mapped on one single processor
since computation for a data-set may depend on result of
previous computation

Replicable stages: can be replicated on several processors, but
not parallel, i.e. a data-set must be entirely processed on a
single processor

Data-parallel stages: inherently parallel stages, one data-set
can be computed in parallel by several processors

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 12/ 30

Introduction Framework Example Complexity results Conclusion

Replication

Replicate stage Sk on P1, . . . ,Pq

. . . Sk−1

� Sk on P1: data sets 1, 4, 7, . . . �
−− Sk on P2: data sets 2, 5, 8, . . . −−
� Sk on P3: data sets 3, 5, 9, . . . �

Sk+1 . . .

Sk+1 may be monolithic: output order must be respected

Round-robin rule to ensure output order

Cannot feed more fast processors than slow ones

Most efficient with similar-speed processors

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 13/ 30

Introduction Framework Example Complexity results Conclusion

Replication

Replicate stage Sk on P1, . . . ,Pq

. . . Sk−1

� Sk on P1: data sets 1, 4, 7, . . . �
−− Sk on P2: data sets 2, 5, 8, . . . −−
� Sk on P3: data sets 3, 5, 9, . . . �

Sk+1 . . .

Sk+1 may be monolithic: output order must be respected

Round-robin rule to ensure output order

Cannot feed more fast processors than slow ones

Most efficient with similar-speed processors

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 13/ 30

Introduction Framework Example Complexity results Conclusion

Data-parallelism

Data-parallelize stage Sk on P1, . . . ,Pq

Sk (w = 16)
• • • •• • • •• • • •• • • •

⇒
P1 (s1 = 2) : • • • • • • • •
P2 (s2 = 1) : • • • •
P3 (s3 = 1) : • • • •

Perfect sharing of the work

Data-parallelize single stage only

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 14/ 30

Introduction Framework Example Complexity results Conclusion

Data-parallelism

Data-parallelize stage Sk on P1, . . . ,Pq

Sk (w = 16)
• • • •• • • •• • • •• • • •

⇒
P1 (s1 = 2) : • • • • • • • •
P2 (s2 = 1) : • • • •
P3 (s3 = 1) : • • • •

Perfect sharing of the work

Data-parallelize single stage only

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 14/ 30

Introduction Framework Example Complexity results Conclusion

Interval Mapping for pipeline graphs

Several consecutive stages onto the same processor

Increase computational load, reduce communications

Partition of [1..n] into m intervals Ij = [dj , ej]
(with dj ≤ ej for 1 ≤ j ≤ m, d1 = 1, dj+1 = ej + 1 for
1 ≤ j ≤ m − 1 and em = n)

Interval Ij mapped onto processor Palloc(j)

Tperiod = max
1≤j≤m

∑ej

i=dj
wi

salloc(j)
Tlatency =

∑
1≤j≤m

∑ej

i=dj
wi

salloc(j)

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 15/ 30

Introduction Framework Example Complexity results Conclusion

Interval Mapping for pipeline graphs

Several consecutive stages onto the same processor

Increase computational load, reduce communications

Partition of [1..n] into m intervals Ij = [dj , ej]
(with dj ≤ ej for 1 ≤ j ≤ m, d1 = 1, dj+1 = ej + 1 for
1 ≤ j ≤ m − 1 and em = n)

Interval Ij mapped onto processor Palloc(j)

Tperiod = max
1≤j≤m

∑ej

i=dj
wi

salloc(j)
Tlatency =

∑
1≤j≤m

∑ej

i=dj
wi

salloc(j)

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 15/ 30

Introduction Framework Example Complexity results Conclusion

Interval Mapping for pipeline graphs

Several consecutive stages onto the same processor

Increase computational load, reduce communications

Partition of [1..n] into m intervals Ij = [dj , ej]
(with dj ≤ ej for 1 ≤ j ≤ m, d1 = 1, dj+1 = ej + 1 for
1 ≤ j ≤ m − 1 and em = n)

Interval Ij mapped onto processor Palloc(j)

Tperiod = max
1≤j≤m

∑ej

i=dj
wi

salloc(j)
Tlatency =

∑
1≤j≤m

∑ej

i=dj
wi

salloc(j)

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 15/ 30

Introduction Framework Example Complexity results Conclusion

Replication and data-parallelism

No data-parallelism overheads

Cost to execute Si on Pu alone: wi
su

Cost to data-parallelize [Si ,Sj] (i = j for pipeline; 0 < i ≤ j or
i = j = 0 for fork) on k processors Pq1 , . . . ,Pqk

:∑j
`=i w`∑k
u=1 squ

Cost = Tperiod of assigned processors
Cost = delay to traverse the interval

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 16/ 30

Introduction Framework Example Complexity results Conclusion

Replication and data-parallelism

No data-parallelism overheads

Cost to execute Si on Pu alone: wi
su

Cost to data-parallelize [Si ,Sj] (i = j for pipeline; 0 < i ≤ j or
i = j = 0 for fork) on k processors Pq1 , . . . ,Pqk

:∑j
`=i w`∑k
u=1 squ

Cost = Tperiod of assigned processors
Cost = delay to traverse the interval

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 16/ 30

Introduction Framework Example Complexity results Conclusion

Replication and data-parallelism

No data-parallelism overheads

Cost to execute Si on Pu alone: wi
su

Cost to data-parallelize [Si ,Sj] (i = j for pipeline; 0 < i ≤ j or
i = j = 0 for fork) on k processors Pq1 , . . . ,Pqk

:∑j
`=i w`∑k
u=1 squ

Cost = Tperiod of assigned processors
Cost = delay to traverse the interval

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 16/ 30

Introduction Framework Example Complexity results Conclusion

Replication and data-parallelism

Cost to replicate [Si ,Sj] on k processors Pq1 , . . . ,Pqk
:∑j

`=i w`

k ×min1≤u≤k squ

.

Cost = Tperiod of assigned processors
Delay to traverse the interval = time needed by slowest
processor:

tmax =

∑j
`=i w`

min1≤u≤k squ

With these formulas: easy to compute Tperiod and Tlatency for
pipeline graphs

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 17/ 30

Introduction Framework Example Complexity results Conclusion

Replication and data-parallelism

Cost to replicate [Si ,Sj] on k processors Pq1 , . . . ,Pqk
:∑j

`=i w`

k ×min1≤u≤k squ

.

Cost = Tperiod of assigned processors
Delay to traverse the interval = time needed by slowest
processor:

tmax =

∑j
`=i w`

min1≤u≤k squ

With these formulas: easy to compute Tperiod and Tlatency for
pipeline graphs

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 17/ 30

Introduction Framework Example Complexity results Conclusion

Outline

1 Framework

2 Working out an example

3 Complexity results

4 Conclusion

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 18/ 30

Introduction Framework Example Complexity results Conclusion

Working out an example

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1

Optimal period?

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 19/ 30

Introduction Framework Example Complexity results Conclusion

Working out an example

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1

Optimal period?
Tperiod = 7, S1 → P1, S2S3 → P2, S4 → P3 (Tlatency = 17)

Optimal latency?

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 19/ 30

Introduction Framework Example Complexity results Conclusion

Working out an example

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1

Optimal period?
Tperiod = 7, S1 → P1, S2S3 → P2, S4 → P3 (Tlatency = 17)

Optimal latency?
Tlatency = 12, S1S2S3S4 → P1 (Tperiod = 12)

Min. latency if Tperiod ≤ 10?

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 19/ 30

Introduction Framework Example Complexity results Conclusion

Working out an example

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1

Optimal period?
Tperiod = 7, S1 → P1, S2S3 → P2, S4 → P3 (Tlatency = 17)

Optimal latency?
Tlatency = 12, S1S2S3S4 → P1 (Tperiod = 12)

Min. latency if Tperiod ≤ 10?
Tlatency = 14, S1S2S3 → P1, S4 → P2

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 19/ 30

Introduction Framework Example Complexity results Conclusion

Example with replication and data-parallelism

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 20/ 30

Introduction Framework Example Complexity results Conclusion

Example with replication and data-parallelism

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1

Optimal period?

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 20/ 30

Introduction Framework Example Complexity results Conclusion

Example with replication and data-parallelism

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1

Optimal period?

S1
DP

→ P1P2, S2S3S4
REP

→ P3P4

Tperiod = max(14
2+1 , 4+2+4

2×1) = 5, Tlatency = 14.67

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 20/ 30

Introduction Framework Example Complexity results Conclusion

Example with replication and data-parallelism

S1 → S2 → S3 → S4

14 4 2 4

Interval mapping, 4 processors, s1 = 2 and s2 = s3 = s4 = 1

Optimal period?

S1
DP

→ P1P2, S2S3S4
REP

→ P3P4

Tperiod = max(14
2+1 , 4+2+4

2×1) = 5, Tlatency = 14.67

S1
DP

→ P2P3P4, S2S3S4 → P1

Tperiod = max(14
1+1+1 , 4+2+4

2) = 5, Tlatency = 9.67 (optimal)

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 20/ 30

Introduction Framework Example Complexity results Conclusion

Outline

1 Framework

2 Working out an example

3 Complexity results

4 Conclusion

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 21/ 30

Introduction Framework Example Complexity results Conclusion

Complexity results

Pipeline and fork graphs

No communications

Homogeneous or Heterogeneous platforms

Interval Mapping only

Replicable stages, and either data-parallelism or not

Bi-criteria optimization

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 22/ 30

Introduction Framework Example Complexity results Conclusion

Complexity results

Without data-parallelism, Homogeneous platforms

Objective period latency bi-criteria

Hom. pipeline -
Het. pipeline Poly (str)

Hom. fork - Poly (DP)
Het. fork Poly (str) NP-hard

str = straightforward (map everything on the same proc...)

DP = dynamic programming

* = interesting case

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 23/ 30

Introduction Framework Example Complexity results Conclusion

Complexity results

With data-parallelism, Homogeneous platforms

Objective period latency bi-criteria

Hom. pipeline -
Het. pipeline Poly (DP)

Hom. fork - Poly (DP)
Het. fork Poly (str) NP-hard

str = straightforward (map everything on the same proc...)

DP = dynamic programming

* = interesting case

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 23/ 30

Introduction Framework Example Complexity results Conclusion

Complexity results

Without data-parallelism, Heterogeneous platforms

Objective period latency bi-criteria

Hom. pipeline Poly (*) - Poly (*)
Het. pipeline NP-hard (**) Poly (str) NP-hard

Hom. fork Poly (*)
Het. fork NP-hard -

str = straightforward (map everything on the same proc...)

DP = dynamic programming

* = interesting case

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 23/ 30

Introduction Framework Example Complexity results Conclusion

Complexity results

With data-parallelism, Heterogeneous platforms

Objective period latency bi-criteria

Hom. pipeline NP-hard
Het. pipeline -

Hom. fork NP-hard
Het. fork -

str = straightforward (map everything on the same proc...)

DP = dynamic programming

* = interesting case

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 23/ 30

Introduction Framework Example Complexity results Conclusion

Complexity results

Most interesting case:
Without data-parallelism, Heterogeneous platforms

Objective period latency bi-criteria

Hom. pipeline Poly (*) - Poly (*)
Het. pipeline NP-hard (**) Poly (str) NP-hard

Hom. fork Poly (*)
Het. fork NP-hard -

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 23/ 30

Introduction Framework Example Complexity results Conclusion

Complexity results

Most interesting case:
Without data-parallelism, Heterogeneous platforms

Objective period latency bi-criteria

Hom. pipeline Poly (*) - Poly (*)
Het. pipeline NP-hard (**) Poly (str) NP-hard

Hom. fork Poly (*)
Het. fork NP-hard -

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 23/ 30

Introduction Framework Example Complexity results Conclusion

No data-parallelism, Heterogeneous platforms

For pipeline, minimizing the latency is straightforward:
map all stages on fastest proc

Minimizing the period is NP-hard (involved reduction similar
to the heterogeneous chain-to-chain one) for general pipeline

Homogeneous pipeline: all stages have same workload w:
in this case, polynomial complexity.

Polynomial bi-criteria algorithm for homogeneous pipeline

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 24/ 30

Introduction Framework Example Complexity results Conclusion

No data-parallelism, Heterogeneous platforms

For pipeline, minimizing the latency is straightforward:
map all stages on fastest proc

Minimizing the period is NP-hard (involved reduction similar
to the heterogeneous chain-to-chain one) for general pipeline

Homogeneous pipeline: all stages have same workload w:
in this case, polynomial complexity.

Polynomial bi-criteria algorithm for homogeneous pipeline

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 24/ 30

Introduction Framework Example Complexity results Conclusion

Lemma: form of the solution

Pipeline, no data-parallelism, Heterogeneous platform

Lemma

If an optimal solution which minimizes pipeline period uses q
processors, consider q fastest processors P1, ...,Pq, ordered by
non-decreasing speeds: s1 ≤ ... ≤ sq.
There exists an optimal solution which replicates intervals of stages
onto k intervals of processors Ir = [Pdr ,Per], with 1 ≤ r ≤ k ≤ q,
d1 = 1, ek = q, and er + 1 = dr+1 for 1 ≤ r < k.

Proof: exchange argument, which does not increase latency

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 25/ 30

Introduction Framework Example Complexity results Conclusion

Lemma: form of the solution

Pipeline, no data-parallelism, Heterogeneous platform

Lemma

If an optimal solution which minimizes pipeline period uses q
processors, consider q fastest processors P1, ...,Pq, ordered by
non-decreasing speeds: s1 ≤ ... ≤ sq.
There exists an optimal solution which replicates intervals of stages
onto k intervals of processors Ir = [Pdr ,Per], with 1 ≤ r ≤ k ≤ q,
d1 = 1, ek = q, and er + 1 = dr+1 for 1 ≤ r < k.

Proof: exchange argument, which does not increase latency

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 25/ 30

Introduction Framework Example Complexity results Conclusion

Binary-search/Dynamic programming algorithm

Given latency L, given period K

Loop on number of processors q

Dynamic programming algorithm to minimize latency

Success if L is obtained

Binary search on L to minimize latency for fixed period

Binary search on K to minimize period for fixed latency

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 26/ 30

Introduction Framework Example Complexity results Conclusion

Binary-search/Dynamic programming algorithm

Given latency L, given period K

Loop on number of processors q

Dynamic programming algorithm to minimize latency

Success if L is obtained

Binary search on L to minimize latency for fixed period

Binary search on K to minimize period for fixed latency

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 26/ 30

Introduction Framework Example Complexity results Conclusion

Dynamic programming algorithm

Compute L(n, 1, q), where L(m, i , j) = minimum latency to
map m pipeline stages on processors Pi to Pj , while fitting in
period K .

L(m, i , j) = min
1 ≤ m′ < m
i ≤ k < j

{ m.w
si

if m.w
(j−i).si

≤ K (1)

L(m′, i , k) + L(m −m′, k + 1, j) (2)

Case (1): replicating m stages onto processors Pi , ...,Pj

Case (2): splitting the interval

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 27/ 30

Introduction Framework Example Complexity results Conclusion

Dynamic programming algorithm

Compute L(n, 1, q), where L(m, i , j) = minimum latency to
map m pipeline stages on processors Pi to Pj , while fitting in
period K .

L(m, i , j) = min
1 ≤ m′ < m
i ≤ k < j

{ m.w
si

if m.w
(j−i).si

≤ K (1)

L(m′, i , k) + L(m −m′, k + 1, j) (2)

Initialization:

L(1, i , j) =

{ w
si

if w
(j−i).si

≤ K

+∞ otherwise

L(m, i , i) =

{ m.w
si

if m.w
si
≤ K

+∞ otherwise

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 27/ 30

Introduction Framework Example Complexity results Conclusion

Dynamic programming algorithm

Compute L(n, 1, q), where L(m, i , j) = minimum latency to
map m pipeline stages on processors Pi to Pj , while fitting in
period K .

L(m, i , j) = min
1 ≤ m′ < m
i ≤ k < j

{ m.w
si

if m.w
(j−i).si

≤ K (1)

L(m′, i , k) + L(m −m′, k + 1, j) (2)

Complexity of the dynamic programming: O(n2.p4)

Number of iterations of the binary search formally bounded,
very small number of iterations in practice.

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 27/ 30

Introduction Framework Example Complexity results Conclusion

Outline

1 Framework

2 Working out an example

3 Complexity results

4 Conclusion

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 28/ 30

Introduction Framework Example Complexity results Conclusion

Conclusion

Theoretical side – Complexity results for several cases.
Solid theoretical foundation for study of
single/bi-criteria mappings, with possibility to
replicate and data-parallelize application stages.

Practical side – Optimal polynomial algorithms.
Some heuristics on particular cases
(stay for next talk ,).

Future work – Heuristics based on our polynomial algorithms for
general application graphs structured as
combinations of pipeline and fork kernels.
Lots of open problems.

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 29/ 30

Introduction Framework Example Complexity results Conclusion

Related work

Subhlok and Vondran– Extension of their work (pipeline on hom
platforms)

Chains-to-chains– In our work possibility to replicate or
data-parallelize

Mapping pipelined computations onto clusters and grids– DAG
[Taura et al.], DataCutter [Saltz et al.]

Energy-aware mapping of pipelined computations [Melhem et al.],
three-criteria optimization

Mapping pipelined computations onto special-purpose architectures–
FPGA arrays [Fabiani et al.]. Fault-tolerance for
embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids– Use of stochastic
process algebra [Benoit et al.]

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar’07 30/ 30

	Introduction
	Framework
	Working out an example
	Complexity results
	Conclusion

