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Introduction

Introduction and motivation

@ Mapping applications onto parallel platforms
Difficult challenge

@ Heterogeneous clusters, fully heterogeneous platforms
Even more difficult!

@ Structured programming approach

o Easier to program (deadlocks, process starvation)
o Range of well-known paradigms (pipeline, farm)
o Algorithmic skeleton: help for mapping

Mapping skeleton workflows (pipeline, fork)
onto heterogeneous platforms
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Rule of the game

@ Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)
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Introduction

Rule of the game

@ Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)

@ Goal: minimize execution time
(extended later: throughput and latency)

@ Several mapping strategies

(5 - (-

INTERVAL MAPPING
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Introduction

Rule of the game

@ Map each pipeline stage on a single processor
(extended later: replication and data-parallelism)

@ Goal: minimize execution time
(extended later: throughput and latency)

@ Several mapping strategies

GENERAL MAPPING
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Introduction

Major contributions

Theory

Formal approach to the problem

Definition of replication and data-parallelism (stages
on several processors)

Consider several optimization criteria
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Introduction

Major contributions

Theory

Practice

Formal approach to the problem

Definition of replication and data-parallelism (stages
on several processors)

Consider several optimization criteria

— Problem complexity for several cases

Wait for my next talk!

Anne.Benoit@ens-lyon.fr
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© Framework

© Working out an example

© Complexity results

@ Conclusion
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Framework

The application: pipeline graphs

61 (Sk 1 (5k 5n
Wiy Wp,

@ nstages Sk, 1 < k<n
o Si:
e receives input of size dx_1 from Sx_1

e performs w, computations
e outputs data of size dx to Ski1
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Framework

The application: fork graphs

@ n+ 1stages S, 0 < k<n
e Sp: root stage
e 51 to S, independent stages

@ A data-set goes through stage Sp, then it can be executed
simultaneously for all other stages

Q
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Framework

The platform

@ p processors P,, 1 < u < p, fully interconnected
@ s, speed of processor P,
@ bidirectional link link, , : P, — P,, bandwidth b, ,

@ one-port model: each processor can either send, receive or
compute at any time-step

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar'07



Framework
Different platforms

NO COMMUNICATIONS
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Framework
Different platforms

NO COMMUNICATIONS

Homogeneous — ldentical processors (s, =s): typical parallel
machines

Heterogeneous — Different-speed processors (s, # s, ), identical
links since we do not consider communications
(by,w = b): networks of workstations, clusters
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Framework
Rule of the game

@ Consecutive data-sets fed into the workflow
@ Period Tperiod = time interval between beginning of execution
of two consecutive data sets (throughput=1/Tperiod)

o Latency Tiatency(x) = time elapsed between beginning and
end of execution for a given data set x, and

Tlatency = MaXx 7_Iatency(X)
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Framework

Rule of the game

@ Consecutive data-sets fed into the workflow

@ Period Tperiod = time interval between beginning of execution
of two consecutive data sets (throughput=1/Tperiod)

o Latency Tiatency(x) = time elapsed between beginning and
end of execution for a given data set x, and

Tlatency = MaXx 7_Iatency(X)

e Map each pipeline/fork stage on one or several processors

@ Goal: minimize Tyeriod OF Tiatency OF bi-criteria minimization

Anne.Benoit@ens-lyon.fr September 2007 Complexity results for workflows HeteroPar'07 11/ 30



Framework

Stage types

@ Monolithic stages: must be mapped on one single processor
since computation for a data-set may depend on result of
previous computation

@ Replicable stages: can be replicated on several processors, but
not parallel, i.e. a data-set must be entirely processed on a
single processor

@ Data-parallel stages: inherently parallel stages, one data-set
can be computed in parallel by several processors
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Framework
Replication

Replicate stage Sk on Py,..., Pq

/  Spon Py:datasets1,4,7, ...
co. Sk1 —— Sk on Py datasets2,5,8, ... —— Ski1 ...
. Skon P;: datasets3,5,9,...
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Framework
Replication

Replicate stage Sk on Py,..., Pq

/  Spon Py:datasets1,4,7, ...
co. Sk1 —— Sk on Py datasets2,5,8, ... —— Ski1 ...
. Skon P;: datasets3,5,9,...

Sk1 may be monolithic: output order must be respected

°

@ Round-robin rule to ensure output order

@ Cannot feed more fast processors than slow ones
°

Most efficient with similar-speed processors
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Framework

Data-parallelism

Data-parallelize stage Sy on Py,..., P,

Sk (w =16) Pi(s1=2): eeeeceee
cece = Pr(sp=1): eeee
cces P;(s3=1): eeee
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Framework
Data-parallelism

Data-parallelize stage Sy on Py,..., P,
Sk (w =16) Pi(s1=2): eeeeceee
ceee = Pr(sp=1): eeee
cces P;(s3=1): eeee

@ Perfect sharing of the work

@ Data-parallelize single stage only

Anne.Benoit@ens-lyon.fr September 2007

Complexity results for workflows HeteroPar'07 14/ 30



Framework

INTERVAL MAPPING for pipeline graphs

@ Several consecutive stages onto the same processor

@ Increase computational load, reduce communications
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Framework
INTERVAL MAPPING for pipeline graphs

Several consecutive stages onto the same processor

Increase computational load, reduce communications

Partition of [1..n] into m intervals |; = [d}, &j]
(with dj < e for1<j<m, d =1, djy1=¢+1for
1<j<m-1ande,=n)

Interval I; mapped onto processor Pyjioc(j)
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Framework
INTERVAL MAPPING for pipeline graphs

Several consecutive stages onto the same processor

Increase computational load, reduce communications

Partition of [1..n] into m intervals |; = [d}, &j]
(with dj < e for1<j<m, d =1, djy1=¢+1for
1<j<m-1ande,=n)

Interval I; mapped onto processor Pyjioc(j)

Z?:df Wi

.
J .

Zi:dj Wi

Tperiod = Max —————
Salloc(j)

1<j<m Salloc(j)

7-Iatency = E

1<j<m
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Framework

Replication and data-parallelism

@ No data-parallelism overheads
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Framework

Replication and data-parallelism

@ No data-parallelism overheads

Wi

@ Cost to execute S; on P, alone:
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Framework
Replication and data-parallelism

@ No data-parallelism overheads

wi

@ Cost to execute S; on P, alone: f
o Cost to data-parallelize [S;,S;] (i = j for pipeline; 0 < i < j or
i = j =0 for fork) on k processors Pg,, ..., Pq,:
=i We
k
Zu:l Squ

Cost = Tperiod Of assigned processors
Cost = delay to traverse the interval
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Framework

Replication and data-parallelism

@ Cost to replicate [S;, S;] on k processors P, ..., Pq,:

ng: iWe

k x minlgugk Sqy

Cost = Tperiod Of assigned processors
Delay to traverse the interval = time needed by slowest
processor:

tmax -

Dy We

minlgugk Squ
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Framework

Replication and data-parallelism

@ Cost to replicate [S;, S;] on k processors P, ..., Pq,:

ng: iWe

k x minlgugk Sqy

Cost = Tperiod Of assigned processors
Delay to traverse the interval = time needed by slowest
processor: .

D i We

minlgugk Squ

tmax -

@ With these formulas: easy to compute Tperiod and Tiatency for
pipeline graphs
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Example

Outline

© Working out an example
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Example

Working out an example

ST — S - 8§ — &
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Optimal period?
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Working out an example
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Optimal period?
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Example
Working out an example

ST — S - 8§ — &
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Optimal period?
Tperiod =7, 851 — P1, 883 — Py, S4 — P3 (Tlatency = 17)

Optimal latency?
Tlatency =12, 81825354 - Pl (Tperiod = 12)

Min. latency if Tperiod < 107
Tatency = 14, 51583 — P1, S4 — P>
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Example
Example with replication and data-parallelism

ST — S - 8§ — &
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1
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Example
Example with replication and data-parallelism

ST — S - 8§ — &
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Optimal period?
S T PPy, 82858, T Py,
— —

14 44244
Toeriod = max( 2+1° }LXT ) =5, Tiatency = 14.67
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Example
Example with replication and data-parallelism

ST — S - 8§ — &
14 4 2 4

Interval mapping, 4 processors, s; =2 and sp =s3 =s4 =1

Optimal period?
S T PPy, 82858, T Py,
— —

14 44244
Toeriod = max( 2+1° }LXT ) =5, Tiatency = 14.67

S1 " PaPsPy, 828584 — Py

Toeriod = max( 1+114+1, 4+§+4) =5, Tiatency = 9.67 (optimal)
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Complexity results

Outline

© Complexity results
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Complexity results

Complexity results

Pipeline and fork graphs

No communications

Homogeneous or Heterogeneous platforms
INTERVAL MAPPING only

Replicable stages, and either data-parallelism or not

Bi-criteria optimization
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Complexity results
Complexity results

Without data-parallelism, Homogeneous platforms

] Objective || period | latency | bi-criteria |
Hom. pipeline -
Het. pipeline Poly (str)
Hom. fork - Poly (DP)
Het. fork || Poly (str) NP-hard

@ str = straightforward (map everything on the same proc...)
@ DP = dynamic programming

@ * = interesting case
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Complexity results
Complexity results

With data-parallelism, Heterogeneous platforms

] Objective H period \ latency | bi-criteria

Hom. pipeline NP-hard

Het. pipeline -
Hom. fork NP-hard
Het. fork -

@ str = straightforward (map everything on the same proc...)
e DP = dynamic programming

@ * = interesting case
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Complexity results
Complexity results

Most interesting case:
Without data-parallelism, Heterogeneous platforms

’ Objective H period ‘ latency ‘ bi-criteria ‘
Hom. pipeline Poly (*) - Poly (*)
Het. pipeline || NP-hard (**) | Poly (str) | NP-hard
Hom. fork Poly (*)
Het. fork NP-hard ‘ -
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Complexity results
No data-parallelism, Heterogeneous platforms

e For pipeline, minimizing the latency is straightforward:
map all stages on fastest proc

@ Minimizing the period is NP-hard (involved reduction similar
to the heterogeneous chain-to-chain one) for general pipeline

@ Homogeneous pipeline: all stages have same workload w:
in this case, polynomial complexity.
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Complexity results
No data-parallelism, Heterogeneous platforms

e For pipeline, minimizing the latency is straightforward:
map all stages on fastest proc

@ Minimizing the period is NP-hard (involved reduction similar
to the heterogeneous chain-to-chain one) for general pipeline

@ Homogeneous pipeline: all stages have same workload w:
in this case, polynomial complexity.

@ Polynomial bi-criteria algorithm for homogeneous pipeline
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Complexity results
Lemma: form of the solution

Pipeline, no data-parallelism, Heterogeneous platform

Lemma

If an optimal solution which minimizes pipeline period uses q
processors, consider q fastest processors P1, ..., P4, ordered by
non-decreasing speeds: sy < ... < 5.

There exists an optimal solution which replicates intervals of stages
onto k intervals of processors |, = [Py, Pe,], with 1 < r < k < g,
d=1e=q, ande +1=d,y1 forl <r < k.
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Complexity results
Lemma: form of the solution

Pipeline, no data-parallelism, Heterogeneous platform

Lemma

If an optimal solution which minimizes pipeline period uses q
processors, consider q fastest processors P1, ..., P4, ordered by
non-decreasing speeds: sy < ... < 5.

There exists an optimal solution which replicates intervals of stages
onto k intervals of processors |, = [Py, Pe,], with 1 < r < k < g,
d=1e=q, ande +1=d,y1 forl <r < k.

Proof: exchange argument, which does not increase latency
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Complexity results
Binary-search /Dynamic programming algorithm

Given latency L, given period K
Loop on number of processors g
Dynamic programming algorithm to minimize latency

Success if L is obtained
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Complexity results
Binary-search /Dynamic programming algorithm

@ Given latency L, given period K

@ Loop on number of processors g

@ Dynamic programming algorithm to minimize latency
°

Success if L is obtained

Binary search on L to minimize latency for fixed period

Binary search on K to minimize period for fixed latency
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Complexity results
Dynamic programming algorithm

e Compute L(n,1,q), where L(m,i,j) = minimum latency to
map m pipeline stages on processors P; to P;, while fitting in

period K.
N _ mw g <K (1)
Lm,, _ min Si U- ')S .
( IJ) 1§m|’<m { L(malvk)+L(m_m’k+1’J) (2)
i<k<j

o Case (1): replicating m stages onto processors P;, ..., P;
e Case (2): splitting the interval
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Complexity results
Dynamic programming algorithm

e Compute L(n,1,q), where L(m,i,j) = minimum latency to
map m pipeline stages on processors P; to P;, while fitting in

period K.
L(m,i,j)= min { si if = l)s <K (1) .
1<m <m L(m', i k) + Lm—m k+1,j) (2)
I<k<j
Initialization:

v w__ <
L(L,ij) - { e =K

+00 otherW|se

L(m,i,i)= i K
+oo otherW|se
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Complexity results
Dynamic programming algorithm

e Compute L(n,1,q), where L(m,i,j) = minimum latency to
map m pipeline stages on processors P; to P;, while fitting in

period K.
N _ mw g <K (1)
Lm,, _ min Si U- ')S .
( IJ) 1§m|’<m { L(malvk)+L(m_m’k+1’J) (2)
i<k<j

o Complexity of the dynamic programming: O(n2.p*)

@ Number of iterations of the binary search formally bounded,
very small number of iterations in practice.
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Conclusion

Outline

@ Conclusion
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Conclusion
Conclusion

Theoretical side — Complexity results for several cases.
Solid theoretical foundation for study of
single/bi-criteria mappings, with possibility to
replicate and data-parallelize application stages.
Practical side — Optimal polynomial algorithms.
Some heuristics on particular cases
(stay for next talk ©).

Future work — Heuristics based on our polynomial algorithms for
general application graphs structured as
combinations of pipeline and fork kernels.

Lots of open problems.
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Conclusion
Related work

Subhlok and Vondran— Extension of their work (pipeline on hom
platforms)

Chains-to-chains— In our work possibility to replicate or
data-parallelize

Mapping pipelined computations onto clusters and grids— DAG
[Taura et al.], DataCutter [Saltz et al ]

Energy-aware mapping of pipelined computations [Melhem et al ],
three-criteria optimization

Mapping pipelined computations onto special-purpose architectures—
FPGA arrays [Fabiani et al.]. Fault-tolerance for
embedded systems [Zhu et al.]

Mapping skeletons onto clusters and grids— Use of stochastic
process algebra [Benoit et al.]
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