Combining checkpointing and replication for reliable execution of linear workflows

Anne Benoit^{1,2}, Aurélien Cavelan³, Florina M. Ciorba³, Valentin Le Fèvre¹, Yves Robert^{1,4}

- 1. LIP, Ecole Normale Supérieure de Lyon, France
- Georgia Institute of Technology, Atlanta, GA, USA
 University of Basel, Switzerland
 - 4. University of Tennessee, Knoxville, TN, USA

```
http://graal.ens-lyon.fr/~abenoit/
```

ICL Lunch Talk, UT Knoxville, June 1st, 2018

Linear workflows

- High-performance computing (HPC) application: chain of tasks $T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_n$
- Parallel tasks executed on the whole platform
- For instance: tightly-coupled computational kernels, image processing applications, ...
- Goal: efficient execution, i.e., minimize total execution time

Linear workflows

- High-performance computing (HPC) application: chain of tasks $T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_n$
- Parallel tasks executed on the whole platform
- For instance: tightly-coupled computational kernels, image processing applications, ...
- Goal: efficient execution, i.e., minimize total execution time

Reliable execution

- Hierarchical
 - 10⁵ or 10⁶ nodes
 - Each node equipped with 10⁴ or 10³ cores
- Failure-prone

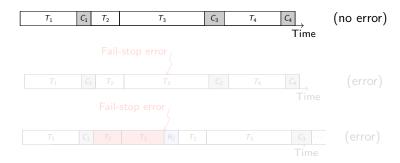
MTBF – one node	1 year	10 years	120 years
MTBF – platform of 10 ⁶ nodes	30sec	5mn	1h

More nodes ⇒ Shorter MTBF (Mean Time Between Failures)

Need to ensure that the execution will be reliable, i.e., without failures

Coping with fail-stop errors with checkpoints

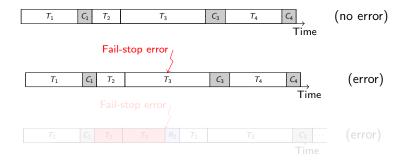
Checkpoint, rollback, and recovery:



- Coordinated checkpointing (the platform is a giant macro-processor)
- Assume instantaneous interruption and detection
- Rollback to last checkpoint and re-execute

Coping with fail-stop errors with checkpoints

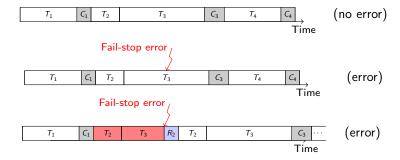
Checkpoint, rollback, and recovery:



- Coordinated checkpointing (the platform is a giant macro-processor)
- Assume instantaneous interruption and detection
- Rollback to last checkpoint and re-execute

Coping with fail-stop errors with checkpoints

Checkpoint, rollback, and recovery:

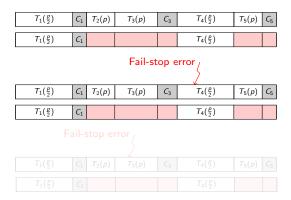


- Coordinated checkpointing (the platform is a giant macro-processor)
- Assume instantaneous interruption and detection
- Rollback to last checkpoint and re-execute

Coping with fail-stop errors with replication

- The whole platform is used at all time, some tasks are replicated
- If failure hits a replicated task, no need to rollback
- Otherwise, rollback to last checkpoint and re-execute

Coping with fail-stop errors with replication



- The whole platform is used at all time, some tasks are replicated
- If failure hits a replicated task, no need to rollback
- Otherwise, rollback to last checkpoint and re-execute

Coping with fail-stop errors with replication

$T_1(\frac{p}{2})$	<i>C</i> ₁	$T_2(p)$	T ₃ (p)	<i>C</i> ₃	$T_4(\frac{p}{2})$	T ₅ (p)	C ₅	
$T_1(\frac{p}{2})$	C_1				$T_4(\frac{p}{2})$			
Fail-stop error								
$T_1(\frac{p}{2})$	C_1	$T_2(p)$	T ₃ (p)	<i>C</i> ₃	$T_4(\frac{p}{2})$	$T_5(p)$	C ₅	
$T_1(\frac{p}{2})$	<i>C</i> ₁				$T_4(\frac{p}{2})$			
Fail-stop error								
$T_1(\frac{p}{2})$	C_1	$T_2(p)$	T ₃ (p)	<i>C</i> ₃	$T_4(\frac{p}{2})$	$T_5(p)$	C ₅	
$T_1(\frac{p}{2})$	<i>C</i> ₁				$T_4(\frac{p}{2})$			

- The whole platform is used at all time, some tasks are replicated
- If failure hits a replicated task, no need to rollback
- Otherwise, rollback to last checkpoint and re-execute

Contributions

- Both checkpointing and replication have been extensively studied
- Combination of both techniques not yet investigated
- Detailed model
- Optimal dynamic programming algorithm
- Experiments to evaluate impact of using both replication and checkpointing during execution
- Guidelines about when to checkpoint only, replicate only, or combine both techniques

Contributions

- Both checkpointing and replication have been extensively studied
- Combination of both techniques not yet investigated
- Detailed model
- Optimal dynamic programming algorithm
- Experiments to evaluate impact of using both replication and checkpointing during execution
- Guidelines about when to checkpoint only, replicate only, or combine both techniques

Outline

- Model and objective
- Optimal dynamic programming algorithm
- 3 Experiments
- 4 Conclusion

Application and platform model

Application:

- Chain $T_1 \rightarrow T_2 \rightarrow \cdots \rightarrow T_n$
- Parallel tasks: (failure-free) execution time of T_i using q_i processors is $w_i \left(\alpha_i + \frac{1-\alpha_i}{q_i}\right)$ (Amdahl's law)

• Platform:

- Homogeneous platform with p processors P_i , $1 \le i \le p$
- ullet Fail-stop errors, Exponential distribution, error rate λ_{ind}
- $\mathbb{P}(X \leq T) = 1 e^{-q\lambda_{ind}T}$ on q processors

Checkpointing

- Checkpointing time: $C_i(q_i) = a_i + \frac{b_i}{q_i} + c_i q_i$
 - $a_i + \frac{b_i}{q_i}$: communication time with latency a_i
 - $c_i q_i$: message passing overhead
- Downtime D
- Recovery cost R_{j+1} (where T_j is the last checkpointed task)
- $R_{i+1}(q_i) = C_i(q_i)$ for $1 \le i \le n-1$: recovering for $T_{i+1} \approx \text{reading } C_i$
- T_0 with $w_0=0$ checkpointed (input time $R_1(q_1)$)
- T_n always checkpointed (output time $C_n(q_n)$)

No replication

- T_i not replicated: costs C_i^{norep} and R_i^{norep}
- Failure-free execution time: $T_i^{norep} = w_i \left(\alpha_i + \frac{1 \alpha_i}{p} \right)$
- Expected execution time $\mathbb{E}^{norep}(i)$:

$$\mathbb{E}^{norep}(i) = \mathbb{P}(X_p \leq T_i^{norep}) \Big(T_{lost}^{norep}(T_i^{norep}) + D + R_i^{norep} + \mathbb{E}^{norep}(i) \Big)$$
$$+ (1 - \mathbb{P}(X_p \leq T_i^{norep})) T_i^{norep}$$

- $\mathbb{P}(X_p \leq t) = 1 e^{-\lambda_{ind}pt}$: probability of failure on one of the p processors before time t
- $T_{lost}^{norep}(T_i^{norep}) = \frac{1}{\lambda_{ind}p} \frac{t}{e^{\lambda_{ind}pT_i^{norep}} 1}$
- $\mathbb{E}^{norep}(i) = (e^{\lambda_{ind}pT_i^{norep}} 1)(\frac{1}{\lambda_{ind}p} + D + R_i^{norep})$
- If T_i is checkpointed, add C_i^{norep}

No replication

- T_i not replicated: costs C_i^{norep} and R_i^{norep}
- Failure-free execution time: $T_i^{norep} = w_i \left(\alpha_i + \frac{1 \alpha_i}{p} \right)$
- Expected execution time $\mathbb{E}^{norep}(i)$:

$$\mathbb{E}^{norep}(i) = \mathbb{P}(X_p \leq T_i^{norep}) \left(T_{lost}^{norep}(T_i^{norep}) + D + R_i^{norep} + \mathbb{E}^{norep}(i) \right) + \left(1 - \mathbb{P}(X_p \leq T_i^{norep}) \right) T_i^{norep}$$

- $\mathbb{P}(X_p \leq t) = 1 e^{-\lambda_{ind}pt}$: probability of failure on one of the p processors before time t
- $T_{lost}^{norep}(T_i^{norep}) = \frac{1}{\lambda_{ind}p} \frac{t}{e^{\lambda_{ind}pT_i^{norep}} 1}$
- $\mathbb{E}^{norep}(i) = (e^{\lambda_{ind}pT_i^{norep}} 1)(\frac{1}{\lambda_{ind}p} + D + R_i^{norep})$
- If T_i is checkpointed, add C_i^{norep}

Replication

- T_i replicated: if a copy fails, downtime + recovery
- Each copy uses p/2 processors; costs C_i^{rep} and R_i^{rep}
- Failure-free execution time: $T_i^{rep} = w_i \left(\alpha_i + \frac{1 \alpha_i}{\frac{p}{2}} \right)$
- Expected execution time $\mathbb{E}^{rep}(i)$ if T_{i-1} is checkpointed:

$$\mathbb{E}^{rep}(i) = \mathbb{P}(Y_p \le T_i^{rep}) \left(T_{lost}^{rep}(T_i^{rep}) + D + R_i^{rep} + \mathbb{E}^{rep}(i) \right) + (1 - \mathbb{P}(Y_p \le T_i^{rep})) T_i^{rep}$$

- $\mathbb{P}(Y_p \leq t) = (1 e^{-\frac{\lambda_{ind}p}{2}t})^2$: probability of failure on both replicas of $\frac{p}{2}$ processors before time t
- $T_{lost}^{rep}(T_i^{rep})$ computed as before
- ...

Replication

- T_i replicated: if a copy fails, downtime + recovery
- Each copy uses p/2 processors; costs C_i^{rep} and R_i^{rep}
- Failure-free execution time: $r^{ep} = w_i \left(\alpha_i + \frac{1 \alpha_i}{\frac{p}{2}} \right)$
- Expected execution time $\mathbb{Z}^{rep}(i)$ if I_{i-1} is checkpointed:

$$\mathbb{E}^{rep}(i) = \mathbb{P}(Y_p \le T_i^{rep}) \left(T_{lost}^{rep}(T_i^{rep}) + D + R_i^{rep} + \mathbb{E}^{rep}(i) \right) + (1 - \mathbb{P}(Y_p \le T_i^{rep})) T_i^{rep}$$

- $\mathbb{P}(Y_p \le t) = (1 e^{-\frac{\lambda_{ind}p}{2}t})^2$: probability of failure on both replicas of $\frac{p}{2}$ processors before time t
- $T_{lost}^{pp}(T_i^{rep})$ computed as before
- ...

Formula for $\mathbb{E}^{rep}(i)$

Optimization problem

- ChainsRepCkpt optimization problem
- Minimize the expected makespan of the workflow
- Four possibilities for each task: checkpoint or not, and replicate or not

$T_1(\frac{p}{2})$	C_1	$T_2(p)$	T ₃ (p)	<i>C</i> ₃	$T_4(\frac{p}{2})$	$T_5(p)$	C ₅
$T_1(\frac{p}{2})$	C_1				$T_4(\frac{p}{2})$		

Outline

- Model and objective
- Optimal dynamic programming algorithm
- 3 Experiments
- 4 Conclusion

Optimization problem

Theorem

The optimal solution to the CHAINSREPCKPT problem can be obtained using a dynamic programming algorithm in $O(n^2)$ time, where n is the number of tasks in the chain.

- Recursively computes expectation of optimal time required to execute tasks T₁ to T_i and then checkpoint T_i
- Distinguish whether T_i is replicated or not
- $T_{opt}^{rep}(i)$: knowing that T_i is replicated
- $T_{opt}^{norep}(i)$: knowing that T_i is not replicated
- Solution: min $\{T_{opt}^{rep}(n) + C_{n}^{rep}, T_{opt}^{norep}(n) + C_{n}^{norep}\}$

Computing $T_{opt}^{rep}(j)$: j is replicated

$$T_{opt}^{rep}(j) = \min_{1 \leq i < j} \left\{ \begin{array}{l} T_{opt}^{rep}(i) + C_i^{rep} + T_{NC}^{rep,rep}(i+1,j), \\ T_{opt}^{rep}(i) + C_i^{rep} + T_{NC}^{norep,rep}(i+1,j), \\ T_{opt}^{norep}(i) + C_i^{norep} + T_{NC}^{rep,rep}(i+1,j), \\ T_{opt}^{norep}(i) + C_i^{norep} + T_{NC}^{norep,rep}(i+1,j), \\ T_{opt}^{rep}(i) + T_{NC}^{norep}(i,j), \\ R_1^{rep} + T_{NC}^{rep,rep}(1,j), \\ R_1^{norep} + T_{NC}^{norep,rep}(1,j) \end{array} \right\}$$

- T_i: last checkpointed task before T_j
- T_i can be replicated or not
- T_{i+1} can be replicated or not
- T_{NC}^{A,B}: no intermediate checkpoint, first/last task replicated or not, previous task checkpointed
- Similar equation for $T_{opt}^{norep}(j)$

Computing $T_{opt}^{rep}(j)$: j is replicated

$$T_{opt}^{rep}(j) = \min_{1 \leq i < j} \left\{ \begin{array}{l} T_{opt}^{rep}(i) + C_i^{rep} + T_{NC}^{rep,rep}(i+1,j), \\ T_{opt}^{rep}(i) + C_i^{rep} + T_{NC}^{norep,rep}(i+1,j), \\ T_{opt}^{norep}(i) + C_i^{norep} + T_{NC}^{rep,rep}(i+1,j), \\ T_{opt}^{norep}(i) + C_i^{norep} + T_{NC}^{norep,rep}(i+1,j), \\ T_{opt}^{rep}(i) + T_{i}^{norep}(1,j), \\ R_1^{rep} + T_{NC}^{rep,rep}(1,j), \\ R_1^{norep} + T_{NC}^{norep,rep}(1,j) \end{array} \right\}$$

- T_i: last checkpointed task before T_j
- T_i can be replicated or not
- T_{i+1} can be replicated or not
- T_{NC}^{A,B}: no intermediate checkpoint, first/last task replicated or not, previous task checkpointed
- Similar equation for $T_{opt}^{norep}(j)$

Computing $T_{NC}^{A,B}(i,j)$

$$T_{\mathit{NC}}^{A,\mathit{B}}(i,j) = \min\left\{T_{\mathit{NC}}^{A,\mathit{rep}}(i,j-1), T_{\mathit{NC}}^{A,\mathit{norep}}(i,j-1)\right\} + T^{A,\mathit{B}}(j\mid i)$$

• $T^{A,B}(j \mid i)$: time needed to execute task T_j , knowing that a failure during T_j implies to recover from T_i :

$$\begin{split} T^{A,norep}(j\mid i) &= \left(1 - e^{-\lambda T_{j}^{norep}}\right) \left(T_{lost}^{norep}(T_{j}^{norep}) + D + R_{i}^{A} \right. \\ &+ \min\left\{T_{NC}^{A,rep}(i,j-1), T_{NC}^{A,norep}(i,j-1)\right\} + T^{A,norep}(j\mid i)\right) \\ &+ e^{-\lambda T_{j}^{norep}} \left(T_{j}^{norep}\right) \\ T^{A,rep}(j\mid i) &= \left(1 - e^{-\frac{\lambda T_{i}^{rep}}{2}}\right)^{2} \left(T_{lost}^{rep}(T_{j}^{rep}) + D + R_{i}^{A} \right. \\ &+ \min\left\{T_{NC}^{A,rep}(i,j-1), T_{NC}^{A,norep}(i,j-1)\right\} + T^{A,rep}(j\mid i)\right) \\ &+ \left(1 - \left(1 - e^{-\frac{\lambda T_{j}^{rep}}{2}}\right)^{2}\right) \left(T_{j}^{rep}\right) \end{split}$$

Computing $T_{NC}^{A,B}(i,j)$

$$T_{NC}^{A,B}(i,j) = \min\left\{T_{NC}^{A,rep}(i,j-1), T_{NC}^{A,norep}(i,j-1)
ight\} + T^{A,B}(j\mid i)$$

• $T^{A,B}(j \mid i)$: time needed to execute task T_i knowing that a failure during T_j implies to recover from T_i :

$$T^{A,norep}(j \mid i) = \left(1 - e^{-\sum_{j=0}^{A,norep}}\right) \left(T^{norep}_{lost}(T^{norep}_{j}) + D + R^{A}_{i} + \min\left\{T^{A,rep}_{NC}(i,j-1), T^{A,norep}_{NC}(i,j-1)\right\} + T^{A,norep}(j \mid i)\right)$$

$$T^{A,rep}(j \mid i) = \left(1 - e^{-\sum_{j=0}^{AT^{rep}_{i}}}\right)^{2} \left(T^{rep}_{lost}(T^{rep}_{j}) + D + R^{A}_{i} + R^{A}_{lost}(T^{rep}_{j})\right)$$

$$T^{A,rep}(j \mid i) = \left(1 - e^{-\sum_{j=0}^{AT^{rep}_{i}}}\right)^{2} \left(T^{rep}_{lost}(T^{rep}_{j}) + D + R^{A}_{i} + R^{A}_{lost}(T^{rep}_{j})\right)$$

$$T^{A,rep}(j \mid i) = \left(1 - e^{-\sum_{j=0}^{AT^{rep}_{i}}}\right)^{2} \left(T^{rep}_{lost}(T^{rep}_{j}) + D + R^{A}_{i} + R^{A}_{lost}(T^{rep}_{j})\right)$$

$$T^{A,rep}(j \mid i) = \left(1 - e^{-\sum_{j=0}^{AT^{rep}_{i}}}\right)^{2} \left(T^{rep}_{lost}(T^{rep}_{j}) + D + R^{A}_{i} + R^{A}_{lost}(T^{rep}_{j})\right)$$

$$T^{A,rep}(j \mid i) = \left(1 - e^{-\sum_{j=0}^{AT^{rep}_{i}}}\right)^{2} \left(T^{rep}_{lost}(T^{rep}_{j}) + D + R^{A}_{i} + R^{A}_{lost}(T^{rep}_{j})\right)$$

$$T^{A,rep}(j \mid i) = \left(1 - e^{-\sum_{j=0}^{AT^{rep}_{i}}}\right)^{2} \left(T^{rep}_{lost}(T^{rep}_{j}) + D + R^{A}_{i} + R^{$$

Complexity

- Compute $O(n^2)$ intermediate values $T^{A,B}(j \mid i)$ and $T^{A,B}_{NC}(i,j)$ for $1 \le i,j \le n$ and $A,B \in \{rep,norep\}$
- Each of these take constant time
- O(n) values $T_{opt}^A(i)$, for $1 \le i \le n$ and $A \in \{rep, norep\}$
- Minimum over at most 6n elements: O(n)
- Overall complexity: $O(n^2)$

Outline

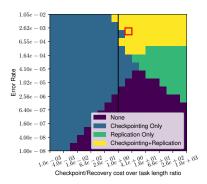
- Model and objective
- Optimal dynamic programming algorithm
- 3 Experiments
- 4 Conclusion

Experimental setup

- Total work: W = 10,000 seconds
- Fully parallel tasks: $\alpha_i = 0$ (worst case for replication)
- Five work distributions:
 - UNIFORM: Identical tasks, $\frac{W}{n}$
 - INCREASING: length increases: $i \frac{2W}{n(n+1)}$
 - Decreasing: length decreases: $(n-i+1)\frac{2W}{n(n+1)}$
 - HIGHLOW: $\lceil \frac{n}{10} \rceil$ big tasks (60% of work) followed by small tasks
 - RANDOM: random lengths between $\frac{W}{2n}$ and $\frac{3W}{2n}$, reduced if it exceeds W
- $C_i^{rep} = \alpha C_i^{norep}$ and $R_i^{rep} = \alpha R_i^{norep}$, where $1 \le \alpha \le 2$

Comparison to checkpoint only

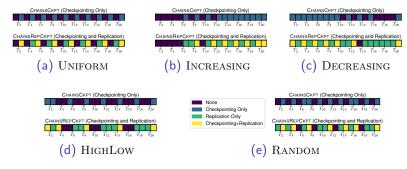
- Uniform distribution
- Reports occ. of checkpoints and replicas in optimal solution
- Checkpointing cost \leq task length \Rightarrow no replication



Model Introduction DP Algo Experiments Conclusion

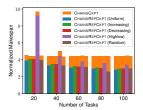
Optimal solutions with both strategies

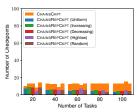
- Scenario of the red square on the previous slide
- Less checkpoints when replication is used
- Optimal solution combines both techniques
- Rule of thumb: replication preferred for small tasks

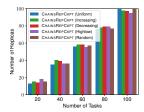


Comparison, different numbers of tasks

- Performance of ChainsRepCkpt compared to ChainsCkpt
- Normalized makespan: divided by the execution time without errors, checkpoints, or replicas
- Expensive checkpoints (limited to \approx 17) \Rightarrow makespan of ChainsCkpt remains constant
- \bullet $\operatorname{CHAINSREPCKPT}$ can replicate increasing number of small tasks

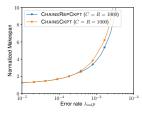


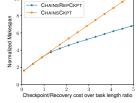


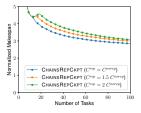


Impact of error rate and checkpoint cost

- Larger error rate ⇒ using replication helps
- Replication not needed for small checkpointing costs
- Replication more efficient when no increase in checkpoint cost

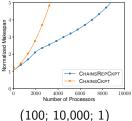


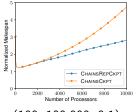


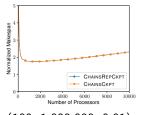


More processors and variable checkpoint costs

- Different checkpointing costs $(a_i; b_i; c_i)$ (earlier, $b_i = c_i = 0$), where $C_i(p) = a_i + \frac{b_i}{p} + c_i p$
- When b_i increases while c_i decreases, replication becomes useless
- Great gains when c_{ip} (message passing overhead) is large in front of $\frac{b_i}{p}$ (I/O overhead)
- With p = 10,000 processors: improvements of 80.5%, 40.7%, 0%





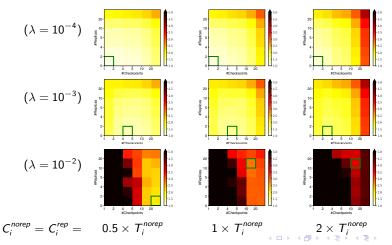


(100; 100,000; 0.1)

(100; 1,000,000; 0.01)

Impact of number of checkpoints and replicas

- Opt. solution always matches min. value obtained in simulations
- When both checkpointing cost and error rate are high, small deviation from optimal solution leads to large overhead



Outline

- Model and objective
- Optimal dynamic programming algorithm
- 3 Experiments
- 4 Conclusion

Conclusion

- Combination of checkpointing and replication
- Goal: Minimize execution time of linear workflows
- Decide which task to checkpoint and/or replicate
- Sophisticated dynamic programming algorithm: optimal solution
- Experiments: Gain over checkpoint-only approach quite significant, when checkpoint is costly and error rate is high

- Extend to more complicated workflows
- Experiments on real application workflows
- Cope with silent errors as well as fail-stop errors

Conclusion

- Combination of checkpointing and replication
- Goal: Minimize execution time of linear workflows
- Decide which task to checkpoint and/or replicate
- Sophisticated dynamic programming algorithm: optimal solution
- Experiments: Gain over checkpoint-only approach quite significant, when checkpoint is costly and error rate is high
- Extend to more complicated workflows
- Experiments on real application workflows
- Cope with silent errors as well as fail-stop errors

