
Model Complexity results Algorithms Simulations Conclusion

Max-stretch minimization
on an edge-cloud platform

Anne Benoit1, Redouane Elghazi1,2, Yves Robert1,3

1. LIP, ENS Lyon, France
2. FEMTO, Univ. Franche Comté, Besançon, France

3. UT Knoxville, TN, USA

IPDPS, May 2021, Virtual presentation

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 1/ 26

Model Complexity results Algorithms Simulations Conclusion

Introduction and motivation

Edge-Cloud computing:

Execute some jobs in-situ,
directly on edge server
where they originate from

Delegate some jobs to a
powerful cloud platform to
avoid overloaded edge
servers

For instance: smart radiators, mobile gaming, autonomous
vehicles, flying drones, ...

Decide which job to communicate to the cloud platform

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 2/ 26

Model Complexity results Algorithms Simulations Conclusion

Objective function

Response time (or flow time) for a job: time spent by that job
in the system, starting from its release date and up to final
completion
→ Classical objective: minimize maximum response time

Stretch: response time normalized by job length
→ ensures fairness among jobs

Two jobs released at same time, durations 1min / 10min, with
long comm. time:
Long job first → maximum stretch 11
Short job first → maximum stretch 1.1
Both cases → maximum response time 11

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 3/ 26

Model Complexity results Algorithms Simulations Conclusion

Outline

1 Model

2 Complexity results

3 Algorithms

4 Simulations

5 Conclusion

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 4/ 26

Model Complexity results Algorithms Simulations Conclusion

Framework

Two-level platform: Pc homogeneous processors in a cloud
(speed 1), and Pe edge computing units (speed sj ≤ 1)

Independent jobs J1, . . . , Jn; For 1 ≤ i ≤ n:

oi : origin processor on the edge (1 ≤ oi ≤ Pe)

wi : amount of work required to complete the job

ri : release date

upi and dni : communication times required to send the job to
the cloud and get the result back (uplink/downlink comms)

Processing times:

tei = wi
soi

on the edge

tci = upi + wi + dni on the cloud

Preemption is possible, but not migration

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 5/ 26

Model Complexity results Algorithms Simulations Conclusion

An example

A single edge processor, with speed 1
3 , and six jobs:

J1: r1 = 0, w1 = 1, up1 = dn1 = 5;
J2: r2 = 0, w2 = 4, up2 = dn2 = 2;
J3: r3 = 3, w3 = 2, up3 = 2, dn3 = 1;
J4: r4 = 5, w4 = 4/3, up4 = dn4 = 5;
J5: r5 = 5, w5 = 2, up5 = 2, dn5 = 1;

J6: r6 = 6, w6 = 1/3, up6 = dn6 = 5.

time

Cloud

C → E

E → C

Edge

J2 J3 J5
J2 ↓ J3↓ J5↓

J2 ↑ J3 ↑ J5 ↑
J1 J4 J6 J4

1 2 3 4 5 6 7 8 9 10 11

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 6/ 26

Model Complexity results Algorithms Simulations Conclusion

Optimization problem

Goal: Minimize the maximum stretch:
Ci : time at which execution of Ji is completed

Si = Ci−ri
min(tei ,t

c
i)

Si = 1 if job executed with minimum possible time

Objective: Minimize max1≤i≤n Si

Constraints:
Overlap computations and comms; full-duplex comm. channels

Sequentialize comms involving a common processor

MinMaxStretch-EdgeCloud problem: Find a schedule that

respects all constraints, with the aim of minimizing the max. stretch

time

Cloud

C → E

E → C

Edge

J2 J3 J5

J2 ↓ J3↓ J5↓
J2 ↑ J3 ↑ J5 ↑

J1 J4 J6 J4

1 2 3 4 5 6 7 8 9 10 11

S2 = 1

S3 = S5 = 6
5

S1 = S6 = 1; S4 = 5
4

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 7/ 26

Model Complexity results Algorithms Simulations Conclusion

Online vs offline

time

Cloud

C → E

E → C

Edge

J2 J3 J5

J2 ↓ J3↓ J5↓
J2 ↑ J3 ↑ J5 ↑

J1 J4 J6 J4

1 2 3 4 5 6 7 8 9 10 11

S2 = 1

S3 = S5 = 6
5

S1 = S6 = 1; S4 = 5
4

Example: Decisions more difficult to take when there is no knowledge
about jobs that will be released in the future
One could schedule job J3 either on the edge or on the cloud: would
complete at time 9 in both cases!
Depending on the jobs that come next (computation-intensive vs
comm-intensive), one decision would be better than the other...

Online case: problem where jobs are not known in advance

Offline case: all job parameters are known in advance

In the following, we prove that the problem is difficult even in the offline
case, and then we derive heuristics to address the general online problem

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 8/ 26

Model Complexity results Algorithms Simulations Conclusion

Outline

1 Model

2 Complexity results

3 Algorithms

4 Simulations

5 Conclusion

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 9/ 26

Model Complexity results Algorithms Simulations Conclusion

NP-Completeness

Complexity of MinMaxStretch-EdgeCloud in the offline
case (MMSECO problem); MMSECO-Dec is the corresponding
decision problem (is it possible to achieve a target max. stretch?):

We prove that MMSECO-Dec is in NP

For a fixed number of processors, MMSECO-Dec is
NP-complete in the weak sense

For a variable number of processors, MMSECO-Dec is
NP-complete in the strong sense

The results remain true even without release dates (consider that
all jobs are released at time 0)

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 10/ 26

Model Complexity results Algorithms Simulations Conclusion

NP-Completeness proofs outline

Proofs for a fixed number of homogeneous processors (forgetting
about edge-cloud):

We prove that, on each processor, jobs are ordered from the
shortest to the longest, without preemption

With 2 processors: 2-Partition with two large jobs (one per
processor), executed last, each responsible for the maximum
stretch of the processor

With p processors: 3-Partition with p large jobs

MinMaxStretch-EdgeCloud setting harder than
homogeneous processors (take one edge processor, speed 1, and no
communication costs)

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 11/ 26

Model Complexity results Algorithms Simulations Conclusion

NP-Completeness proof: Example

Example of the reduction with two processors:

Instance of 2-Partition: A = {1, 3, 5, 6, 10, 11}, with n = 6 and
S = 18;

We propose the instance of scheduling:
W = {M + 1,M + 3,M + 5,M + 6,M + 10,M + 11,M +S ,M +S},
where M is a large number that we take equal to 108 (M = nS),
i.e., W = {109, 111, 113, 114, 118, 119, 126, 126};
We want to find a schedule with maximum stretch at most 44

7

(n2+n+2
n+1).

And in this case, there indeed exists a schedule with maximum stretch 44
7

and a 2-partition of A.

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 12/ 26

Model Complexity results Algorithms Simulations Conclusion

Outline

1 Model

2 Complexity results

3 Algorithms

4 Simulations

5 Conclusion

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 13/ 26

Model Complexity results Algorithms Simulations Conclusion

Heuristics

MinMaxStretch-EdgeCloud problem: NP-complete
even in the offline case

Design of heuristics for general online setting

Event-based algos: Reconsider decisions only when event occurs

At most 4n events; for job Ji , 1 ≤ i ≤ n:
(1) release date; (2) end of execution; (3) end of uplink
communication; (4) end of downlink communication

time

Cloud

C → E

E → C

Edge

J2 J3 J5

J2 ↓ J3↓ J5↓
J2 ↑ J3 ↑ J5 ↑

J1 J4 J6 J4

1 2 3 4 5 6 7 8 9 10 11

Polynomial-time algorithms, inspired from existing algorithms in the
homogeneous case, but need to carefully choose proc. for each job

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 14/ 26

Model Complexity results Algorithms Simulations Conclusion

Baseline: Edge-Only strategy

Edge-Only: All jobs are executed locally on the edge

Might be good when edge processing units have good processing
speed and/or when communications are costly

Independent processors: Minimize max-stretch on one processor

Use Bender’s algorithm Stretch-So-Far Earliest-Deadline-First:
∆-competitive with a single processor, where ∆ is the ratio between
the longest and the shortest job

Account for edge-cloud framework: consider potential execution
time of job on the cloud when computing its stretch

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 15/ 26

Model Complexity results Algorithms Simulations Conclusion

Greedy

Greedy heuristic: Schedules first the job that would currently
achieve the highest stretch

At each event, as long as there are available resources, compute for
each job the minimum stretch that can be achieved using an
available resource immediately

Select the job that maximizes this value, and execute the job on the
resource (edge or cloud) on which it achieves the minimum stretch

Worst case complexity: O(n2Pc)

time

Cloud

C → E2
E2 → C

E2

C → E1
E1 → C

E1

J2 J3 J2
J2↓

J2 ↑ J4 ↑
J4 J2 J4

J3↓
J3 ↑

J1

1 2 3 4 5 6 7 8 9

Edge speeds s = 0.5

J1 and J2: r = 0, w = 4, up = 2, and dn = 1

J3 and J4: r = 2, w = 2, up = 2, and dn = 1

S1 = 8
7
; S2 = 9

7
; S3 = 5

4
; S4 = 3

2

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 16/ 26

Model Complexity results Algorithms Simulations Conclusion

Shortest Remaining Processing Time

SRPT: Builds on classical SRPT strategy, i.e., assigns to a
processing unit the job that it can finish the earliest

Approach that has already be proven to be efficient to
minimize the average stretch in the homogeneous case:
O(1)-competitive for average stretch

Shortest jobs will be executed with little delay

For maximum stretch, a long job could be blocked by short
jobs for an arbitrary long duration

time

Cloud

C→E2
E2→C

E2

C→E1
E1→C

E1

J2J1
J2↓

J2 ↑
J4J2

J1↓
J1 ↑

J3

1 2 3 4 5 6 7 8 9 10 11

Edge speeds s = 0.5

J1 and J2: r = 0, w = 4, up = 2, and dn = 1

J3 and J4: r = 2, w = 2, up = 2, and dn = 1

Max stretch = S2 = 11
7

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 17/ 26

Model Complexity results Algorithms Simulations Conclusion

Stretch-so-far Earliest-deadline-first

Algorithm of Michael A. Bender in the case of one processor:

Give deadlines to jobs, based on estimate of maximum stretch

Binary search on the stretch to find the optimal one

Given target stretch, use Earliest-deadline-first (EDF) algorithm,
optimal on a single processor

Competitive ratio ∆ = wmax

wmin

Communication times: EDF is not optimal anymore!
Two jobs and one cloud processor:
J1 with up1 = 3, w1 = 1, dn1 = 0, and deadline d1 = 5
J2 with up1 = 1, w2 = 3, dn2 = 0, and deadline d2 = 6

EDF: sends J1 first; J2 starts communication at time 3 and
completes at time 3 + 1 + 3 = 7 > d2

Executing J2 first: both jobs meet their deadline

Need to adapt this algo. for MinMaxStretch-EdgeCloud

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 18/ 26

Model Complexity results Algorithms Simulations Conclusion

Stretch-so-far Earliest-deadline-first

SSF-EDF heuristic:

EDF tells us which job to consider (highest priority)

Need to decide on which processor to execute this job

→ Execute the job on processor that minimizes its stretch

Iterate on other jobs sorted by non-decreasing deadlines

Binary search on target stretch

Running example: SSF-EDF outputs the same schedule as SRPT,
with the same maximum stretch of 11

7

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 19/ 26

Model Complexity results Algorithms Simulations Conclusion

Outline

1 Model

2 Complexity results

3 Algorithms

4 Simulations

5 Conclusion

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 20/ 26

Model Complexity results Algorithms Simulations Conclusion

Simulations

Implementation of simulation tool and heuristics in C++

Use of parameters from real edge-cloud platforms

Random instances: 20 cloud processors, 10 slow edge processors
with speed s = 0.1, and 10 fast edge processors with speed s = 0.5;
jobs generated using a uniform distribution for the execution and
communication times, as well as the release date and the origin
processor; CCRs ranging from 0.1 (compute-intensive scenario) to
10 (communication-intensive scenario)

Kang instances: different types of edge processors, depending on
whether their computational unit is a GPU or a CPU, and their
communication channel is 3G, LTE, or Wi-Fi; jobs created according
to these values.

github.com/Redouane-Elghazi/Max-Stretch-Minimization-on-an-Edge-Cloud-Platform.git

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 21/ 26

github.com/Redouane-Elghazi/Max-Stretch-Minimization-on-an-Edge-Cloud-Platform.git

Model Complexity results Algorithms Simulations Conclusion

Results: Random instances

SRPT Greedy SSF-EDF Edge-Only

10−1 100 101

communication/computation ratio

5

10

15

20

25

m
ax

im
um

st
re

tc
h

0.0 0.5 1.0 1.5 2.0

load

2.5

5.0

7.5

10.0

12.5

15.0

17.5

m
ax

im
um

st
re

tc
h

Load: Average number of jobs originating from edge, simultaneously
in the system (default load = 0.05, default CCR=1)

New heuristics much better than Edge-Only for small CCRs

SSF-EDF is the best in all scenarios, SRPT very close for small loads

Greedy slightly behind, SRPT and Greedy do not scale well with load

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 22/ 26

Model Complexity results Algorithms Simulations Conclusion

Results: Kang instances

SRPT Greedy SSF-EDF Edge-Only

102 103 104

number of jobs

1

2

3

4

5

6

7

m
ax

im
um

st
re

tc
h

102 103 104

number of jobs

1.0

1.5

2.0

2.5

3.0

3.5

m
ax

im
um

st
re

tc
h

20 edge proc. and 10 cloud proc. 100 edge proc. and 10 cloud proc.

CCR dictated by platform parameters

SSF-EDF, closely followed by SRPT, is clearly the best

Edge-Only cannot keep up when the number of jobs increases

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 23/ 26

Model Complexity results Algorithms Simulations Conclusion

Trade-off: Solution quality vs execution time

The different algorithms may be useful in different situations:

Note that all heuristics do not exceed a few seconds

SSF-EDF gives the best solutions overall, but is the most costly

SRPT is easier to implement and it is the fastest, very close to
SSF-EDF with reasonable load

Greedy can be better than SRPT with high loads, but more costly

Edge-Only: costly solution that does not exploit the cloud

Importance of using cloud resources when available, in particular
when communication costs are not too important

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 24/ 26

Model Complexity results Algorithms Simulations Conclusion

Outline

1 Model

2 Complexity results

3 Algorithms

4 Simulations

5 Conclusion

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 25/ 26

Model Complexity results Algorithms Simulations Conclusion

Conclusion

Problem of scheduling independent jobs on an edge-cloud platform:

Design of general model with realistic communication model

Minimizing the maximum stretch is NP-complete, even without
release dates and on a homogeneous platform

Design of heuristic algorithms in online setting

Algorithms delegating jobs to cloud much better than Edge-Only

SSF-EDF very efficient, SRPT is an interesting (cheaper) alternative

Future work:

Derive theoretical bounds for online algorithms (competitive
results), for instance for some specific job distributions

Address more complicated framework where cloud processors are
not available full-time

A. Benoit, R. Elghazi, Y. Robert Anne.Benoit@ens-lyon.fr Max-stretch minimization on an edge-cloud platform 26/ 26

	Model
	Complexity results
	Algorithms
	Simulations
	Conclusion

