
Problem definition Theoretical results Heuristics Simulations Conclusion

Co-scheduling algorithms
for high-throughput workload execution

Guillaume Aupy1, Manu Shantharam2, Anne Benoit1,3,
Yves Robert1,3,4 and Padma Raghavan5

1. Ecole Normale Supérieure de Lyon, France
2. University of Utah, USA

3. Institut Universitaire de France
4. University of Tennessee Knoxville, USA

5. Pennsylvania State University, USA

Anne.Benoit@ens-lyon.fr http://graal.ens-lyon.fr/~abenoit/

9th Scheduling for Large Scale Systems Workshop
July 1-4, 2014 - Lyon, France

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 1/ 30

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/

Problem definition Theoretical results Heuristics Simulations Conclusion

Motivation

Execution time of HPC applications

Can be significantly reduced when using a large number of
processors
But inefficient resource usage if all resources used for a single
application (non-linear decrease of execution time)

Pool of several applications

Co-scheduling algorithms: execute several applications
concurrently
Increase individual execution time of each application, but

(i) improve efficiency of parallelization
(ii) reduce total execution time
(iii) reduce average response time

Increase platform yield, and save energy

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 2/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

1 Problem definition

2 Theoretical results

3 Heuristics

4 Simulations

5 Conclusion

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 3/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Framework

Distributed-memory platform with p identical processors

Set of n independent tasks (or applications) T1, . . . ,Tn;
application Ti can be assigned σ(i) = j processors, and

pi is the minimum number of processors required by Ti ;
ti,j is the execution time of task Ti with j processors;
work(i , j) = j × ti,j is the corresponding work.

We assume the following for 1 ≤ i ≤ n and pi ≤ j < p:

Non increasing execution time: ti ,j+1 ≤ ti ,j
Non decreasing work: work(i , j + 1) ≥ work(i , j)

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 4/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Co-schedules

A co-schedule partitions the n tasks into groups (called packs):

All tasks from a given pack start their execution at the same
time

Two tasks from different packs have disjoint execution
intervals

P1 P2 P3 P4

time

processors

A co-schedule with four packs P1 to P4

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 5/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Definition (k-in-p-CoSchedule optimization problem)

Given a fixed constant k ≤ p, find a co-schedule with at most
k tasks per pack that minimizes the execution time.

The most general problem is when k = p, but in some frameworks
we may have an upper bound k < p on the maximum number of
tasks within each pack.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 6/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Related work

Performance bounds for level-oriented two-dimensional
packing algorithms, Coffman, Garey, Johnson:
Strip-packing problem, parallel tasks (fixed number of
processors), approximation algorithm based on “shelves”

Scheduling parallel tasks: Approximation algorithms, Dutot,
Mounié, Trystram:
Use this model to approximate the moldable model; they
studied the p-in-p-CoSchedule for identical moldable tasks
(polynomial with DP)

Widely studied for sequential tasks

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 7/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

1 Problem definition

2 Theoretical results

3 Heuristics

4 Simulations

5 Conclusion

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 8/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Complexity: Polynomial instances

Theorem

The 1-in-p-CoSchedule and 2-in-p-CoSchedule
problems can both be solved in polynomial time.

Proof.

If there is a batch with exactly tasks Ti and Ti ′ , then its execution
time is minj=pi ..p−pi′

(
max(ti ,j , ti ′,p−j)

)
.

We then construct the complete weighted graph G = (V ,E),
where |V | = n, and

ei ,i ′ =

{
ti ,p if i = i ′

minj=pi ..p−pi′
(
max(ti ,j , ti ′,p−j)

)
otherwise

Finally, finding a perfect matching of minimal weight in G leads to
the optimal solution for 2-in-p-CoSchedule.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 9/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Complexity: Polynomial instances

Theorem

The 1-in-p-CoSchedule and 2-in-p-CoSchedule
problems can both be solved in polynomial time.

Proof.

If there is a batch with exactly tasks Ti and Ti ′ , then its execution
time is minj=pi ..p−pi′

(
max(ti ,j , ti ′,p−j)

)
.

We then construct the complete weighted graph G = (V ,E),
where |V | = n, and

ei ,i ′ =

{
ti ,p if i = i ′

minj=pi ..p−pi′
(
max(ti ,j , ti ′,p−j)

)
otherwise

Finally, finding a perfect matching of minimal weight in G leads to
the optimal solution for 2-in-p-CoSchedule.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 9/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Complexity: NP-completeness

Theorem

The 3-in-p-CoSchedule problem is strongly NP-complete.

Proof.

We reduce this problem to 3-Partition: Given an integer B and
3n integers a1, . . . , a3n, can we partition the 3n integers into n
triplets, each of sum B? This problem is strongly NP-hard so we
can encode the ai ’s and B in unary.

We build instance I2 of 3-in-p-CoSchedule, with p = B
processors, a deadline D = n, and 3n tasks Ti such that
ti ,j = 1 + 1

ai
if j < ai , ti ,j = 1 otherwise. (The ti ,j ’s verify the

constraints on work and execution time.)

Any solution of I2 has n packs each of cost 1 with exactly 3 tasks
in it, and the sum of the weights of these tasks sums up to B.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 10/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Complexity: NP-completeness

Theorem

The 3-in-p-CoSchedule problem is strongly NP-complete.

Proof.

We reduce this problem to 3-Partition: Given an integer B and
3n integers a1, . . . , a3n, can we partition the 3n integers into n
triplets, each of sum B? This problem is strongly NP-hard so we
can encode the ai ’s and B in unary.

We build instance I2 of 3-in-p-CoSchedule, with p = B
processors, a deadline D = n, and 3n tasks Ti such that
ti ,j = 1 + 1

ai
if j < ai , ti ,j = 1 otherwise. (The ti ,j ’s verify the

constraints on work and execution time.)

Any solution of I2 has n packs each of cost 1 with exactly 3 tasks
in it, and the sum of the weights of these tasks sums up to B.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 10/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Complexity: NP-completeness

Theorem

For k ≥ 3, The k-in-p-CoSchedule problem is strongly
NP-complete.

Proof.

We reduce these problems to the same instance of the
3-in-p-CoSchedule problem, to which we further add:

n(k − 3) buffer tasks such that ti ,j = max
(
B+1
j , 1

)
;

the number of processors is now p = B + (k − 3)(B + 1);

the deadline remains D = n.

Again, we need to execute each pack in unit time and at most n
packs. The only way to proceed is to execute within each pack
k − 3 buffer tasks on B + 1 processors.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 11/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Complexity: NP-completeness

Theorem

For k ≥ 3, The k-in-p-CoSchedule problem is strongly
NP-complete.

Proof.

We reduce these problems to the same instance of the
3-in-p-CoSchedule problem, to which we further add:

n(k − 3) buffer tasks such that ti ,j = max
(
B+1
j , 1

)
;

the number of processors is now p = B + (k − 3)(B + 1);

the deadline remains D = n.

Again, we need to execute each pack in unit time and at most n
packs. The only way to proceed is to execute within each pack
k − 3 buffer tasks on B + 1 processors.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 11/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Scheduling a pack of tasks

Theorem

Given k tasks to be scheduled on p processors in a single pack
(1-pack-schedule), we can find in time O(p log k) the schedule that
minimizes the cost of the pack.

Greedy algorithm Optimal-1-pack-schedule:

Initially, each task Ti is assigned its minimum number of
processors pi

While there remain available processors, assign one to the
largest task (with their current processor assignment)

This algorithm returns an optimal solution

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 12/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Scheduling a pack of tasks

Theorem

Given k tasks to be scheduled on p processors in a single pack
(1-pack-schedule), we can find in time O(p log k) the schedule that
minimizes the cost of the pack.

Greedy algorithm Optimal-1-pack-schedule:

Initially, each task Ti is assigned its minimum number of
processors pi

While there remain available processors, assign one to the
largest task (with their current processor assignment)

This algorithm returns an optimal solution

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 12/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Optimal solution

Theorem

The following integer linear program characterizes the
k-in-p-CoSchedule problem, where the unknown variables are
the xi ,j ,b’s (Boolean variables) and the yb’s (rational variables), for
1 ≤ i , b ≤ n and 1 ≤ j ≤ p:

Minimize
∑n

b=1 yb subject to
(i)
∑

j ,b xi ,j ,b = 1, 1 ≤ i ≤ n

(ii)
∑

i ,j xi ,j ,b ≤ k , 1 ≤ b ≤ n

(iii)
∑

i ,j j × xi ,j ,b ≤ p, 1 ≤ b ≤ n

(iv) xi ,j ,b × ti ,j ≤ yb, 1 ≤ i , b ≤ n, 1 ≤ j ≤ p

xi ,j ,b = 1 iff Ti is in pack b and executed on j processors
yb is the execution time of pack b

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 13/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Approximation algorithm

3-approximation algorithm for the problem
p-in-p-CoSchedule

Initialization: task Ti executed on pi processors

Greedy procedure Make-pack to create packs (with k = p),
given σ(i) processors for task Ti

procedure Make-pack(n, p, k , σ)
begin

L: list of tasks sorted in non-increasing execution times ti,σ(i);
while L 6= ∅ do

Schedule the current task on the first pack with enough available
processors and less than k tasks;
Create a new pack if no existing pack fits;
Remove the current task from L;

end
return the set of packs

end

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 14/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

pack-Approx: Iteratively refine the solution, adding a
processor to the task with longest execution time

procedure pack-Approx(T1, . . . ,Tn)
begin

COST = +∞;
for j = 1 to n do σ(j)← pj ;
for i = 0 to

∑
j(p − pj)− 1 do

Call Make-pack (n, p, p, σ);
Let COSTi be the cost of the co-schedule;
if COSTi < COST then COST← COSTi ;
Let Atot(i) =

∑n
j=1 tj,σ(j)σ(j);

Let Tj? be one task that maximizes tj,σ(j);
if
(
Atot(i) > p × tj?,σ(j?)

)
or (σ(j?) = p) then

return COST
else

σ(j?)← σ(j?) + 1
end

end
return COST;

end

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 15/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Theorem

pack-Approx is a 3-approximation algorithm for the
p-in-p-CoSchedule problem.

Involved proof, studying the different ways to exit
algorithm pack-Approx:

The task with longest execution time is already assigned p
processors

The sum of the work of all tasks (
∑n

i=1 ti ,σ(i)σ(i)) is greater
than p times the longest execution time

Each task has been assigned p processors

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 16/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

1 Problem definition

2 Theoretical results

3 Heuristics

4 Simulations

5 Conclusion

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 17/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Heuristics

In all heuristics (even randoms), once the different packs are
chosen, we always run Optimal-1-pack-schedule on each pack.

Random-Pack: generates the
packs randomly: randomly
chooses an integer j between 1
and k , and then randomly selects
j tasks to form a pack.

Random-Proc: assigns the
number of processors to each
task randomly, then calls
Make-pack to generate the
packs.

pack-by-pack (ε): creates
packs that are “well-balanced”:
the difference between smallest
and longest execution times of a
pack is small (ratio of 1 + ε).

pack-Approx: an extension of
the approximation algorithm in
the case where there are at most
k tasks in a pack.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 18/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Heuristic variants

Improvement of the heuristics by using up to 9 runs:

4 random heuristics with either one or nine runs:

Random-Pack-1, Random-Pack-9
Random-Proc-1, Random-Proc-9

pack-by-pack (ε) with

either one single run with ε = 0.5 (pack-by-pack-1)
or 9 runs with ε ∈ {.1, .2, . . . , .9} (pack-by-pack-9)

Only one version of pack-Approx

Further variants: up to 99 runs, or better choice to create packs in
pack-by-pack, but only little improvement at the price of a much
higher running time

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 19/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Heuristic variants

Improvement of the heuristics by using up to 9 runs:

4 random heuristics with either one or nine runs:

Random-Pack-1, Random-Pack-9
Random-Proc-1, Random-Proc-9

pack-by-pack (ε) with

either one single run with ε = 0.5 (pack-by-pack-1)
or 9 runs with ε ∈ {.1, .2, . . . , .9} (pack-by-pack-9)

Only one version of pack-Approx

Further variants: up to 99 runs, or better choice to create packs in
pack-by-pack, but only little improvement at the price of a much
higher running time

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 19/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

1 Problem definition

2 Theoretical results

3 Heuristics

4 Simulations

5 Conclusion

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 20/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Workloads

Workload-I: 10 parallel scientific applications (involving VASP,
ABAQUS, LAMMPS, Petsc); execution time observed on a
cluster with p = 16 processors and 128 cores

Workload-II: synthetic test suite with 65 tasks for 128 cores
(p = 16); execution time for problem size m on q cores:

t(m, q) = f × t(m, 1) + (1− f)
t(m, 1)

q
+ κ(m, q)

f : inherently serial fraction
κ: overheads related to synchronization and communication

Workload-III: similar to Workload-II, but with 260 tasks for
256 cores (p = 32)

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 21/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Assessing the performance of heuristics

Seven heuristics and three measures:

Relative cost: cost divided by the cost of a schedule with each
task scheduled on p processors (schedule used in practice,
n-packs-schedule)

Packing ratio: total work
∑n

i=1 ti ,σ(i) × σ(i) divided by p
times the cost of the co-schedule; close to 1 if no idle time

Relative response time: mean response time compared to
n-packs-schedule with non-decreasing order of execution time

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 22/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Results: Relative cost0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

2# 4# 6# 8# 10#
Re

la
%v

e'
co
st
'

Pack'size'

Workload3I'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

2# 4# 6# 8# 10#

Re
la
%v

e'
co
st
'

Pack'size'

Workload3I'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

2# 4# 6# 8# 10#

Re
la
%v

e'
co
st
'

Pack'size'

Workload3I'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

2# 4# 6# 8# 10# 12# 14# 16#

Re
la
%v

e'
co
st
'

Pack'size'

Workload3II'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

Horizontal line = optimal co-schedule (exhaustive search for W-I)

pack-Approx and pack-by-pack close to optimal

Gain of more than 35% compared to n-packs-schedule for W-I

Huge gains for W-II (more than 80%, better for larger values of
pack size)

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 23/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Results: Packing ratio
0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

2# 4# 6# 8# 10#

Re
la
%v

e'
co
st
'

Pack'size'

Workload3I'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

2# 4# 6# 8# 10#

Re
la
%v

e'
co
st
'

Pack'size'

Workload3I'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

2" 4" 6" 8" 10"

Pa
ck
in
g(
ra
*o

(

Pack(size(

Workload2I(

PACK-APPROX" PACK-BY-PACK-1" PACK-BY-PACK-9" RANDOM-PACK-1"

RANDOM-PACK-9" RANDOM-PROC-1" RANDOM-PROC-9"

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

2" 4" 6" 8" 10" 12" 14" 16"

Pa
ck
in
g(
ra
*o

(

Pack(size(

Workload2II(

PACK-APPROX" PACK-BY-PACK-1" PACK-BY-PACK-9" RANDOM-PACK-1"

RANDOM-PACK-9" RANDOM-PROC-1" RANDOM-PROC-9"

Packing ratios very close to one for pack-by-pack and
pack-Approx

High quality packings

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 24/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Results: Response time
0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

2# 4# 6# 8# 10#

Re
la
%v

e'
co
st
'

Pack'size'

Workload3I'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

2# 4# 6# 8# 10#

Re
la
%v

e'
co
st
'

Pack'size'

Workload3I'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

0.00#
0.20#
0.40#
0.60#
0.80#
1.00#
1.20#
1.40#
1.60#
1.80#
2.00#
2.20#

2# 4# 6# 8# 10#

Re
la
%v

e'
re
sp
on

se
'%
m
e'

Pack'size'

Workload5I'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

0.00#
0.20#
0.40#
0.60#
0.80#
1.00#
1.20#
1.40#
1.60#
1.80#

2# 4# 6# 8# 10# 12# 14# 16#

Re
la
%v

e'
re
sp
on

se
'%
m
e'

Pack'size'

Workload5II'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

Values less than 1: improvements in response times

For Workload-II and larger values of the pack size, response time
gains over 80%

k-in-p-CoSchedule attractive from the user perspective

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 25/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Results: Workload-III0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

2# 4# 6# 8# 10#

Re
la
%v

e'
co
st
'

Pack'size'

Workload3I'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

0.00#

0.20#

0.40#

0.60#

0.80#

1.00#

1.20#

2# 4# 6# 8# 10#

Re
la
%v

e'
co
st
'

Pack'size'

Workload3I'

PACK-APPROX# PACK-BY-PACK-1# PACK-BY-PACK-9# RANDOM-PACK-1#

RANDOM-PACK-9# RANDOM-PROC-1# RANDOM-PROC-9#

0.00#
0.10#
0.20#
0.30#
0.40#
0.50#
0.60#
0.70#
0.80#
0.90#
1.00#

4# 16# 32#

Re
la
%v

e'
co
st
'

Pack'size'

Workload3III'

PACK1APPROX# PACK1BY1PACK11# PACK1BY1PACK19# RANDOM1PACK11#

RANDOM1PACK19# RANDOM1PROC11# RANDOM1PROC19#

0"

0.2"

0.4"

0.6"

0.8"

1"

1.2"

4" 16" 32"

Pa
ck
in
g(
ra
*o

(

Pack(size(

Workload2III(

PACK.APPROX" PACK.BY.PACK.1" PACK.BY.PACK.9" RANDOM.PACK.1"

RANDOM.PACK.9" RANDOM.PROC.1" RANDOM.PROC.9"

0.00#

0.50#

1.00#

1.50#

2.00#

2.50#

4# 16# 32#

Re
la
%v

e'
re
sp
on

se
'%
m
e'

Pack'size'

Workload5III'

PACK.APPROX# PACK.BY.PACK.1# PACK.BY.PACK.9# RANDOM.PACK.1#

RANDOM.PACK.9# RANDOM.PROC.1# RANDOM.PROC.9#

Scalability trends with 260
tasks on 32 processors

pack-Approx and
pack-by-pack are clearly
superior

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 26/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Results: Running times

Workload-I Workload-II Workload-III

pack-Approx 0.50 0.30 5.12
pack-by-pack-1 0.03 0.12 0.53
pack-by-pack-9 0.30 1.17 5.07
Random-Pack-1 0.07 0.34 9.30
Random-Pack-9 0.67 2.71 87.25
Random-Proc-1 0.05 0.26 4.49
Random-Proc-9 0.47 2.26 39.54

Average running times in milliseconds

All heuristics run within a few ms, even for W-III

Random heuristics slower (cost of random number generation)

pack-by-pack-9 comparable with pack-Approx

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 27/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

1 Problem definition

2 Theoretical results

3 Heuristics

4 Simulations

5 Conclusion

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 28/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Conclusion

Theoretically: Exhaustive complexity study

NP-completeness (need to choose for each task both number
of processors and pack)
Optimal strategy once the packs are formed
Efficient algorithm to partition tasks with pre-assigned
resources into packs (3-approximation algorithm for k = p)

Practically: Heuristics building upon theoretical study, with
very good performance

Heuristic of choice: pack-by-pack-9
Great improvement compared to existing schedulers (in terms
of relative cost)
Corresponding savings in system energy cost
Measurable benefits in average response time

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 29/ 30

Problem definition Theoretical results Heuristics Simulations Conclusion

Future work

Combine with DVFS technique (dynamic voltage and
frequency scaling) to further obtain gains in energy
consumption

Experiment at a larger scale (university computing facilities),
where workload attributes do not vary much in time, and
energy costs are a limiting factor

Theoretically, obtain more approximation results

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms 30/ 30

	Problem definition
	Theoretical results
	Heuristics
	Simulations
	Conclusion

