Co-scheduling algorithms for high-throughput workload execution

Guillaume Aupy¹, Manu Shantharam², Anne Benoit^{1,3}, Yves Robert^{1,3,4} and Padma Raghavan⁵

Ecole Normale Supérieure de Lyon, France
 University of Utah, USA
 Institut Universitaire de France
 University of Tennessee Knoxville, USA
 Pennsylvania State University, USA

Anne.Benoit@ens-lyon.fr http://graal.ens-lyon.fr/~abenoit/

9th Scheduling for Large Scale Systems Workshop July 1-4, 2014 - Lyon, France

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion
Motivation				

- Execution time of HPC applications
 - Can be significantly reduced when using a large number of processors
 - But inefficient resource usage if all resources used for a single application (non-linear decrease of execution time)
- Pool of several applications
 - Co-scheduling algorithms: execute several applications concurrently
 - Increase individual execution time of each application, but
 - (i) improve efficiency of parallelization
 - (ii) reduce total execution time
 - (iii) reduce average response time
- Increase platform yield, and save energy

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion

2 Theoretical results

3 Heuristics

5 Conclusion

э

∃ → (∃ →

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion
Framework				

- Distributed-memory platform with *p* identical processors
- Set of *n* independent tasks (or applications) T_1, \ldots, T_n ; application T_i can be assigned $\sigma(i) = j$ processors, and
 - p_i is the minimum number of processors required by T_i ;
 - $t_{i,j}$ is the execution time of task T_i with j processors;
 - $work(i, j) = j \times t_{i,j}$ is the corresponding work.
- We assume the following for $1 \le i \le n$ and $p_i \le j < p$:

Non increasing execution time: $t_{i,j+1} \leq t_{i,j}$ Non decreasing work: $work(i,j+1) \geq work(i,j)$

Co-schedules				
Problem definition	Theoretical results	Heuristics	Simulations	Conclusion

- A co-schedule **partitions** the *n* tasks into groups (called **packs**):
 - All tasks from a given pack start their execution at the same time
 - Two tasks from different packs have disjoint execution intervals

A co-schedule with four packs P_1 to P_4

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion

Definition (*k*-IN-*p*-COSCHEDULE optimization problem)

Given a fixed constant $k \le p$, find a co-schedule with at most k tasks per pack that minimizes the execution time.

The most general problem is when k = p, but in some frameworks we may have an upper bound k < p on the maximum number of tasks within each pack.

- Performance bounds for level-oriented two-dimensional packing algorithms, Coffman, Garey, Johnson: Strip-packing problem, parallel tasks (fixed number of processors), approximation algorithm based on "shelves"
- Scheduling parallel tasks: Approximation algorithms, Dutot, Mounié, Trystram: Use this model to approximate the moldable model; they studied the *p*-IN-*p*-COSCHEDULE for identical moldable tasks (polynomial with DP)
- Widely studied for sequential tasks

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion

2 Theoretical results

3 Heuristics

5 Conclusion

э

∃ ► < ∃ ►</p>

Complexity: Polynomial instances

Theorem

The 1-IN-p-COSCHEDULE and 2-IN-p-COSCHEDULE problems can both be solved in polynomial time.

Proof.

If there is a batch with exactly tasks T_i and $T_{i'}$, then its execution time is $\min_{j=p_i..p-p_{i'}} (\max(t_{i,j}, t_{i',p-j}))$.

We then construct the complete weighted graph G = (V, E), where |V| = n, and

$$e_{i,i'} = \begin{cases} t_{i,p} & \text{if } i = i' \\ \min_{j=p_{i}..p-p_{i'}} \left(\max(t_{i,j}, t_{i',p-j}) \right) & \text{otherwise} \end{cases}$$

Finally, finding a perfect matching of minimal weight in G leads to the optimal solution for 2-IN-p-COSCHEDULE.

Complexity: Polynomial instances

Theorem

The 1-IN-p-COSCHEDULE and 2-IN-p-COSCHEDULE problems can both be solved in polynomial time.

Proof.

If there is a batch with exactly tasks T_i and $T_{i'}$, then its execution time is $\min_{j=p_i..p-p_{i'}} (\max(t_{i,j}, t_{i',p-j}))$.

We then construct the complete weighted graph G = (V, E), where |V| = n, and $e_{i,i'} = \begin{cases} t_{i,p} & \text{if } i = i' \\ \min_{j=p_i..p-p_{i'}} (\max(t_{i,j}, t_{i',p-j})) & \text{otherwise} \end{cases}$

Finally, finding a perfect matching of minimal weight in G leads to the optimal solution for 2-IN-p-COSCHEDULE.

The 3-IN-*p*-COSCHEDULE problem is strongly NP-complete.

Proof.

We reduce this problem to 3-PARTITION: Given an integer B and 3n integers a_1, \ldots, a_{3n} , can we partition the 3n integers into n triplets, each of sum B? This problem is strongly NP-hard so we can encode the a_i 's and B in unary.

We build instance \mathcal{I}_2 of 3-IN-*p*-COSCHEDULE, with p = B processors, a deadline D = n, and 3n tasks T_i such that $t_{i,j} = 1 + \frac{1}{a_i}$ if $j < a_i$, $t_{i,j} = 1$ otherwise. (The $t_{i,j}$'s verify the constraints on work and execution time.)

Any solution of \mathcal{I}_2 has *n* packs each of cost 1 with exactly 3 tasks in it, and the sum of the weights of these tasks sums up to *B*.

The 3-IN-*p*-COSCHEDULE *problem is strongly NP-complete*.

Proof.

We reduce this problem to 3-PARTITION: Given an integer B and 3n integers a_1, \ldots, a_{3n} , can we partition the 3n integers into n triplets, each of sum B? This problem is strongly NP-hard so we can encode the a_i 's and B in unary.

We build instance \mathcal{I}_2 of 3-IN-*p*-COSCHEDULE, with p = B processors, a deadline D = n, and 3n tasks T_i such that $t_{i,j} = 1 + \frac{1}{a_i}$ if $j < a_i$, $t_{i,j} = 1$ otherwise. (The $t_{i,j}$'s verify the constraints on work and execution time.)

Any solution of \mathcal{I}_2 has *n* packs each of cost 1 with exactly 3 tasks in it, and the sum of the weights of these tasks sums up to *B*.

For $k \ge 3$, The k-IN-p-COSCHEDULE problem is strongly NP-complete.

Proof.

We reduce these problems to the same instance of the 3-IN-*p*-COSCHEDULE problem, to which we further add:

- n(k-3) buffer tasks such that $t_{i,j} = \max\left(\frac{B+1}{j}, 1\right)$;
- the number of processors is now p = B + (k 3)(B + 1);
- the deadline remains D = n.

Again, we need to execute each pack in unit time and at most n packs. The only way to proceed is to execute within each pack k-3 buffer tasks on B+1 processors.

For $k \ge 3$, The k-IN-p-COSCHEDULE problem is strongly NP-complete.

Proof.

We reduce these problems to the same instance of the 3-IN-*p*-COSCHEDULE problem, to which we further add:

- n(k-3) buffer tasks such that $t_{i,j} = \max\left(\frac{B+1}{j}, 1\right);$
- the number of processors is now p = B + (k-3)(B+1);
- the deadline remains D = n.

Again, we need to execute each pack in unit time and at most n packs. The only way to proceed is to execute within each pack k - 3 buffer tasks on B + 1 processors.

Given k tasks to be scheduled on p processors in a single pack (1-pack-schedule), we can find in time $O(p \log k)$ the schedule that minimizes the cost of the pack.

Greedy algorithm Optimal-1-pack-schedule:

- Initially, each task T_i is assigned its minimum number of processors p_i
- While there remain available processors, assign one to the largest task (with their current processor assignment)

This algorithm returns an optimal solution

過 ト イヨ ト イヨト

Given k tasks to be scheduled on p processors in a single pack (1-pack-schedule), we can find in time $O(p \log k)$ the schedule that minimizes the cost of the pack.

Greedy algorithm Optimal-1-pack-schedule:

- Initially, each task T_i is assigned its minimum number of processors p_i
- While there remain available processors, assign one to the largest task (with their current processor assignment)

This algorithm returns an optimal solution

The following integer linear program characterizes the k-IN-p-COSCHEDULE problem, where the unknown variables are the $x_{i,j,b}$'s (Boolean variables) and the y_b 's (rational variables), for $1 \le i, b \le n$ and $1 \le j \le p$:

$Minimize \sum_{b=1}^{n} y_b$	subject to
(<i>i</i>) $\sum_{j,b} x_{i,j,b} = 1$,	$1 \leq i \leq n$
(ii) $\sum_{i,j} x_{i,j,b} \leq k$,	$1 \leq b \leq n$
(iii) $\sum_{i,j}^{s} j \times x_{i,j,b} \leq p$,	$1 \leq b \leq n$
(iv) $x_{i,j,b} \times t_{i,j} \leq y_b$,	$1 \le i, b \le n, 1 \le j \le p$

 $x_{i,j,b} = 1$ iff T_i is in pack b and executed on j processors y_b is the execution time of pack b

- 3-approximation algorithm for the problem *p*-IN-*p*-COSCHEDULE
- Initialization: task T_i executed on p_i processors
- Greedy procedure MAKE-PACK to create packs (with k = p), given $\sigma(i)$ processors for task T_i

```
procedure MAKE-PACK(n, p, k, \sigma)
```

begin

```
L: list of tasks sorted in non-increasing execution times t_{i,\sigma(i)}; while L \neq \emptyset do
```

Schedule the current task on the first pack with enough available processors and less than k tasks;

```
Create a new pack if no existing pack fits;
```

```
Remove the current task from L;
```

end

```
return the set of packs
```

end

• PACK-APPROX: Iteratively refine the solution, adding a processor to the task with longest execution time

```
procedure PACK-APPROX(T_1, \ldots, T_n)
begin
```

```
COST = +\infty:
     for i = 1 to n do \sigma(i) \leftarrow p_i;
     for i = 0 to \sum_{i}(p - p_i) - 1 do
           Call MAKE-PACK (n, p, p, \sigma);
           Let COST<sub>i</sub> be the cost of the co-schedule;
           if COST_i < COST then COST \leftarrow COST_i;
           Let A_{tot}(i) = \sum_{i=1}^{n} t_{j,\sigma(j)} \sigma(j);
           Let T_{i^*} be one task that maximizes t_{i,\sigma(i)};
           if (A_{tot}(i) > p \times t_{i^*,\sigma(i^*)}) or (\sigma(j^*) = p) then
                 return COST
           else
                \sigma(j^{\star}) \leftarrow \sigma(j^{\star}) + 1
           end
     end
     return COST:
end
```

• • = • • = •

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion

PACK-APPROX *is a 3-approximation algorithm for the p*-IN-*p*-COSCHEDULE *problem*.

Involved proof, studying the different ways to exit algorithm PACK-APPROX:

- The task with longest execution time is already assigned *p* processors
- The sum of the work of all tasks $(\sum_{i=1}^{n} t_{i,\sigma(i)}\sigma(i))$ is greater than p times the longest execution time
- Each task has been assigned p processors

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion

1 Problem definition

2 Theoretical results

5 Conclusion

()

Heuristics

In all heuristics (even randoms), once the different packs are chosen, we always run Optimal-1-pack-schedule on each pack.

RANDOM-PACK: generates the packs randomly: randomly chooses an integer j between 1 and k, and then randomly selects j tasks to form a pack.

RANDOM-PROC: assigns the number of processors to each task randomly, then calls MAKE-PACK to generate the packs. PACK-BY-PACK (ε): creates packs that are "well-balanced": the difference between smallest and longest execution times of a pack is small (ratio of $1 + \varepsilon$).

PACK-APPROX: an extension of the approximation algorithm in the case where there are at most k tasks in a pack.

- 4 目 ト - 4 日 ト

Improvement of the heuristics by using up to 9 runs:

- 4 random heuristics with either one or nine runs:
 - RANDOM-PACK-1, RANDOM-PACK-9
 - RANDOM-PROC-1, RANDOM-PROC-9
- PACK-BY-PACK (ε) with
 - either one single run with $\varepsilon = 0.5$ (PACK-BY-PACK-1)
 - or 9 runs with $\varepsilon \in \{.1, .2, \ldots, .9\}$ (PACK-BY-PACK-9)
- Only one version of PACK-APPROX

Further variants: up to 99 runs, or better choice to create packs in PACK-BY-PACK, but only little improvement at the price of a much higher running time

Improvement of the heuristics by using up to 9 runs:

- 4 random heuristics with either one or nine runs:
 - RANDOM-PACK-1, RANDOM-PACK-9
 - RANDOM-PROC-1, RANDOM-PROC-9
- PACK-BY-PACK (ε) with
 - either one single run with $\varepsilon = 0.5$ (PACK-BY-PACK-1)
 - or 9 runs with $\varepsilon \in \{.1, .2, \ldots, .9\}$ (PACK-BY-PACK-9)
- \bullet Only one version of $\operatorname{PACK-APPROX}$

Further variants: up to 99 runs, or better choice to create packs in PACK-BY-PACK, but only little improvement at the price of a much higher running time

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion

1 Problem definition

2 Theoretical results

3 Heuristics

5 Conclusion

э

< 3 > < 3 >

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion
Workloads				

- Workload-I: 10 parallel scientific applications (involving VASP, ABAQUS, LAMMPS, Petsc); execution time observed on a cluster with p = 16 processors and 128 cores
- Workload-II: synthetic test suite with 65 tasks for 128 cores (p = 16); execution time for problem size *m* on *q* cores:

$$t(m,q) = f \times t(m,1) + (1-f)\frac{t(m,1)}{q} + \kappa(m,q)$$

- f: inherently serial fraction
- $\bullet~\kappa:$ overheads related to synchronization and communication
- Workload-III: similar to Workload-II, but with 260 tasks for 256 cores (p = 32)

- Seven heuristics and three measures:
- Relative cost: cost divided by the cost of a schedule with each task scheduled on *p* processors (schedule used in practice, *n*-packs-schedule)
- Packing ratio: total work $\sum_{i=1}^{n} t_{i,\sigma(i)} \times \sigma(i)$ divided by p times the cost of the co-schedule; close to 1 if no idle time
- Relative response time: mean response time compared to *n*-packs-schedule with non-decreasing order of execution time

- Horizontal line = optimal co-schedule (exhaustive search for W-I)
- PACK-APPROX and PACK-BY-PACK close to optimal
- Gain of more than 35% compared to *n*-packs-schedule for W-I
- Huge gains for W-II (more than 80%, better for larger values of pack size)

- Packing ratios very close to one for PACK-BY-PACK and PACK-APPROX
- High quality packings

- 一司

э

∃ → (∃ →

- Values less than 1: improvements in response times
- For Workload-II and larger values of the pack size, response time gains over 80%
- *k*-IN-*p*-COSCHEDULE attractive from the user perspective

э

()

< A

- Scalability trends with 260 tasks on 32 processors
- PACK-APPROX and PACK-BY-PACK are clearly superior

< A

э

э.

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion
Decultar D.	anto a store e e			

Results: Running times

	Workload-I	Workload-II	Workload-III
PACK-APPROX	0.50	0.30	5.12
PACK-BY-PACK-1	0.03	0.12	0.53
PACK-BY-PACK-9	0.30	1.17	5.07
Random-Pack-1	0.07	0.34	9.30
Random-Pack-9	0.67	2.71	87.25
Random-Proc-1	0.05	0.26	4.49
$\operatorname{Random-Proc-9}$	0.47	2.26	39.54

- Average running times in milliseconds
- All heuristics run within a few ms, even for W-III
- Random heuristics slower (cost of random number generation)
- PACK-BY-PACK-9 comparable with PACK-APPROX

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion

1 Problem definition

2 Theoretical results

3 Heuristics

4 Simulations

э

()

Problem definition	Theoretical results	Heuristics	Simulations	Conclusion
Conclusion				

- Theoretically: Exhaustive complexity study
 - NP-completeness (need to choose for each task both number of processors and pack)
 - Optimal strategy once the packs are formed
 - Efficient algorithm to partition tasks with pre-assigned resources into packs (3-approximation algorithm for k = p)
- *Practically:* Heuristics building upon theoretical study, with very good performance
 - Heuristic of choice: PACK-BY-PACK-9
 - Great improvement compared to existing schedulers (in terms of relative cost)
 - Corresponding savings in system energy cost
 - Measurable benefits in average response time

• Combine with DVFS technique (dynamic voltage and frequency scaling) to further obtain gains in energy consumption

• Experiment at a larger scale (university computing facilities), where workload attributes do not vary much in time, and energy costs are a limiting factor

• Theoretically, obtain more approximation results