Co-scheduling algorithms
for high-throughput workload execution

Guillaume Aupy?, Manu Shantharam?, Anne Benoit!3,
Yves Robert!3# and Padma Raghavan®

1. Ecole Normale Supérieure de Lyon, France
2. University of Utah, USA
3. Institut Universitaire de France
4. University of Tennessee Knoxville, USA
5. Pennsylvania State University, USA

Anne .Benoit@ens-lyon.fr http://graal.ens-lyon.fr/~abenoit/

9th Scheduling for Large Scale Systems Workshop
July 1-4, 2014 - Lyon, France

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/

Motivation

@ Execution time of HPC applications
e Can be significantly reduced when using a large number of
processors
e But inefficient resource usage if all resources used for a single
application (non-linear decrease of execution time)

@ Pool of several applications
e Co-scheduling algorithms: execute several applications
concurrently
e Increase individual execution time of each application, but
(i) improve efficiency of parallelization
(i) reduce total execution time
(iii) reduce average response time

@ Increase platform yield, and save energy

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Problem definition

Q Problem definition

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Problem definition
Framework

@ Distributed-memory platform with p identical processors

@ Set of n independent tasks (or applications) T1,..., Tp;
application T; can be assigned o (i) = j processors, and

e pj is the minimum number of processors required by T;;
e tj; is the execution time of task T; with j processors;
o work(i,j) =j x tjj is the corresponding work.

@ We assume the following for 1 < /i< nand p; <j < p:

Non increasing execution time: tijr1 < tij
Non decreasing work: work(i,j + 1) > work(i, j)

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Problem definition

Co-schedules

A co-schedule partitions the n tasks into groups (called packs):

@ All tasks from a given pack start their execution at the same

time

@ Two tasks from different packs have disjoint execution

intervals

A\ processors

Py

P

_I
time

A co-schedule with four packs P; to Py

Anne.Benoit@ens-lyon.fr

Lyon 2014

Co-scheduling algorithms

Problem definition

Definition (k-IN-p-COSCHEDULE optimization problem)

Given a fixed constant k < p, find a co-schedule with at most
k tasks per pack that minimizes the execution time.

The most general problem is when k = p, but in some frameworks
we may have an upper bound k < p on the maximum number of
tasks within each pack.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Problem definition
Related work

@ Performance bounds for level-oriented two-dimensional
packing algorithms, Coffman, Garey, Johnson:
Strip-packing problem, parallel tasks (fixed number of
processors), approximation algorithm based on “shelves”

@ Scheduling parallel tasks: Approximation algorithms, Dutot,
Mounié, Trystram:
Use this model to approximate the moldable model; they
studied the p-IN-p-COSCHEDULE for identical moldable tasks
(polynomial with DP)

@ Widely studied for sequential tasks

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results

© Theoretical results

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results
Complexity: Polynomial instances

The 1-IN-p-COSCHEDULE and 2-IN-p-COSCHEDULE
problems can both be solved in polynomial time.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results
Complexity: Polynomial instances

The 1-IN-p-COSCHEDULE and 2-IN-p-COSCHEDULE
problems can both be solved in polynomial time.

Proof.
If there is a batch with exactly tasks T; and T/, then its execution
time is min;—p. » p, (max(t,-d-, ti’,p—j))'

We then construct the complete weighted graph G = (V/, E),
where |V| = n, and

tip if i = i
&jir = . .
MiNj=p;..p—py (max(l‘,-k,-7 t,-/7p_j)) otherwise
Finally, finding a perfect matching of minimal weight in G leads to
the optimal solution for 2-IN-p-COSCHEDULE. O

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results
Complexity: NP-completeness

The 3-IN-p-COSCHEDULE problem is strongly NP-complete.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results
Complexity: NP-completeness

The 3-IN-p-COSCHEDULE problem is strongly NP-complete.

Proof.
We reduce this problem to 3-PARTITION: Given an integer B and
3n integers as, ..., azn, can we partition the 3n integers into n

triplets, each of sum B? This problem is strongly NP-hard so we
can encode the a;'s and B in unary.

We build instance Z, of 3-IN-p-COSCHEDULE, with p = B
processors, a deadline D = n, and 3n tasks T; such that
=1+ al, if j < aj, tjj = 1 otherwise. (The t;;’s verify the
constraints on work and execution time.)

Any solution of Z> has n packs each of cost 1 with exactly 3 tasks
in it, and the sum of the weights of these tasks sums up to B. [l

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results
Complexity: NP-completeness

For k > 3, The k-IN-p-COSCHEDULE problem is strongly
NP-complete.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results
Complexity: NP-completeness

For k > 3, The k-IN-p-COSCHEDULE problem is strongly
NP-complete.

Proof.

We reduce these problems to the same instance of the
3-IN-p-COSCHEDULE problem, to which we further add:

o n(k — 3) buffer tasks such that t; ; = max (%, 1);

@ the number of processors is now p = B + (k — 3)(B + 1);
@ the deadline remains D = n.

Again, we need to execute each pack in unit time and at most n
packs. The only way to proceed is to execute within each pack
k — 3 buffer tasks on B + 1 processors. O

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results
Scheduling a pack of tasks

Given k tasks to be scheduled on p processors in a single pack
(1-pack-schedule), we can find in time O(plog k) the schedule that
minimizes the cost of the pack.

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results
Scheduling a pack of tasks

Given k tasks to be scheduled on p processors in a single pack
(1-pack-schedule), we can find in time O(plog k) the schedule that
minimizes the cost of the pack.

Greedy algorithm Optimal-1-pack-schedule:
@ Initially, each task T; is assigned its minimum number of
processors p;

@ While there remain available processors, assign one to the
largest task (with their current processor assignment)

This algorithm returns an optimal solution

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results
Optimal solution

Theorem

The following integer linear program characterizes the
k-IN-p-COSCHEDULE problem, where the unknown variables are
the x; j p's (Boolean variables) and the y},’s (rational variables), for
1<i,b<nandl1l<j<p:

Minimizey), yp subject to
(1) Zjbxi,j,bzl, 1<i<n
(ii) ZiJXiJ,bSk, 1<b<n

(III) Z,’,jjxxi,j,bgpa 1<b<n
(iv) xijb X tij <yp, 1<i,b<nl1<j<p

x;ijb = 1iff T; is in pack b and executed on j processors
vp is the execution time of pack b

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results
Approximation algorithm

@ 3-approximation algorithm for the problem
p-IN-p-COSCHEDULE

@ Initialization: task T; executed on p; processors
@ Greedy procedure MAKE-PACK to create packs (with k = p),
given o(i) processors for task T;

procedure MAKE-PACK(n, p, k, o)

begin

L: list of tasks sorted in non-increasing execution times t; ,(j);

while L # 0 do
Schedule the current task on the first pack with enough available
processors and less than k tasks;
Create a new pack if no existing pack fits;
Remove the current task from L;

end

return the set of packs

end

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results

@ PACK-APPROX: lteratively refine the solution, adding a
processor to the task with longest execution time

procedure PACK-APPROX(T1,..., Th)
begin
COST = +o0;

forj=1tondo o(j) < pj;
fori=0to} (p—p)—1do
Call MAKE-PACK (n, p, p,0);
Let COST; be the cost of the co-schedule;
if COST; < COST then COST <+ COST;;
Let Awt(i) = 227 to(yo ()
Let Tj« be one task that maximizes t; ,(j;
if (Awe(i) > p X tjx o(+)) or (o(j*) = p) then
| return COST
else
| o) < o(")+1
end

end
return COST;

end

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Theoretical results

PACK-APPROX is a 3-approximation algorithm for the
p-IN-p-COSCHEDULE problem.

Involved proof, studying the different ways to exit
algorithm PACK-APPROX:

@ The task with longest execution time is already assigned p
processors

@ The sum of the work of all tasks (3 7, t; 5(iyo(/)) is greater
than p times the longest execution time

@ Each task has been assigned p processors

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Heuristics

© Heuristics

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Heuristics
Heuristics

In all heuristics (even randoms), once the different packs are
chosen, we always run Optimal-1-pack-schedule on each pack.

RANDOM-PACK: generates the
packs randomly: randomly
chooses an integer j between 1
and k, and then randomly selects
J tasks to form a pack.

RANDOM-PROC: assigns the
number of processors to each
task randomly, then calls
MAKE-PACK to generate the
packs.

Anne.Benoit@ens-lyon.fr Lyon 2014

PACK-BY-PACK (£): creates
packs that are “well-balanced”:
the difference between smallest
and longest execution times of a
pack is small (ratio of 1+ ¢).

PACK-APPROX: an extension of
the approximation algorithm in
the case where there are at most
k tasks in a pack.

Co-scheduling algorithms

Heuristics

Heuristic variants

Improvement of the heuristics by using up to 9 runs:
@ 4 random heuristics with either one or nine runs:

o RANDOM-PACK-1, RANDOM-PACK-9
o RaNnDpDOM-PRrocC-1, RANDOM-PROC-9

@ PACK-BY-PACK (g) with
o either one single run with ¢ = 0.5 (PACK-BY-PACK-1)
e or 9 runs with e € {.1,.2,...,.9} (PACK-BY-PACK-9)

@ Only one version of PACK-APPROX

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Heuristics

Heuristic variants

Improvement of the heuristics by using up to 9 runs:
@ 4 random heuristics with either one or nine runs:
o RANDOM-PACK-1, RANDOM-PACK-9
e RANDOM-PROC-1, RANDOM-PROC-9
@ PACK-BY-PACK (€) with
o either one single run with ¢ = 0.5 (PACK-BY-PACK-1)
e or 9 runs with e € {.1,.2,...,.9} (PACK-BY-PACK-9)

@ Only one version of PACK-APPROX

Further variants: up to 99 runs, or better choice to create packs in
PACK-BY-PACK, but only little improvement at the price of a much
higher running time

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Simulations

@ Simulations

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Simulations
Workloads

e Workload-I: 10 parallel scientific applications (involving VASP,
ABAQUS, LAMMPS, Petsc); execution time observed on a
cluster with p = 16 processors and 128 cores

@ Workload-II: synthetic test suite with 65 tasks for 128 cores
(p = 16); execution time for problem size m on ¢ cores:

t(m,1)
q

t(m,q) = fxt(m,1) + (1 —f) +£(m, q)

e f: inherently serial fraction
e k: overheads related to synchronization and communication

@ Workload-Ill: similar to Workload-Il, but with 260 tasks for
256 cores (p = 32)

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Simulations
Assessing the performance of heuristics

@ Seven heuristics and three measures:

@ Relative cost: cost divided by the cost of a schedule with each
task scheduled on p processors (schedule used in practice,
n-packs-schedule)

o Packing ratio: total work Y 1, t; 5(jy x o(i) divided by p
times the cost of the co-schedule; close to 1 if no idle time

@ Relative response time: mean response time compared to
n-packs-schedule with non-decreasing order of execution time

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Simulations

Results: Relative cost

PACK-APPROX PACK-BY-PACK-1 M PACK-BY-PACK-9 W RANDOM-PACK-1 RANDOM-PACK-9 HRANDOM-PROC-1 M RANDOM-PROC-9
Workload-1 Workload-1l
1.20 1.20
1.00 1.00
H %0.80 1
M H
H 2 0.60
k] K
& & 0.40
0.20
0.00
2 4 6 8 10 12 14 16
Pack size Pack size

@ Horizontal line = optimal co-schedule (exhaustive search for W-I)
@ PACK-APPROX and PACK-BY-PACK close to optimal
@ Gain of more than 35% compared to n-packs-schedule for W-I

@ Huge gains for W-II (more than 80%, better for larger values of
pack size)

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Simulations

Results: Packing ratio

PACK-APPROX PACK-BY-PACK-1 B PACK-BY-PACK-9 B RANDOM-PACK-1 RANDOM-PACK-9 B RANDOM-PROC-1 M RANDOM-PROC-9

Workload-1 Workload-1I

-

Packing ratio
o o
> ®

o
kS

Packing ratio

Pack size Pack size

@ Packing ratios very close to one for PACK-BY-PACK and
PACK-APPROX

@ High quality packings

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Simulations

Results: Response time

PACK-APPROX PACK-BY-PACK-1 B PACK-BY-PACK-9 B RANDOM-PACK-1 RANDOM-PACK-9 B RANDOM-PROC-1 M RANDOM-PROC-9

Workload-1 Workload-1l

2120 |

2 4 6 8 10 12 14 16
Pack size Pack size

@ Values less than 1: improvements in response times

@ For Workload-Il and larger values of the pack size, response time
gains over 80%

@ k-IN-p-COSCHEDULE attractive from the user perspective

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Results: Workload-Il1

Simulations

PACK-APPROX PACK-BY-PACK-1

Workload-lI

B PACK-BY-PACK-9

B RANDOM-PACK-1

1.00

0.90

0.80
%070

© 0.60
o
2 0.50

S 0.40
030
020 |
010 |
0.00

4 16
Pack size

Workload-ll

~
1=
3

Relative response time

4 16
Pack size

Anne.Benoit@ens-lyon.fr

32

Lyon 2014

RANDOM-PACK-9 HRANDOM-PROC-1 M RANDOM-PROC-9

Workload-1il
12

Packing ratio
S
>

0.4
0.2
[
4 16 32
Pack size

@ Scalability trends with 260
tasks on 32 processors

@ PACK-APPROX and
PACK-BY-PACK are clearly
superior

Co-scheduling algorithms

Simulations
Results: Running times

Workload-l | Workload-Il | Workload-III

PACK-APPROX 0.50 0.30 5.12
PACK-BY-PACK-1 0.03 0.12 0.53
PACK-BY-PACK-9 0.30 1.17 5.07
RANDOM-PACK-1 0.07 0.34 9.30
RANDOM-PACK-9 0.67 2.71 87.25
RANDOM-PRrROC-1 0.05 0.26 4.49
RANDOM-PROC-9 0.47 2.26 39.54

@ Average running times in milliseconds
@ All heuristics run within a few ms, even for W-III
@ Random heuristics slower (cost of random number generation)

@ PACK-BY-PACK-9 comparable with PACK-APPROX

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

© Conclusion

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Conclusion

Conclusion

@ Theoretically: Exhaustive complexity study
o NP-completeness (need to choose for each task both number
of processors and pack)
o Optimal strategy once the packs are formed
o Efficient algorithm to partition tasks with pre-assigned
resources into packs (3-approximation algorithm for k = p)

@ Practically: Heuristics building upon theoretical study, with
very good performance

e Heuristic of choice: PACK-BY-PACK-9

o Great improvement compared to existing schedulers (in terms
of relative cost)

e Corresponding savings in system energy cost

o Measurable benefits in average response time

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

Conclusion
Future work

e Combine with DVFS technique (dynamic voltage and
frequency scaling) to further obtain gains in energy
consumption

e Experiment at a larger scale (university computing facilities),
where workload attributes do not vary much in time, and
energy costs are a limiting factor

@ Theoretically, obtain more approximation results

Anne.Benoit@ens-lyon.fr Lyon 2014 Co-scheduling algorithms

	Problem definition
	Theoretical results
	Heuristics
	Simulations
	Conclusion

