
Introduction Checkpointing Parallel jobs Conclusion

Resilient Scheduling
for

High-Performance Computing

Anne Benoit

LIP, Ecole Normale Supérieure de Lyon, France

Anne.Benoit@ens-lyon.fr

http://graal.ens-lyon.fr/~abenoit/

NPC Keynote talk, November 3-5, 2021

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 1/ 58

Anne.Benoit@ens-lyon.fr
http://graal.ens-lyon.fr/~abenoit/

Introduction Checkpointing Parallel jobs Conclusion

Motivation

Scheduling: Allocate resources to applications to optimize some
performance metrics

Resources: Large-scale distributed systems with millions of
components

Applications: Parallel applications, expressed as a set of tasks,
or divisible application with some work to complete

Performance metrics: Obviously, we are concerned with the
performance of the applications, but also with resilience and
energy consumption

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 2/ 58

Introduction Checkpointing Parallel jobs Conclusion

Classical scheduling problems

Tasks

Machines

P1

P2

Objectives:

Minimizing total execution time (Cmax)

Minimizing weighted sum of execution times
∑

i wiCi

Results: NP-completeness, algorithms, approximation algorithms,
(in-)approximation bounds

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 3/ 58

Introduction Checkpointing Parallel jobs Conclusion

Classical scheduling problems

t

Tasks

Machines

P1

P2

Objectives:

Minimizing total execution time (Cmax)

Minimizing weighted sum of execution times
∑

i wiCi

Results: NP-completeness, algorithms, approximation algorithms,
(in-)approximation bounds

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 3/ 58

Introduction Checkpointing Parallel jobs Conclusion

Classical scheduling problems

Cmax

t

Tasks

Machines

P1

P2

Objectives:

Minimizing total execution time (Cmax)

Minimizing weighted sum of execution times
∑

i wiCi

Results: NP-completeness, algorithms, approximation algorithms,
(in-)approximation bounds

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 3/ 58

Introduction Checkpointing Parallel jobs Conclusion

Classical scheduling problems

C2C1 C5C3
C4

t

Tasks

Machines

P1

P2

Objectives:

Minimizing total execution time (Cmax)

Minimizing weighted sum of execution times
∑

i wiCi

Results: NP-completeness, algorithms, approximation algorithms,
(in-)approximation bounds

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 3/ 58

Introduction Checkpointing Parallel jobs Conclusion

Classical scheduling problems

C2C1 C5C3
C4

t

Tasks

Machines

P1

P2

Objectives:

Minimizing total execution time (Cmax)

Minimizing weighted sum of execution times
∑

i wiCi

Results: NP-completeness, algorithms, approximation algorithms,
(in-)approximation bounds

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 3/ 58

Introduction Checkpointing Parallel jobs Conclusion

Dealing with failures

Consider one processor (e.g. in your laptop)

Mean Time Between Failures (MTBF) = 100 years
(Almost) no failures in practice ,

Why bother about failures?

Theorem: The MTBF decreases linearly with the number of
processors! With 36500 processors:

MTBF = 1 day
A failure every day on average!

A large simulation can run for weeks, hence it will face
failures /

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 4/ 58

Introduction Checkpointing Parallel jobs Conclusion

Dealing with failures

Consider one processor (e.g. in your laptop)

Mean Time Between Failures (MTBF) = 100 years
(Almost) no failures in practice ,

Why bother about failures?

Theorem: The MTBF decreases linearly with the number of
processors! With 36500 processors:

MTBF = 1 day
A failure every day on average!

A large simulation can run for weeks, hence it will face
failures /

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 4/ 58

Introduction Checkpointing Parallel jobs Conclusion

Intuition

Time

p1

p2

p3

t

If three processors have around 20 faults during a time t (µ = t
20)...

Time

p

t

...during the same time, the platform has around 60 faults (µp = t
60)

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 5/ 58

Introduction Checkpointing Parallel jobs Conclusion

So, how to deal with failures?

Failures usually handled by adding redundancy:

Re-execute when a failure strikes

Replicate the work (for instance, use only half of the processors, and
the other half is used to redo the same computation)

Checkpoint the application: Periodically save the state of the
application on stable storage, so that we can restart in case of
failure without loosing everything

Time

C R T C T C

Fail-stop error

(error)

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 6/ 58

Introduction Checkpointing Parallel jobs Conclusion

Another crucial issue: Energy consumption

“The internet begins
with coal”

Nowadays: more than 90 billion kilowatt-hours of electricity a
year; requires 34 giant (500 megawatt) coal-powered plants,
and produces huge CO2 emissions

Explosion of artificial intelligence; AI is hungry for processing
power! Need to double data centers in next four years
→ how to get enough power?

Failures: Redundant work consumes even more energy

Energy and power awareness ; crucial for
both environmental and economical reasons

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 7/ 58

Introduction Checkpointing Parallel jobs Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal checkpointing period
Optimal period when accounting for energy consumption

2 Resilient scheduling heuristics for parallel jobs
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 8/ 58

Introduction Checkpointing Parallel jobs Conclusion

Introduction to resilience

Fail-stop errors:
Component failures (node, network, power, ...)
Application fails and data is lost

Silent data corruptions:
Bit flip (Disk, RAM, Cache, Bus, ...)
Detection is not immediate, and we may get wrong results

How often should we checkpoint
to minimize the waste, i.e., the
time lost because of resilience
techniques and failures?

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 9/ 58

Introduction Checkpointing Parallel jobs Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal checkpointing period
Optimal period when accounting for energy consumption

2 Resilient scheduling heuristics for parallel jobs
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 10/ 58

Introduction Checkpointing Parallel jobs Conclusion

Coping with fail-stop errors

Periodic checkpoint, rollback, and recovery:

Time

C T C T C (no error)

Time

Fail-stop error

C T C T C (error)

Time

C R T C T C

Fail-stop error

(error)

Coordinated checkpointing (the platform is a giant macro-processor)

Assume instantaneous interruption and detection

Rollback to last checkpoint and re-execute

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 11/ 58

Introduction Checkpointing Parallel jobs Conclusion

Coping with fail-stop errors

Periodic checkpoint, rollback, and recovery:

Time

C T C T C (no error)

Time

Fail-stop error

C T C T C (error)

Time

C R T C T C

Fail-stop error

(error)

Coordinated checkpointing (the platform is a giant macro-processor)

Assume instantaneous interruption and detection

Rollback to last checkpoint and re-execute

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 11/ 58

Introduction Checkpointing Parallel jobs Conclusion

Coping with fail-stop errors

Periodic checkpoint, rollback, and recovery:

Time

C T C T C (no error)

Time

Fail-stop error

C T C T C (error)

Time

C R T C T C

Fail-stop error

(error)

Coordinated checkpointing (the platform is a giant macro-processor)

Assume instantaneous interruption and detection

Rollback to last checkpoint and re-execute

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 11/ 58

Introduction Checkpointing Parallel jobs Conclusion

Coping with silent errors

Silent error = detection latency
Error is detected only when corrupted data is activated

Same approach?

C T C T C

Time

Detection
corrupted!

Silent error

corrupted?

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 12/ 58

Introduction Checkpointing Parallel jobs Conclusion

Coping with silent errors

Silent error = detection latency
Error is detected only when corrupted data is activated

Same approach?

C T C T C

Time

Detection

corrupted!

Silent error

corrupted?

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 12/ 58

Introduction Checkpointing Parallel jobs Conclusion

Coping with silent errors

Silent error = detection latency
Error is detected only when corrupted data is activated

Same approach?

C T C T C

Time

Detection
corrupted!

Silent error

corrupted?

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 12/ 58

Introduction Checkpointing Parallel jobs Conclusion

Coping with silent errors

Silent error = detection latency
Error is detected only when corrupted data is activated

Same approach?

C T C T C

Time

Detection
corrupted!

Silent error

corrupted?

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 12/ 58

Introduction Checkpointing Parallel jobs Conclusion

Coping with silent errors

Silent error = detection latency
Error is detected only when corrupted data is activated

Same approach?

C T C T C

Time

Detection
corrupted!

Silent error

corrupted?

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 12/ 58

Introduction Checkpointing Parallel jobs Conclusion

Coping with silent errors

Silent error = detection latency
Error is detected only when corrupted data is activated

Same approach?

C T C T C

Time

Detection
corrupted!

Silent error

corrupted?

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 12/ 58

Introduction Checkpointing Parallel jobs Conclusion

Coping with silent errors

Silent error = detection latency
Error is detected only when corrupted data is activated

Same approach?

C T C T C

Time

Detection
corrupted!

Silent error

corrupted?

Keep multiple checkpoints?

Which checkpoint to recover from?

Need an active method to detect silent errors!

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 12/ 58

Introduction Checkpointing Parallel jobs Conclusion

Methods for detecting silent errors

General-purpose approaches

Replication [Fiala et al. 2012] or triple modular redundancy and voting
[Lyons and Vanderkulk 1962]

Application-specific approaches

Algorithm-based fault tolerance (ABFT): checksums in dense matrices
Limited to one error detection and/or correction in practice [Huang and
Abraham 1984]

Partial differential equations (PDE): use lower-order scheme as
verification mechanism [Benson, Schmit and Schreiber 2014]

Generalized minimal residual method (GMRES): inner-outer iterations
[Hoemmen and Heroux 2011]

Preconditioned conjugate gradients (PCG): orthogonalization check every
k iterations, re-orthogonalization if problem detected [Sao and Vuduc
2013, Chen 2013]

Data-analytics approaches

Dynamic monitoring of HPC datasets based on physical laws (e.g.,
temperature limit, speed limit) and space or temporal proximity
[Bautista-Gomez and Cappello 2014]

Time-series prediction, spatial multivariate interpolation [Di et al. 2014]
NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 13/ 58

Introduction Checkpointing Parallel jobs Conclusion

Coping with fail-stop and silent errors

Time

V C T V C T V C (no error)

Time

V C R T V C T V C

Fail-stop error

(fail-stop error)

Time

V C T V R T V C T V C

Silent error
Detection

(silent error)

What is the optimal checkpointing period?

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 14/ 58

Introduction Checkpointing Parallel jobs Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal checkpointing period
Optimal period when accounting for energy consumption

2 Resilient scheduling heuristics for parallel jobs
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 15/ 58

Introduction Checkpointing Parallel jobs Conclusion

Optimization objective (1/2)

Time

C T C T C

T is the pattern length (time without failures)

C is the checkpoint cost

E(T) is the expected execution time of the pattern

By definition, the overhead of the pattern is defined as:

H(T) = E(T)
T − 1

The overhead measures the fraction of extra time due to:

Checkpoints

Recoveries and re-executions (failures)

The goal is to minimize the quantity: H(T)

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 16/ 58

Introduction Checkpointing Parallel jobs Conclusion

Optimization objective (2/2)

Goal: Find the optimal pattern length T ∗,
so that the overhead is minimized

Overhead: H(T) = E(T)
T − 1

1. Compute expected execution time E(T) (exact formula)

2. Compute overhead H(T) (first-order approximation)

3. Derive optimal T ∗: fail-stop errors

4. Derive optimal T ∗: silent errors

5. Derive optimal T ∗: both

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 17/ 58

Introduction Checkpointing Parallel jobs Conclusion

1. Expected execution time E(T)

T : Pattern length

C : Checkpoint time

R: Recovery time

λf = 1
µf

: Fail-stop error rate

Time

C T C T C (no error)

Time

C R T C T C

Fail-stop error

(recovery)︸︷︷︸
Elost

E(T) = Pno−error (T + C)

+

Perror

(
Elost + R + E(T)

)

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 18/ 58

Introduction Checkpointing Parallel jobs Conclusion

1. Expected execution time E(T)

T : Pattern length

C : Checkpoint time

R: Recovery time

λf = 1
µf

: Fail-stop error rate

Time

C T C T C (no error)

Time

C R T C T C

Fail-stop error

(recovery)︸︷︷︸
Elost

E(T) = Pno−error (T + C)

+ Perror

(
Elost + R + E(T)

)
NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 18/ 58

Introduction Checkpointing Parallel jobs Conclusion

1. Expected execution time E(T)

Assume that failures follow an exponential distribution Exp(λf)

Independent errors (memoryless property)

There is at least one error before time t with probability:

P(X ≤ t) = 1− e−λ
f t

(cdf)

Probability of failure / no-failure

Perror = 1− e−λ
f T

Pno−error = e−λ
f T

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 19/ 58

Introduction Checkpointing Parallel jobs Conclusion

1. Expected execution time E(T)

Time

C T C T C (no error)

Time

C R T C T C

Fail-stop error

(recovery)︸︷︷︸
Elost

E(T) = e−λ
f T (T + C) + (1− e−λ

f T)
(
Elost + R + E(T)

)
= T + C + (eλ

f T − 1)
(
Elost + R

)
Elost is the time lost when the failure strikes:

Elost =

∫ ∞
0

tP(X = t|X <T)dt =
1

λf
− T

eλf T − 1
=

T

2
+ o(λf T)

⇒ We lose half the pattern upon failure (in expectation)!
NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 20/ 58

Introduction Checkpointing Parallel jobs Conclusion

2. Compute overhead H(T)

Time

C T C T C (no error)

Time

C R T C T C

Fail-stop error

(recovery)︸︷︷︸
Elost

We use Taylor series to approximate e−λ
f T up to first-order terms:

e−λ
f T = 1− λf T + o(λf T)

Works well provided that λf << T ,C ,R

E(T) = T + C + λf T

(
T

2
+ R

)
+ o(λf T)

Finally, we get the overhead of the pattern:

H(T) =
C

T
+ λf

T

2
+ o(λf T)

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 21/ 58

Introduction Checkpointing Parallel jobs Conclusion

3. Derive optimal T ∗: Fail-stop errors

Time

C T C T C (no error)

Time

C R T C T C

Fail-stop error

(recovery)︸︷︷︸
Elost

H(T) =
C

T
+ λf

T

2
+ o(λf T)

We solve:

∂H(T)

∂T
= − C

T 2
+
λf

2
= 0

Finally, we retrieve:

T ∗ =

√
2C

λf
=
√

2µf C

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 22/ 58

Introduction Checkpointing Parallel jobs Conclusion

4. Derive optimal T ∗: Silent errors

Time

V C T V R T V C T V C

Silent error
Detection

(silent error)

Similar to fail-stop except:

λf → λs

Elost = T

V : verification time

Using the same approach:

H(T) =
C + V

T
+ λsT︸︷︷︸

silent

+o(λsT)

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 23/ 58

Introduction Checkpointing Parallel jobs Conclusion

5. Derive optimal T ∗: Both errors

H(T) =
C + V

T
+ λf

T

2︸︷︷︸
fail−stop

+λsT︸︷︷︸
silent

+o(λT)

First-order approximations [Young 1974, Daly 2006, AB et al. 2016]

Fail-stop errors Silent errors Both errors
Pattern T + C T + V + C T + V + C

Optimal T ∗
√

C
λf

2

√
V+C
λs

√
V+C

λs+ λf

2

Overhead H∗ 2
√

λf

2 C 2
√
λs(V + C) 2

√(
λs + λf

2

)
(V + C)

Is this optimal for energy consumption?

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 24/ 58

Introduction Checkpointing Parallel jobs Conclusion

5. Derive optimal T ∗: Both errors

H(T) =
C + V

T
+ λf

T

2︸︷︷︸
fail−stop

+λsT︸︷︷︸
silent

+o(λT)

First-order approximations [Young 1974, Daly 2006, AB et al. 2016]

Fail-stop errors Silent errors Both errors
Pattern T + C T + V + C T + V + C

Optimal T ∗
√

C
λf

2

√
V+C
λs

√
V+C

λs+ λf

2

Overhead H∗ 2
√

λf

2 C 2
√
λs(V + C) 2

√(
λs + λf

2

)
(V + C)

Is this optimal for energy consumption?

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 24/ 58

Introduction Checkpointing Parallel jobs Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal checkpointing period
Optimal period when accounting for energy consumption

2 Resilient scheduling heuristics for parallel jobs
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 25/ 58

Introduction Checkpointing Parallel jobs Conclusion

Energy model (1/2)

Modern processors equipped with dynamic voltage and
frequency scaling (DVFS) capability

Power consumption of processing unit is Pidle + κσ3,
where κ > 0 and σ is the processing speed

Error rate: May also depend on processing speed

λ(σ) follows a U-shaped curve
increases exponentially with decreased processing speed σ
increases also with increased speed because of high
temperature

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 26/ 58

Introduction Checkpointing Parallel jobs Conclusion

Energy model (2/2)

Total power consumption depends on:
Pidle : static power dissipated when platform is on (even idle)
Pcpu(σ): dynamic power spent by operating CPU at speed σ
Pio : dynamic power spent by I/O transfers (checkpoints and
recoveries)

Computation and verification: power depends upon σ (total
time Tcpu(σ))

Checkpointing and recovering: I/O transfers (total time Tio)

Total energy consumption:

Energy(σ) = Tcpu(σ)(Pidle + Pcpu(σ)) + Tio(Pidle + Pio)

Checkpoint: EC = C (Pidle + Pio)
Recover: ER = R(Pidle + Pio)
Verify at speed σ: EV (σ) = V (σ)(Pidle + Pcpu(σ))

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 27/ 58

Introduction Checkpointing Parallel jobs Conclusion

Bi-criteria problem

Linear combination of execution time and energy consumption:

a · Time + b · Energy

Theorem

Application subject to both fail-stop and silent errors
Minimize a · Time + b · Energy
The optimal checkpointing period is T ∗(σ) =

√
2(V (σ)+Ce(σ))
λf (σ)+2λs(σ)

,

where Ce(σ) = a+b(Pidle+Pio)
a+b(Pidle+Pcpu(σ))C

Similar optimal period as without energy,
but account for new parameters!

T ∗ =
√

2(V+C)
λf +2λs

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 28/ 58

Introduction Checkpointing Parallel jobs Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal checkpointing period
Optimal period when accounting for energy consumption

2 Resilient scheduling heuristics for parallel jobs
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 29/ 58

Introduction Checkpointing Parallel jobs Conclusion

Motivation

On large-scale HPC platforms:

Scheduling parallel jobs is important to improve application
performance and system utilization

Handling job failures is critical as failure/error rates increase
dramatically with size of system

We combine job scheduling and failure handling for moldable parallel jobs
running on large HPC platforms that are prone to failures

Cmax

t

Tasks

Machines

P1

P2

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 30/ 58

Introduction Checkpointing Parallel jobs Conclusion

Parallel job models

In the scheduling literature:

Rigid jobs: Processor allocation is fixed by the user and cannot be
changed by the system (i.e., fixed, static allocation)

Moldable jobs: Processor allocation is decided by the system but
cannot be changed once jobs start execution (i.e., fixed, dynamic
allocation)

Malleable jobs: Processor allocation can be dynamically changed
by the system during runtime (i.e., variable, dynamic allocation)

We focus on moldable jobs, because:

They can easily adapt to the amount of available resources
(contrarily to rigid jobs)

They are easy to design/implement (contrarily to malleable jobs)

Many computational kernels in scientific libraries are provided as
moldable jobs

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 31/ 58

Introduction Checkpointing Parallel jobs Conclusion

Scheduling model

n moldable jobs to be scheduled on P identical processors

Job j (1 ≤ j ≤ n): Choose processor allocation pj (1 ≤ pj ≤ P)

Execution time tj(pj) of each job j is a function of pj

Area is aj(pj) = pj × tj(pj)

Jobs are subject to arbitrary failure scenarios, which are unknown
ahead of time (i.e., semi-online)

Minimize the makespan (successful completion time of all jobs)

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 32/ 58

Introduction Checkpointing Parallel jobs Conclusion

Speedup models

Roofline model: tj(pj) =
wj

max(pj ,p̄j)
, for some 1 ≤ p̄j ≤ P

Communication model: tj(pj) =
wj

pj
+ (pj − 1)cj ,

where cj is the communication overhead

Amdahl’s model: tj(pj) = wj

(1−γj
pj

+ γj
)
,

where γj is the inherently sequential fraction

Monotonic model: tj(pj) ≥ tj(pj + 1) and aj(pj) ≤ aj(pj + 1),
i.e., execution time non-increasing and area is non-decreasing

Arbitrary model: tj(pj) is an arbitrary function of pj

Rigid jobs: pj is fixed and hence execution time is tj

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 33/ 58

Introduction Checkpointing Parallel jobs Conclusion

Failure model
Jobs can fail due to silent errors (or silent data corruptions)

A lightweight silent error detector (of negligible cost) is available to
flag errors at the end of each job’s execution

If a job is hit by silent errors, it must be re-executed (possibly
multiple times) till successful completion

A failure scenario f = (f1, f2, . . . , fn) describes the number of failures each
job experiences during a particular execution

Example: f = (2, 1, 0, 0, 0) for an execution of 5 jobs

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 34/ 58

Introduction Checkpointing Parallel jobs Conclusion

Problem complexity

Scheduling problem clearly NP-hard (failure-free is a special case)

A scheduling algorithm Alg is said to be a c-approximation if its
makespan is at most c times that of an optimal scheduler for all
possible sets of jobs, and for all possible failure scenarios, i.e.,

TAlg(f, s) ≤ c · Topt(f, s∗)

Topt(f, s∗) denotes the optimal makespan with scheduling
decision s∗ under failure scenario f

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 35/ 58

Introduction Checkpointing Parallel jobs Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal checkpointing period
Optimal period when accounting for energy consumption

2 Resilient scheduling heuristics for parallel jobs
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 36/ 58

Introduction Checkpointing Parallel jobs Conclusion

Lower bounds

Rigid jobs: pj is fixed and job j has execution time tj

Optimal makespan has two lower bounds:

Topt(f, s∗) ≥ tmax(f)

Topt(f, s∗) ≥ A(f)

P

tmax(f) = maxj=1...n(fj + 1) · tj : maximum cumulative execution
time of any job under f

A(f) =
∑n

j=1(fj + 1) · aj : total cumulative area

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 37/ 58

Introduction Checkpointing Parallel jobs Conclusion

List-based algorithm

Resilient list-based scheduling algorithm, and O(1)-approximations for
any failure scenario:

Extends classical batch scheduler that combines reservation and
backfilling strategies

Organizes all jobs in a list (or queue) based on some priority rule

When job Jk completes: processors released; if error, inserted back
in the queue; remaining jobs scheduled

Reservation for first m jobs with highest priorities, at earliest
possible time

Other jobs ”backfilled” if reservations not affected

m = |Q| (Conservative backfilling): reservations for all jobs

m = 1 (Aggressive or EASY backfilling): reservation for 1 job

m = 0 (Greedy scheduler): no reservation

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 38/ 58

Introduction Checkpointing Parallel jobs Conclusion

List-based algorithm

Resilient list-based scheduling algorithm, and O(1)-approximations for
any failure scenario:

Extends classical batch scheduler that combines reservation and
backfilling strategies

Organizes all jobs in a list (or queue) based on some priority rule

When job Jk completes: processors released; if error, inserted back
in the queue; remaining jobs scheduled

Reservation for first m jobs with highest priorities, at earliest
possible time

Other jobs ”backfilled” if reservations not affected

m = |Q| (Conservative backfilling): reservations for all jobs

m = 1 (Aggressive or EASY backfilling): reservation for 1 job

m = 0 (Greedy scheduler): no reservation

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 38/ 58

Introduction Checkpointing Parallel jobs Conclusion

List-based algorithm: Approximation results

2-approximation using Greedy heuristic without reservation

3-approximation using Large Job First priority with reservation

The results nicely extend the ones without job failures
[TWY’92: J. Turek, J. L. Wolf, and P. S. Yu. Approximate algorithms scheduling

parallelizable tasks. SPAA’92].

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 39/ 58

Introduction Checkpointing Parallel jobs Conclusion

Shelf-based algorithm

Resilient shelf-based scheduling heuristic, but Ω(logP)-approx. for any
shelf-based solution in some failure scenario, e.g.:

The result defies the O(1)-approx. result without failures [TWY’92]

Why not re-execute failed jobs within a same shelf?

Optimal on this example!

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 40/ 58

Introduction Checkpointing Parallel jobs Conclusion

Shelf-based algorithm

Resilient shelf-based scheduling heuristic, but Ω(logP)-approx. for any
shelf-based solution in some failure scenario, e.g.:

The result defies the O(1)-approx. result without failures [TWY’92]

Why not re-execute failed jobs within a same shelf?

Optimal on this example!

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 40/ 58

Introduction Checkpointing Parallel jobs Conclusion

Shelf-fill variant: Fill shelfs when error detected

However, there exists a job instance and a failure scenario such that
Shelf-fill with the LPT priority rule has an approximation ratio of Ω(P)!

time

time

1

: 1+ε
P

(P−1 jobs)

P − 1 failures

1
P

: 1+ε
P2 ((P−1)P jobs)

P2 − 1 failures

1
P2

: 1+ε
P3 ((P−1)P2 jobs)

1
1
P

1
P2

+ Extensive simulation results of all heuristics using both synthetic jobs and job traces
from the Mira supercomputer

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 41/ 58

Introduction Checkpointing Parallel jobs Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal checkpointing period
Optimal period when accounting for energy consumption

2 Resilient scheduling heuristics for parallel jobs
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 42/ 58

Introduction Checkpointing Parallel jobs Conclusion

Main results for moldable jobs

Two resilient scheduling algorithms with analysis of approximation ratios
and simulation results

1 A list-based scheduling algorithm, called Lpa-List, and
approximation results for several speedup models

2 A batch-based scheduling algorithm, called Batch-List, and
approximation result for the arbitrary speedup model

3 Extensive simulations to evaluate and compare (average and
worst-case) performance of both algorithms against baseline
heuristics

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 43/ 58

Introduction Checkpointing Parallel jobs Conclusion

(1) Lpa-List scheduling algorithm

Two-phase scheduling approach:

Phase 1: Allocate processors to jobs using the Local Processor
Allocation (Lpa) strategy

Minimize a local ratio individually for each job as guided by
the property of the List scheduling (next slide)
The processor allocation pj will remain unchanged for different
execution attempts of the same job j

Phase 2: Schedule jobs with fixed processor allocations using the
List Scheduling (List) strategy (as in rigid case)

Organize all jobs in a list according to any priority order
Schedule the jobs one by one at the earliest possible time (with
backfilling whenever possible)
If a job fails after an execution, insert it back into the queue for
rescheduling; Repeat this until the job completes successfully

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 44/ 58

Introduction Checkpointing Parallel jobs Conclusion

(1) Lpa-List scheduling algorithm

Given a processor allocation p = (p1, p2, . . . , pn) and a failure scenario
f = (f1, f2, . . . , fn):

A(f,p) =
∑

j aj(pj): total area of all jobs

tmax(f,p) = maxj tj(pj): maximum execution time of any job

Property of List Scheduling

For any failure scenario f, if the processor allocation p satisfies:

A(f,p) ≤ α · A(f,p∗) ,

tmax(f,p) ≤ β · tmax(f,p∗) ,

where p∗ is the processor allocation of an optimal schedule, then a List
schedule using processor allocation p is r(α, β)-approximation:

r(α, β) =

{
2α, if α ≥ β
P

P−1α + P−2
P−1β, if α < β

(1)

Eq. (1) is used to guide the local processor allocation (Lpa) for each job

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 45/ 58

Introduction Checkpointing Parallel jobs Conclusion

(1) Lpa-List scheduling algorithm

Approximation results of Lpa-List for some speedup models:

Speedup Model Approximation Ratio

Roofline 2
Communication 31

Amdahl 4

Monotonic Θ(
√
P)

Advantages and disadvantages of Lpa-List:

Pros: Simple to implement, and constant approximation for some
common speedup models

Cons: Uncoordinated processor allocation, and high approximation
for monotonic/arbitrary model

1For the communication model, our approx. ratio (3) improves upon the
best ratio to date (4), which was obtained without any resilience considerations:
[Havill and Mao. Competitive online scheduling of perfectly malleable jobs with setup

times, European Journal of Operational Research, 187:1126–1142, 2008]
NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 46/ 58

Introduction Checkpointing Parallel jobs Conclusion

(2) Batch-List scheduling algorithm

Batched scheduling approach:

Different execution attempts of the jobs are organized in batches
that are executed one after another

In each batch k (= 1, 2, . . .), all pending jobs are executed a
maximum of 2k−1 times

Uncompleted jobs in each batch will be processed in the next batch

Example: an execution of 5 jobs under a failure scenario f = (0, 1, 2, 4, 7)

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 47/ 58

Introduction Checkpointing Parallel jobs Conclusion

(2) Batch-List scheduling algorithm

Within each batch k :

Processor allocations are done for pending jobs using the
Mt-Allotment algorithm2, which guarantees near optimal
allocation (within a factor of 1 + ε)

The maximum of 2k−1 execution attempts of the pending jobs are
scheduling using the List strategy

Approximation Result of Batch-List

The Batch-List algorithm is Θ((1 + ε) log2(fmax))-approximation for
arbitrary speedup model, where fmax = maxj fj is the maximum number
of failures of any job in a failure scenario

2The algorithm has runtime polynomial in 1/ε and works for jobs in
SP-graphs/trees (of which a set of independent linear chains is a special case)
[Lepère, Trystram, and Woeginger. Approximation algorithms for scheduling malleable

tasks under precedence constraints. European Symposium on Algorithms, 2001]
NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 48/ 58

Introduction Checkpointing Parallel jobs Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal checkpointing period
Optimal period when accounting for energy consumption

2 Resilient scheduling heuristics for parallel jobs
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 49/ 58

Introduction Checkpointing Parallel jobs Conclusion

Performance evaluation
We evaluate the performance of our algorithms using simulations

Synthetic jobs under three speedup models (Roofline,
Communication, Amdahl) and different parameter settings

Job failures follow exponential distribution with varying error rate λ

Baseline algorithms for comparison:

MinTime: allocate processors to minimize execution time of
each job and schedule jobs using List
MinArea: allocate processors to minimize area of each job
and schedule jobs using List

Priority rules used in List:

LPT (Longest Processing Time)
HPA (Highest Processor Allocation)
LA (Largest Area)

Results normalized by a lower bound (minimum possible total
execution time of a job, minimum possible total area)

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 50/ 58

Introduction Checkpointing Parallel jobs Conclusion

Simulation results — with P =7500, n=500, and λ=10−7

Lpa and Batch generally perform better than the baselines

MinTime performs well for Roofline model, but performs badly for
Communication and Amdahl’s models

MinArea performs the worst for all models

LPT and LA priorities perform similarly, but better than HPA

(a) Roofline model (b) Communication model (c) Amdahl’s model

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 51/ 58

Introduction Checkpointing Parallel jobs Conclusion

Simulation results — with varying number of processors P

In Roofline model, Lpa (and MinTime) has better performance,
thanks to it simple and effective local processor allocation strategy

In Communication model, Batch catches up with Lpa and
performs better than MinTime

In Amdahl’s model (where parallelizing a job becomes less efficient
due to extra communication overhead), Batch has the best
performance, thanks to its coordinated processor allocation

5000 10000 15000
P

1.00

1.05

1.10

1.15

1.20

1.25

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(d) Roofline model

5000 10000 15000
P

1.00

1.25

1.50

1.75

2.00

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(e) Communication model

5000 10000 15000
P

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

(f) Amdahl’s model

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 52/ 58

Introduction Checkpointing Parallel jobs Conclusion

Simulation results — with varying number of jobs n

Same pattern of relative performance (as in last slide) for the three
algorithms under the three speedup models

In Roofline and Communication models, having more jobs reduces
number of available processors per job, thus reducing the total idle
time between batches ⇒ performance gap between Batch and
Lpa is decreasing (instead of increasing as in last slide)

100 300 500 750 1000
n

1.00

1.05

1.10

1.15

1.20

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(g) Roofline model

100 300 500 750 1000
n

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(h) Communication model

100 300 500 750 1000
n

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

(i) Amdahl’s model

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 53/ 58

Introduction Checkpointing Parallel jobs Conclusion

Simulation results — with varying error rate λ

Same pattern of relative performance (as in last two slides) for the
three algorithms under the three speedup models

A higher error rate increases the number of failures per jobs, which
has little impact on Lpa and MinTime, but degrades performance
of Batch (corroborating the approximation results)

10−8 10−7 10−6

λ

1.00

1.05

1.10

1.15

1.20

1.25

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(j) Roofline model

10−8 10−7 10−6

λ

1.0

1.2

1.4

1.6

1.8

2.0

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

MinTime

(k) Communication model

10−8 10−7 10−6

λ

1.0

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

m
ak

es
pa

n

Lpa

Batch

(l) Amdahl’s model

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 54/ 58

Introduction Checkpointing Parallel jobs Conclusion

Simulation results — Summary

Both algorithms (Lpa and Batch) perform significantly better
than the baseline (MinTime and MinArea)

Over the whole set of simulations, our best algorithm (Lpa or
Batch) is within a factor of 1.47 of the lower bound on average,
and within a factor of 1.8 of the lower bound in the worst case

Summary of the performance for three algorithms (over loose bound)

Speedup model Roofline Communication Amdahl

Lpa
Expected 1.055 1.310 1.960
Maximum 1.148 1.379 2.059

Batch
Expected 1.154 1.430 1.465
Maximum 1.280 1.897 1.799

MinTime
Expected 1.055 2.040 14.412
Maximum 1.148 2.184 24.813

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 55/ 58

Introduction Checkpointing Parallel jobs Conclusion

Outline

1 Checkpointing for resilience
How to cope with errors?
Optimization objective and optimal checkpointing period
Optimal period when accounting for energy consumption

2 Resilient scheduling heuristics for parallel jobs
Main results for rigid jobs
Main results for moldable jobs
Simulation results

3 Conclusion

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 56/ 58

Introduction Checkpointing Parallel jobs Conclusion

Conclusion

Take-aways:

Future HPC platforms demand simultaneous resource scheduling
and resilience considerations for parallel applications

Compute the optimal checkpointing period for divisible applications

Resilient scheduling algorithms for rigid and moldable parallel jobs
with provable performance guarantees

Extensive simulation results demonstrate the good performance of
these algorithms under several common speedup models

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 57/ 58

Introduction Checkpointing Parallel jobs Conclusion

Future work:
Analysis of average-case performance of the algorithms (e.g., when
some failure scenarios occur with higher probability)

Considering alternative failure models (e.g., fail-stop errors), and
the use of checkpointing to improve efficiency of scheduling

Performance validation of algorithms using datasets with realistic
job speedup profiles and failure traces

Overall: Still a lot of challenges to address, and techniques to be
developed for many kinds of high-performance applications, making
trade-offs between performance, reliability, and energy consumption

Thanks!!! And a few references:

A. Benoit, A. Cavelan, Y. Robert, H. Sun. Assessing general-purpose algorithms to cope with fail-stop and
silent errors. TOPC 2016.

A. Benoit, V. Le Fèvre, P. Raghavan, Y. Robert, H. Sun. Resilient scheduling heuristics for rigid parallel
jobs. IJNC 2021.

A. Benoit, V. Le Fèvre, L. Perotin, P. Raghavan, Y. Robert, H. Sun. Resilient scheduling of moldable jobs
on failure-prone platforms. Cluster 2020.

A. Benoit, V. Le Fèvre, L. Perotin, P. Raghavan, Y. Robert, H. Sun. Resilient scheduling of moldable
parallel jobs to cope with silent errors. IEEE TC 2021.

NPC Keynote talk, Nov. 5, 2021 Anne.Benoit@ens-lyon.fr Resilient scheduling for high-performance computing 58/ 58

	Checkpointing for resilience
	How to cope with errors?
	Optimization objective and optimal checkpointing period
	Optimal period when accounting for energy consumption

	Resilient scheduling heuristics for parallel jobs
	Main results for rigid jobs
	Main results for moldable jobs
	Simulation results

	Conclusion

